圆钢管混凝土边框内藏钢桁架剪力墙抗震试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剪力墙是用于高层建筑抗侧力体系的关键竖向构件。随着高层建筑特别是超高层建筑的快速发展,研发新型组合剪力墙已成为工程亟需。在课题组已有方钢管混凝土边框组合剪力墙抗震研究基础上,本文提出了圆钢管混凝土边框内藏钢桁架组合剪力墙,这是一种多重组合剪力墙,实现了钢管混凝土、混凝土剪力墙、钢桁架三种抗侧力体系组合,以及型钢和混凝土两种材料组合,充分发挥了不同抗侧力体系和不同材料的抗震优势,形成了具有多道抗震防线的组合剪力墙。本文对该多重组合剪力墙进行了较系统的抗震性能试验研究和理论分析,主要贡献如下:
     1.提出了圆钢管混凝土边框内藏钢桁架组合剪力墙,完成了11个1/5缩尺的剪跨比分别为1.0、1.5和2.0模型试件的低周反复荷载试验研究,较系统地分析了各试件的承载力、延性、刚度及其退化过程、滞回特性、耗能能力及破坏特征等,揭示了其抗震机理。
     2.完成了6个1/12缩尺的高宽比分别为1.5和3.0模型试件的模拟地震振动台试验研究,较系统地分析了在不同台面峰值加速度输入工况下,各试件的加速度反应、位移反应和应变反应等,得出了不同构造剪力墙在地震作用下的累积损伤演化过程。
     3.建立了圆钢管混凝土边框内藏钢桁架组合剪力墙的承载力计算模型、恢复力模型,并实现了弹塑性有限元建模,计算结果与实测结果符合较好。基于理论计算分析,揭示了该新型组合剪力墙的受力与变形变化规律。
     4.给出了圆钢管混凝土边框内藏钢桁架组合剪力墙抗震设计方法。包括适用范围、一般规定、布置原则和构造措施。
     主要结论:
     (1)圆钢管混凝土边框内藏钢桁架组合剪力墙,具有多道抗震防线和良好的抗震屈服机制,其承载力、延性比圆钢管混凝土边框剪力墙明显提高,比普通混凝土剪力墙显著提高。
     (2)圆钢管混凝土边框内藏钢桁架组合剪力墙,由于其剪力墙中内藏钢桁架的存在,有效制约了剪力墙斜裂缝的出现和发展,提高了剪力墙的后期刚度。
     (3)圆钢管混凝土边框内藏钢桁架组合剪力墙,具有良好的滞回性能和较强的抗震耗能能力。
     (4)圆钢管混凝土边框内藏钢桁架组合剪力墙,在动力荷载作用下位移反应明显小,具有较强的抗地震倒塌能力。
Shear wall is the main component that resists the lateral force for high-rise buildings. With the rapid development of high-rise buildings, especially the super high-rise buildings, research on new composite shear wall has become urgently needed for engineering. Based on previous study of our group about shear wall with concrete filled square steel tube columns, the shear wall with concrete filled round steel tube columns and concealed steel trusses has been brought forward in this paper. This new shear wall is a kind of multiple composite shear wall. It make the combination of the three lateral force resisting systems which are steel tube, concrete shear wall and steel truss, and the combination of two materials which are steel and concrete possible. And it also reflects the advantages of different lateral force resisting systems and different materials fully, and formed multi-channel seismic line. Seismic experimental research and theoretical analysis have been presented in this paper. Main contributions are listed as follows:
     1. Composite shear wall with concrete filled round steel tube columns and concealed steel trusses was proposed. The experimental study on the seismic behavior of eleven 1/5 scaled shear wall specimens with different shear span ratios (1.0, 1.5, 2.0) has been done under the cyclic loading action. The load-carrying capacity, ductility, stiffness and its attenuation process, hysteretic behavior, energy dissipation and failure phenomena of each specimen were discussed systematically. And their seismic mechanism was revealed.
     2. Six 1/12 scaled shear wall specimens with different aspect ratios (1.5, 3.0) have been tested on the shaking table. The acceleration response, displacement response, strain responses of each specimen are discussed systematically. And the damage evolution process of different constructional shear walls under earthquake was summarized.
