曲线梁桥钢管混凝土桥墩的扭转效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在曲线钢-混凝土组合梁桥体系中,钢管混凝土墩柱的扭转效应将对整体结构在地震作用下的力学行为产生较大的影响,论文对钢管混凝土柱在复杂受力状态下抗扭的力学性能和数值模型开展了系统的研究,取得的主要研究成果如下:
     (1)基于ABAQUS的用户自定义子程序UMAT,开发了不考虑截面非线性扭转效应的钢-混凝土组合结构纤维梁单元,用于组合结构构件在轴力和弯矩作用下的弹塑性滞回反应分析时建模速度、计算效率和精度均较高,在分析构件中仅存在轴力和弯矩作用的结构体系时相比传统建模方式的有限元模型优势较大。
     (2)通过14个钢管混凝土柱在不同加载模式下的拟静力往复加载试验,得到了钢管混凝土柱在往复扭矩荷载作用下的破坏过程、破坏模式以及扭矩-扭转角滞回特性,以及在加载全过程中的应变状态及相应的变化规律,初步揭示了钢管混凝土的抗扭机理,并为本文后续研究工作提供了基础试验依据。
     (3)基于大型通用有限元程序ABAQUS建立了钢管混凝土柱的“壳-实体”精细有限元模型,同时建立了钢管混凝土柱的“分层筒”理论模型,通过选用合理的混凝土材料本构关系,对钢管混凝土柱的抗扭力学行为进行了有效的模拟计算,进一步揭示了钢管混凝土柱在复杂受力状态下的抗扭机理。
     (4)在已有研究基础上,建立了考虑扭转效应的钢管混凝土纤维梁模型,并基于ABAQUS的用户自定义子程序UEL实现了单元的开发,与试验结果的对比结果表明考虑扭转效应的纤维梁模型能够有效考虑钢管混凝土截面的非线性扭转特性,在保证求解结果的准确性及建模速度的同时,可以获得较高的求解效率。
     (5)将考虑扭转效应的钢管混凝土纤维梁单元应用于曲线钢-混凝土组合梁桥在地震作用下的弹塑性时程反应分析,考察了模型的有效性和适用性。在此基础上,对曲线钢-混凝土组合梁桥在水平地震作用下的墩柱扭转效应和关键影响参数进行了初步的探讨。
     本论文提出的考虑扭转效应的钢管混凝土纤维梁模型可为分析曲线钢-混凝土组合梁桥体系在地震作用下的力学行为和受力机理提供有力的工具。
     本论文获得国家自然科学基金项目(51138007),教育部博士研究生“学术新人奖”资助。
In curved steel-concrete composite girder bridge system, the torsion effect in piershas significant influences on the mechanical behavior of structures subjected tohorizontal earthquake load. Therefore, the nonlinear torsion behavior and numericalmodels of concrete filled steel tube columns were comprehensive studied, includingexperimental study, theoretical model, refined finite element model, user-definedsubroutine development and structural system application. The main research works andresults are as follows:
     (1) Based on the B31fiber beam-column element and user-defined subroutineUMAT in the general finite element program ABAQUS, the steel-concrete compositefiber beam-column element without consideration of the nonlinear torsion effect wasdeveloped and a serious of uniaxial stress-strain hysteretical relations of steel andconcrete material constitutive models were introduced. When applied for analyzing theelastic-plastic mechanical behavior of steel-concrete composite beams and columns, thehigh modeling efficiency and solution precision could be obtained. Compared with theconvention finite element modeling method, the obvious advantages of thesteel-concrete composite fiber beam-column model could be observed when analyzingthe structural members subjected to combined axial force and bending moment.
     (2) The quasi-static test on fourteen concrete filled steel tube columns with varioussection types and load modes was carried out. The torsion moment versus rotation anglehysteretic relations were obtained, and the strain state and developing trend of steeltubes were also observed during the entire loading history. Then the torsion mechanismof concrete filled steel tube columns was preliminary studied, providing a serious of testresults for the subsequent research work in this dissertation.
     (3) The refined “shell-solid” finite element model for concrete filled steel tubecolumns subjected to torsion was established, and the theoretical model calledlaminated tubes model was also proposed. The suitable material constitutive modelswere chosen for simulating the mechanical behavior of concrete filled steel tubecolumns subjected to pure torsion, compression-torsion, bending-torsion andcompression-bending-torsion. The torsion mechanism of concrete filled steel tubecolumns were further studied in order to provide the research basis for establishing the fiber beam-column model considering torsion effect.