     3. The simplified mechanics model of load-carrying capacity and restoring force model of shear wall with concrete filled round steel tube columns and concealed steel trusses have been established. The finite element analysis theoretical models have also been developed. The calculated results are in good agreement with those from experiments. Based on the theoretical analysis of shear wall with concrete filled round steel tube columns and concealed steel trusses, the variation mechanism of force to deformation was revealed.
     4. The seismic design method of Shear wall with concrete filled round steel tube columns and concealed steel trusses have been presented, which include applied scope, general rules, the layout principles and construction measures.
     Main considerations are concluded as follows:
     (1) Shear wall with concrete filled round steel tube columns and concealed steel trusses have multi-channel seismic lines and good seismic yielding mechanism. The load-carrying capacity, ductility are obviously increased compare to normal shear wall.
     (2) The steel trusses embedded in the shear wall with concrete filled round steel tube columns and concealed steel trusses effectively control the emergence and development of inclined cracks in the wall, and accordingly increase the later stiffness of the wall.
     (3) Shear wall with concrete filled round steel tube columns and concealed steel trusses has good hysteretic performance and high seismic energy dissipation capacity.
     (4) The displacement responses of shear wall with concrete filled round steel tube columns and concealed steel trusses is smaller under dynamic load, the shear wall exhibits the strong ability of anti-seismic collapse.
引文
1韩林海.钢管混凝土结构—理论与实践.北京:科学出版社, 2004
    2蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社, 2003
    3钟善桐.高层钢-混凝土组合结构.广州:华南理工大学出版社, 2003
    4钟善桐.钢管混凝土结构.北京:清华大学出版社, 2003
    5 Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures. Oct., 1997. (in Japanese)5-8
    6 ACI 318-05. Building Code Requirements for Structural Concrete and Commentary. Farmington Hills(MI), Americasn Concrete Insititute, Detroit, USA, 2005
    7 AISC. Load and resistance factor design specification for structural steel buildings. American Institute of Steel Construction, Inc. Chicago, Sep., 1994
    8 Furlong R W. Design of steel-encased concrete beam-columns. Journal of Structural Division, ASCE 1968, 94(ST1): 267-281
    9 Furlong R W. Columns rules of ACI, SSLC, and LRFD compared. Journal of Structural Division, ASCE, 1983, 109(10): 2375-2386
    10 Eurocode 4. Design of steel and concrete structures, Partl.l, General rules and rules doe building. DDENV 1994-1-1. British Standards Institution, London W1A2BS, 1996
    11 JCJ01-89.钢管混凝土结构设计与施工规程.上海:同济大学出版社, 1989
    12中华人民共和国经济贸易委员会. DL/T5085-1999.钢-混凝土组合结构设计规程.北京:中国电力出版社, 1999
    13中国工程建设标准化协会标. CECS159:2004.矩形钢管混凝土结构技术规程.北京:中国计划出版社, 2004
    14 Shkir-Khalil.H . Pushout Strength of Concrete -Filled Steel Hollow Sections[J]. The Structure Engineer, 1993, 71(13): 230-233
    15 Shkir-Khalil.H . Resistance of concrete-filled steel tubes to pushout forces[J]. The Structure Engineer, 1993, 71(13): 234-243
    16 Schneider S P. Axially concrete-filled steel tubes[J]. Journal of Structural Engineering, 1998, 124(10): 1125-1138
    17 Eiichi Inai, Akiyoshi Mukai, Makoto Kai; Hiroyoshi Tokinoya, Toshiyuki Fukumoto, Koji Mori. Behavior of Concrete-Filled Steel Tube Beam Columns[J]. Journal of Structural Engineering, 2004, 130(2): 189-202
    18 Varma A H. Seismic behavior, analysis,tube(CFT) columns[R]. Doctoral Dissertation and design of high strength square concrete filled steel of Lehigh University, 2000
    19 Fam A, Qie F S, Rizkalla S. Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads[J]. Journal of Structural Engineering, 2004, 130(4): 631-640
    20 G,.Georgios Dennis L. Axial capacity of circular concrete-filled tube columns[J]. Journal ofConstructional Steel Research, 2004, 60(7): 1049-1068
    21 O'Shea M D, Bridge R Q. Local buckling of thin-walled circular steel sections with or without internal restraint[J]. Journal of Constructional Steel Research, 1997, 41(2/3): 137-157
    22 Cederwall K, Engstrom B, Grauers M. High-strength concrete used in composite columns[J]. High-Strength concrete, 1997, SP 121-11, 195-210
    23 Yamamoto T, Kawaguchi J, Morino S. Size effect on ultimate compressive strength of concrete-filled steel tube short columns, Proceedings of the SEWC2002, Yokohama, Japan, 2002
    24 Gupta L M, Parlewar P M.. An investigation of concrete-filled steel box columns. Journal of Structural Engineering, 2001, 28 (1): 33-38
    25 O'Shea M D, Bridge R Q. Design of circular thin walled concrete filled steel tubes[J]. Journal of Structural Engineering, 2000, 136(11): 1295-1301
    26 Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2003, 60(7): 1049-1068
    27 Matsui C, Tsuda K, Ishibashi Y. Slender concrete filled steel tubular columns under combined compression and bending. Structural Steel, PSSC95, 4th Pacific Structural Steel Conference-Steel-Concrete Composite Structures, Singapore, 1995, 3: 29-36
    28 Susantha K A S, Ge H B, Usami T. Confinement evaluation of concrete-filled box-shaped steel columns[J]. Steel and Composite Structures, 2001, I(3): 313-328
    29 Johansson M,G ylltoft K. Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 2001, 1(4): 393-410
    30 Johansson M. Structural behaviour of circular steel-concrete composite columns:Non-linear finite element analyses and experiments. Licentiate thesis[R]. Department of Strctural Engineering, Chalmers University of Technology, Goteborg, Sweden, 2000
    31 Hajjar J F, Gourley B C. Representation of concrete-filled tubes[J]. I: formulation, Journal of Structural Engineering, ASCE, 1996, 123(6): 736-744
    32 Zhang W, Shahrooz B M. Analytical and experimental studies into behavior of concrete-filled tubular columns. Report No.UC-CII97/01. Cincinnati(OH): University of Cincinnati, College of Engineering,C incinnati Infrastructure Institute, 1997
    33 Hsuan-Teh Hu, Chiung Shiann Huang, Ming Hsien Wu, Yih Min Wu. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering, 2003, 129(10):1322-1329
    34 Shiiba K, Harada N. An experiment study on concrete-filled square steel tubular columns.Proceedings of the 4th International Conference on Steel-Concrete Composite Structures, Slovakia, 1994. 103-106