     (4) The shear strain distribution law on the section of the fiber beam-columnelement was assumed based on the refined “shell-solid” finite element model, and theplane section assumption of the normal strain was also introduced. Based on thelaminated tubes model and two-dimensional material constitutive models of steel andconcrete, the fiber beam-column model for concrete filled steel tubes consideringtorsion effect was proposed. Using the FORTRAN language, the proposed fiberbeam-column element considering torsion effect was developed in the user-definedsubroutine UEL in the general finite element program ABAQUS. The good agreementbetween the test results and predicted results could be observed, and the nonlineartorsion behavior of concrete filled steel tube columns was effectively calculated by theproposed fiber beam-column model considering torsion effect. Furthermore, the highsolution efficiency and precision could be achieved.
     (5) Applying the proposed fiber beam-column model considering torsion effect inthe curved steel-concrete composite girder bridge subjected to earthquake load, theeffectiveness of the proposed model was investigated. The results showed that the highmodeling efficiency and solution precision could be obtained for analyzing thetime-history response of curved steel-concrete composite girder bridges under thefrequent and rare earthquake load. Then using the fiber beam-column model consideringtorsion effect, the key influencing factors on the torsion effect of curved steel-concretecomposite girder bridges were preliminary discussed.
     The proposed fiber beam-column model considering torsion effect for concretefilled steel tube columns and the developed subroutine in this dissertation have provideda powerful research tool for predicting the seismic behavior and mechanism of curvedsteel-concrete composite girder bridge system.
     This dissertation is sponsored by National Natural Science Foundation of ChinaProgram (51138007) and Ph.D Candidate “Young Scholar of Distinction” of ChinaEducational Administry.
引文
[1]中国土木工程学会工程技术发展研究综合专题组.2020年的中国工程技术发展研究报告.2004.
    [2]聂建国.钢-混凝土组合结构原理与实例.北京:科学出版社,2009.
    [3]聂建国.钢-混凝土组合梁结构—试验、理论与应用.北京:科学出版社,2005.
    [4]范立础.桥梁工程安全性与耐久性—展望设计理念进展.上海公路,2004,25(1):1-7.
    [5]李勇,陈宜言,聂建国,陈宝春.钢-混凝土组合桥梁设计与应用.北京:科学出版社,2002.
    [6]聂建国,吕坚锋,樊健生.组合梁桥在中小跨径桥梁中的应用.哈尔滨工业大学学报,2007,39(S2):663-667.
    [7] Taplin G, Grundy P. Steel-concrete composite beams under repeated load. Proceedings ofconference: composite construction in steel and concrete IV,2000:37-50.
    [8] Ayoub A, Filippou F C. Mixed formulation of nonlinear steel-concrete composite beam element.J. Struct. Eng. ASCE,2000,126(3):371-381.
    [9]聂建国,余洲亮,叶清华.钢-混凝土叠合板组合梁抗震性能的试验研究.清华大学学报,1998,38(10):35-37.
    [10]聂建国,余洲亮,袁彦声,米观,林伟.钢-混凝土组合梁恢复力模型的研究.清华大学学报,1999,39(6):21-24.
    [11]薛伟辰,李昆,李杰.钢-混凝土组合梁低周反复荷载试验研究.地震工程与振动,2002,22(6):65-70.
    [12]蒋丽忠,邹飞,余志武.低周反复荷载作用下钢-混凝土组合梁的延性.铁道科学与工程学报,2005,2(5):23-27.
    [13]钟善桐.高层钢管混凝土结构.哈尔滨:黑龙江科学技术出版社,1999.
    [14]蔡绍怀.我国钢管混凝土结构技术的最新进展.土木工程学报,1999,32(4):16-26.
    [15]韩林海.钢管混凝土结构理论与实践.北京:科学出版社,2007.
    [16]徐积善, Lee G, Chang K C, Kunitomo.钢管混凝土短柱在压扭共同作用下的试验研究.北京建筑工程学院学报,1991,7(2):1-10.
    [17]徐积善,宫安.钢管混凝土短柱在压扭复合受力下的试验研究.中国钢协钢-混凝土组合结构协会第三次年会论文集,1991.
    [18]徐积善,周竞.钢管混凝土中长柱在压扭复合受力下的试验研究.中国钢协钢-混凝土组合结构协会第三次年会论文集,1991.
    [19]徐积善,黎国清.钢管混凝土柱在压扭荷载作用下的分析研究.混凝土结构基本理论及应用第二届学术讨论会论文集,1990.
    [20]韩林海,钟善桐.钢管混凝土压弯扭构件工作机理及性能研究.建筑结构学报,1995,16(4):32-39.
    [21]韩林海,钟善桐.钢管混凝土压弯扭(剪)承载力相关关系及钢管混凝土统一设计理论构想.工业建筑,1995,25(1):14-21.