    35 Sakino K, Hayashi H. Behavior of concrete filled steel tubular stub columns under concentric loading. Proc. of the Third International Conference on Steel-Concrete Composite Structures, Fukoka, Japan, 1991.25-30
    36韩林海,陶忠.圆钢管混凝土压弯构件荷载-位移滞回性能分析[J].地震工程与工程振动, 2001,21(1): 64-73
    37陆伟东,吕西林.方钢管混凝土压弯构件受力-变形过程分析[J].世界地震工程, 2002, 18(1) : 150-154
    38刘威.钢管混凝土局部受压时的工作机理研究.福州大学博士论文. 2005
    39陈宝春,王来永,欧智著.钢管混凝土偏心受压应力-应变试验研究[J].工程力学, 2003, 20(6): 154-159
    40江枣,钱稼茹.钢管混凝土短柱轴心受压承载力与钢管作用研究[J].建筑结构, 2010, 40(8): 94-98
    41黄宏,陶忠,韩林海.圆中空夹层钢管混凝土柱轴压工作机理研究[J].工业建筑, 2006, 36(11): 11-14, 36
    42 Nishiyamal I, Fujimoto T., Fukumoto T., and Yoshioka K.. Inelastic Force-Deformation Response of Joint Shear Panels in Beam-Column Moment Connections to Concrete-Filled Tubes[J]. Journal of Structural Engineering, 2004, 130(2): 244-252
    43 Fujimoto T., Inai E., Kai M., Mori K., Mori O. and Nishiyama I..Behavior of beam-to-colunm connetion of CFT colunm system. The 12th WCEE, 2000, 1-8(2197)
    44 Haga J. and Kubota N.. KB Column Fillet Weld Design Technology. KOBE Steel Engineering Reports, 2002, 52(1): 55-59. (in Japanese)
    45 Cheng C. T. and Chung L. L..Seismic performance of steel beams to concrete-filled steel tubular column connections[J]. Journal of Constructional Steel Research, 2003, 59(3): 405-426
    46 Alostaz Y. M. and Schneider S. P..Analytical Behacior of Connections to concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 1996, 40(2): 95-127
    47 Ricles JM, Lu LW, Peng SW. Seismic behavior of concrete filled tube column-to-WF steel beam moment connections. In: Proc. of Behavior of Steel Structures in Seismic Areas. Kyoto: 1997
    48 Shanmugam NE, Ting LC. Welded interior box-column to I-beam connections[J]. Journal of Structural Engineering, 1995, 121(5): 824-830
    49 Chang-Hoon Kang, Kyung-Jae Shin, Young-Suk Oh. Hysteresis behavior of CFT column to H-beam connections with external T-stiffeners and penetrated elements[J].Engineering Structures, 2001, 23(4): 1194-1201
    50 Xiao-Ling Zhao. Deformation limit and ultimate strength of welded T joints in cold-formed RHS sections[J]. Journal of Constructional Steel Research, 2000, 53(5):149-165
    51 Shin KJ, Oh YS, Moon TS. Test of concrete-filled box column to H-beam connections. In: Proc. of Pacific Structural Steel Conference (PSSC). Seoul, Korea: Korean Society of Steel Construction (KSSC), 1998
    52 J.Jcao, J.A.Packer, G.J.Yang. Yield lin analysis of RHS connections with axial loads[J]. Journal of Constructional Steel Research, 1998, 48(3): 1-25
    53 E.M.Dexter and M.M.K.Lee. Static Strength of Axially Loaded Tubular K-joints. I: Behavior[J]. Journal of Structural Engineering, 1999,120(4): 194-201
    54 Yousef.M.A, Stephen P.Schneider. Analytical of connections to Concrete-filled Steel Tubes[J].Journal of Construct Steel Research, 1996, 40(2): 95-127
    55 G.Davies, P.Crockett. The strength of welded T-DT joints in rectangular and circular hollow section under variable axial loads[J]. Journal of Construct Steel Research, 1996, 37(1): 1-31
    56吕西林,李学平.方钢管混凝土柱外置式环梁节点的试验及设计方法研究[J].建筑结构学报, 2003, 24(1): 7-13
    57霍静思,韩林海.钢管混凝土柱-钢梁节点的力学性能分析[J].计算力学学报, 2008, 25(1): 35-40
    58蔡健,黄泰赞,苏恒强.新型钢管混凝土中柱劲性环梁式节点的设计方法初探[J].土木工程学报, 2002, 35(1): 6-10
    59苏锋,蒋晔,蔡永昌.钢管混凝土梁柱节点受力性能有限元分析[J].浙江大学学报(工学版), 2010, 40(10): 1876-1882,1889
    60 Herrera R, James M R, Richard S, et al.Seismic performance evaluation of steel moment resisting frames with concrete filled tube columns. Proceeding of the International Workshop on Steel and Concrete Composite Constructions. October, 2003, Taiwan
    61 matsui C, Strength end Behltrior of Fr1me with Concrete Filled Squire Steel Tubular Columns Under Earthquake Loading[C], Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structures, 1985: 104-111
    62 Tsai K C, Weng Y T, Lin M L, et al.. Pseudo dynamic tests of a full-scale cft/brb composite frame: displacement based seismic design and response evaluations. Proceeding of the International Workshop on Steel and Concrete Composite Constructions, Taiwan, 2003
    63 Muhummud T. Seismic design and behavior of composite moment resisting frame constructed of CFT columns and WF beams. Ph.D. Dissertation. Department of Civil and Environmental Engineering.Lehigh University, Bethlehem, PA, USA., 2003
    64 Prabuddha D, Subhash C G, Gustavo Parra-Montesinos, et al.. Performance-based seismic design and testing of a composite buckling restrained braced frame. Proceeding of the International Workshop on Steel and Concrete Composite Constructions. October, 2003, Taiwan
    65 kawaguchi J, Mlorino S, Sigimoto T, Elasto-plastic behavior of Concrete-Filled Steel Tubular Frames[C], Proceeding of an Engineering Foundation International conference on Steel-Concrete Composite Constriction III, 1993: 272-281
    66 Hajjar.J.F. Moloddan.A.,Schiller.P.H., A Distributed Plasticity Model for Cycliclnalvsis of Concrete-Filled Steel Tube Beam-Columns and Composite Frames[C], Journal of Steel Construction and Research, 1997, 20(5): 398-411
    67黄襄云,周福霖.钢管混凝土结构地震模拟试验研究[J].西北建筑工程学院学报(自然科学版), 2000, 17(3): 14-17
    68王文达.钢管混凝土柱-钢梁平面框架的力学性能研究.福州大学博士论文. 2006
    69孟春光.复杂体型方钢管混凝土框架结构抗震性能和减震研究.同济大学博士论文. 2006
    70许成祥.钢管混凝土框架结构抗震性能的试验与理论研究.天津大学博士论文. 2003
    71 Astaneh-Asl. Seismic behavior and design of composite steel plate shear walls. Steel Tips Report.Structural Steel Educational Council, Moraga, CA, 2002
    72 Qiuhong Zhao. Experimental and analytical studies of cyclic behavior of steel and composite shear wall systems. Dissertation for the Degree of Doctor of Philosophy. University of California, Berkeley, 2006
    73 CAN/CSA-S16.1-94. Limit state design of steel structures. Canadian Standard Association, Toronto, Ontario, 1994
    74 ANSI/AISC 341-05. Seismic provisions for structural steel buildings. American Institute of Steel Construction, 2005
    75 Toko Hitaka, Chiaki Matsui. Strength and behavior of steel-concrete composite bearing wall. Proceedings of 3rd International Conference on Steel and Composite Structures.ASCCS, 1997
    76 T. Hitaka, C. Matsui. Experimental study on steel shear wall with slits[J]. Journal of Structural Engineering, 2003: 586-595
    77 Hossain K.M.A. and Wright H.D. Behaviour of composite walls under monotonic and cyclic shear loading[J]. Structual Engineering and Mechanics,Vo1.17,No.1(2004) p69-85
    78 Clubley SK, Xiao RY, Moy SSJ. Shear strength of steel-concrete-steel composite panels part I-testing and numerical modeling[J]. Journal of constructional steel research 59 (2003) p781-794