    [22]韩林海.钢管混凝土压扭构件工作机理研究.哈尔滨建筑工程学院学报,1994,27(4):35-40.
    [23]韩林海,钟善桐.钢管混凝土压扭、弯扭构件承载力相关方程.哈尔滨建筑工程学院学报,1994,27(2):32-37.
    [24]韩林海,钟善桐.钢管混凝土弯扭构件的理论分析和试验研究.工业建筑,1994,27(2):3-8.
    [25]韩林海,钟善桐.钢管混凝土压扭短柱理论分析方法.哈尔滨建筑工程学院学报,1993,26(3):18-23.
    [26]金伟良,曲晨,傅军,张立.薄壁离心钢管混凝土扭转全过程简化计算研究.浙江大学学报(工学版),2003,37(1):5-9.
    [27] Lee E T, Yun B H, Shim H J, Chang K H. Lee G C. Torsional behavior of concrete-filledcircular steel tube columns. Journal of Structural Engineering, ASCE,2009,135(10):1250-1258.
    [28] Wegmuller A W, Amer H N. Nonlinear response of composite steel-concrete bridges.Composite and Structures,1977,7(2):161-169.
    [29] Razaqpur A G, Nofal M. A finite element for modeling the nonlinear behavior of shearconnectors in composite structures. Composite and Structures,1989,32(1):169-174.
    [30] Udagawa K, Mimura H. Behavior of composite beam frame by pseudodynamic testing. Journalof Structural Engineering, ASCE,1991,117(5):1317-1335.
    [31] Arizumi Y, Hamada S, Kajita T. Elastic-plastic analysis of composite beams with incompleteinteraction by finite element method. Composite and Structures,1981,14(5-6):453-462.
    [32] Salari M R, Spacone E. Analysis of steel-concrete composite frames with bond-slip. Journal ofStructural Engineering, ASCE,2001,127(11):1243-1250.
    [33] Oven V A, Burgess IW, Plank R J, et al. An analytical model for the analysis of compositebeams with partial interaction. Composite and Structures,1997,62(3):493-504.
    [34] Zona A, Barbato M, Conte J P. Nonlinear seismic response analysis of steel-concrete compositeframes. Journal of Structural Engineering, ASCE,2008,134(6):986-997.
    [35] SAP2000Analysis Reference, Computers and Structures, Inc,1998.
    [36] Spacone E, Filippou F, Taucer F, Fiber beam-column modeling for non-linear analysis of RCframes. Journal of Earthquake Engineering and Structural Dynamics,1996,25(7):711-725.
    [37] D’Ambrisi A, Filippou F, Modeling of cyclic shear behavior in RC members. Journal ofStructural Engineering, ASCE,1999,125(10):1143-1149.
    [38]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法,浙江大学学报(工学版),2005,39(7):1003-1008.
    [39]伍永飞,周德源.纤维模型在平面框架非线性静力分析中的应用,东南大学学报(自然科学版),2005,35(s1):129-132.
    [40]陆新征,缪志伟,江见鲸,叶列平.静力和动力荷载作用下混凝土高层结构的倒塌模拟.山西地震,2006,126(2):7-11.
    [41]周新炜,李志山,李云贵.基于纤维梁元的混凝土单轴滞回本构模型的开发与应用.第十四届全国工程设计计算机应用学术会议论文集,2008.
    [42] Chen W F. Plasticity in reinforced concrete. New York, McGraw-Hill Book Company,1982.
    [43] ABAQUS/Standard User Subroutines Reference Manual, Hibbitt,Karlsson, Sorensen, Inc.2002.
    [44]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003.
    [45]叶列平.混凝土结构.清华大学出版社.2005.
    [46] De Borst R, Nauta P.Non-orthogonal cracks in a smeared finite element model. EngineeringComputations,1985,2(3):35-46.
    [47]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社,2005.
    [48] Mander J B, Priestley M J N, Park R. Theoretical stress-strain isotherms for elastin modelnetworks. Journal of Polymer Science,1988,26(4):865-874.
    [49] Légeron F, Paultre P, Mazar J. Damage mechanics modeling of nonlinear seismic behavior ofconcrete structures. Journal of Structural Engineering, ASCE,2005,131(6):946-954.
    [50] Mansour M, Lee J Y, Hsu T T C, Cyclic stress-strain curves of concrete and steel bars inmembrane elements. Journal of Structural Engineering, ASCE,2001,127(12):1402-1411.
    [51]聂建国,李法雄,樊健生,张晓光,刁谡.不同翼板形式组合梁受弯性能试验研究.公路交通科技,2009,26(10):53-58.
    [52]聂建国,余洲亮,叶清华.钢-混凝土叠合板组合梁抗震性能的试验研究.清华大学学报(自然科学版),1998,38(10):35-37.
    [53]薛伟辰,李昆,李杰.钢混凝土组合梁低周反复荷载试验研究.地震工程与工程振动,2002,22(6):65-70.
    [54] Fujinaga T, Matsui C, Tsuda, K, Yamaji Y.1998. Limitting axial compressive force andstructural Performance of concrete filled steel circular tubular beam-columns. Proceeding of theFifth Pacific Structural Steel Conference, Seoul, Korea,979-984.
    [55] Prion H G L, Boehme J. Beam-column behavior of steel tubes filled with high strength concrete.Canadian Journal of Civil Engineering,1994,21(2):207-218.
    [56] Sakin K, Hayashi H. Behavior of concrete filled steel tubular stub columns under concentricloading. The Third International Conference on Steel-Concrete Composite Structures, Fukoka,Japan,1991.
    [57]聂建国,赵洁.钢板-混凝土组合简支梁的试验研究.土木工程学报,2008,41(12):28-34.
    [58] Zatar W, Mutsuyoshi H. Residual displacements of concrete bridge piers subjected to near fieldearthquakes. ACI Structural Journal,2002,99(6):740-749.
    [59] Kazuhiko K, Gakuho W, Ryoji H. Seismic performance of rc bridge columns subjected tobilateral excitation. Proc.35th Joint Meeting,2003.
    [60]钱稼茹,彭媛媛,赵作周.万科预制剪力墙试验报告.清华大学土木工程系.2010.
    [61] Udagawa K, Mimura H. Behavior of composite beam frame by pseudodynamic testing. Journalof Structural Engineering, ASCE,1991,117(5):1317-1335.
    [62] Bursi O S, Gramola G. Behavior of composite substructures with full and partial shearconnection under quasi-static cyclic and pseudo-dynamic displacements. Material andStructures,2000,33(3):154-163.
    [63]赵刚,潘鹏,聂建国,王宗纲.基于力和位移混合控制的多自由度结构拟静力实验方法研究[J].结构工程师.2011,27(1):37-41.
    [64]唐九如.钢筋混凝土框架节点抗震.南京:东南大学出版社,1989.
    [65] GB50152-92.混凝土结构试验方法标准.中国建筑工业出版社,1992.
    [66]范钦珊,殷雅俊.材料力学.北京:清华大学出版社,2008.
    [67]陈力,方秦,还毅,张亚栋.对ABAQUS中混凝土弥散开裂模型的静力特性分析.解放军理工大学学报.2007,8(5):478-485.
    [68]张劲,王庆扬,胡守营,王传甲.ABAQUS混凝土损伤塑性模型参数验证.建筑结构.2008,38(8):127-130.
    [69]周小军.ABAQUS中弥散裂缝模型与损伤塑性模型的比较.福建建筑.2010,143(5):49-50.
    [70] CEB-FIP MC90.欧洲模式规范. Lausanne,1990.
    [71] Kachanov L M. Time of the rapture process under creep conditions. International Journal ofFracture,1999,97(1-4):11-18.
    [72] Krajcinovic D, Lemaitre J. Continuum damage mechanics theory and applications. New York:Springer-Verilag,1987.
    [73]王中强,余志武.基于能量损失的混凝土损伤模型.建筑材料学报.2004,7(4):365-369.
    [74] Loland K E. Continuous damage model for load-response estimation of concrete.Cement andConcrete research,1980,10(3):395-402.
    [75] Mazars J. Mechanical damage and fracture of concrete structure.5th international conferenceon fracture, Cannes,1980.
    [76] Belarbi A, Hsu T T C, Constitutive laws of softened concrete in biaxial tension-compression.ACI Structural Journal,1995,92(5):562-573.
    [77] Mansour M, Lee J Y, Hsu T T C. Cyclic stress-strain curves of concrete and steel bars inmembrane elements. Journal of Structural Engineering, ASCE,2001,127(12):1402-1411.
    [78]陈惠发.弹性与塑性力学.北京:中国建筑工业出版社,2004.
    [79] Robinson J R, Demorieux J M. Essais de traction-compression sur modeles d’ame de Pouter enBéton Anne, Institut de Recherches Appliquees du Béton de I’Armé. Part1,1968, Part2,1972.
    [80] Vecchio F J, Collins M P. The modified compression-field theory for reinforced concreteelements subjected shear. ACI Structural Journal,1986,83(2):219-231.
    [81]韩林海,钟善桐.钢管混凝土纯扭转问题研究.工业建筑,1995,25(1):7-13.
    [82]陈逸玮.钢管混凝土形状因素与扭转韧性行为研究.台湾:中央大学,2003.
    [83] James M G, Barry J G. Mechanics of Materials, SI Edition. July14,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700