    79 Bing Qu, Miehel Bruneau, Chih-Han Lin, Keh-Chyuan Tsai. Testing of Full-Scale Two-Story Steel Plate Shear Wall with Reduced Beam Section Connections and Composite Floors[J]. Journal of Structural Engineering, ASCE134(3):364-373,March 2008
    80吴志坚.钢板剪力墙和组合剪力墙的抗剪静力性能.哈尔滨工业大学硕士论文. 2006
    81高辉.组合钢板剪力墙试验研究与理论分析.同济大学硕士论文. 2007
    82 Feifei Sun, Guoqiang Li and Hui Gao. Experimental research on seismic behavior of two-sided composite steel plate walls[J]. Steel and Composite Structures. 2007: 805-811
    83马欣伯.两边连接钢板剪力墙及组合剪力墙抗震性能研究.哈尔滨工业大学博士论文. 2009
    84管娜.两边连接钢板混凝土组合剪力墙试验研究与理论分析.哈尔滨工业大学硕士论文. 2008
    85宗丽杰,赵滇生.钢板混凝土组合剪力墙抗震性能研究[J].工业建筑(增刊), 2007, 37(1): 715-718
    86徐嫚.两边连接钢板剪力墙与钢板组合剪力墙抗剪静力性能.哈尔滨工业大学硕士论文. 2006
    87江大绥,陆道渊,黄梁等.天津津塔结构设计.第十二届全国高层建筑结构学术会议论文集. 2008: 1-9
    88 Tong Xiang dong, Hajjar Jerome F, Arturo E. Cyclic behavior of steel frame structure with composite reinforced concrete infill walls and partially restrained connections[J]. Journal of Constructional Steel Research, 2005, 61(4): 531-552
    89 Saari Wlliam K, Haja Jerome F. Schultz A rturo E. Shield Behavior of shear studs in steel frame swith reinforced concrete infill walls[J]. journal of Constructional Steel Research. 2004, 12(60): 1453-1480
    90 Soon, H.C., Bryce, T. and William D, C. Structural steel boundary elements for ductile concrete walls[J]. Journal of structural Engineering, ASCE, 2004, 130(5), 763-768
    91 Fumiya Esaki,Masayuki Ono. Effect of loading velocity on mechanical behavior of SRC shear walls[C]//Proceefllngs of Sixth ASCCS conference on composlte and Hybrid Structures. LosAngeles:2000:809-816
    92 Thomsen J H, Wallace J W. Displacement-Based Design of Slender Reinforced concrete Walls-experimental Verification[J]. ,Journal of Structural Engineering,2004, 130 (4):618-630
    93黄雄军,何小银.带SRC边框剪力墙抗震性能研究[J].西南交通大学学报, 2001, (4): 30-34
    94魏勇,钱稼茹等.高轴压比钢骨混凝土矮墙水平加载试验[J].工业建筑, 2007, 37(6): 76-79
    95李一松,李国强,崔大光.型钢混凝土低矮剪力墙抗震性能试验研究[J].地震工程与工程振动, 2009, 29(4): 92-102
    96钱稼茹等.高轴压比钢骨混凝土剪力墙的抗震性能试验研究[J].建筑结构学报, 2008,(4):43-50
    97董宇光,吕西林.型钢混凝土剪力墙轴压比计算及其限值研究[J].地震工程与工程振动, 2007, 27(1): 80-85
    98章红梅,吕西林.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动, 2007, 27(1): 92-98
    99吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究[J].地震工程与工程振动, 2006, 26(6): 101-107
    100白亮,梁兴文.型钢混凝土剪力墙基于位移的变形能力设计方法[J].建筑结构, 2010, 40(4): 76-79
    101马恺泽,梁兴文,张凡等.型钢混凝土剪力墙变形能力设计方法研究[J].工业建筑, 2010, 40(6): 97-101
    102李莉,薛素铎,曹万林.高强混凝土-型钢组合剪力墙抗震性能试验[J].北京工业大学学报, 2010, 36(7): 920-927
    103杨其伟,范源,王献云等.型钢混凝土短肢剪力墙抗震性能的试验研究[J].世界地震工程, 2009, 25(2): 105-110
    104冯鹏,初明进,叶列平等.冷弯薄壁型钢混凝土剪力墙受剪性能试验研究[J].建筑结构学报, 2010, 31(11): 83-91
    105 Abolhassan Astaneh-Asl. Seismic behavior and design of steel Plate shear walls.Steeltips report. Structural Steel Educational Council,Moraga, CA, January, 2001
    106廖飞宇,陶忠.带不同类型边框柱的剪力墙力学性能试验[J].工业建筑, 2007, 37(12): 31-34,118
    107廖飞宇.带钢管混凝土边柱的钢筋混凝土剪力墙抗震性能研究.福州大学博士论文. 2007
    108夏汉强,刘嘉祥.矩形钢管混凝土柱带框剪力墙的应用及受力分析[J].建筑结构, 2005, 35(1): 16-18
    109曹万林,李刚,张建伟等.钢管混凝土边框不同高厚比钢板剪力墙抗震性能[J].北京工业大学学报, 2010,36(8): 1059-1068
    110曹万林,王敏,王绍合等.矩形钢管混凝上边框组合剪力墙及筒体结构抗震研究[J].工程力学, 2008, 25(S1): 58-70
    111于立彬,张延庆.轴压比对钢管混凝土边框组合剪力墙的影响[J].山西建筑, 2010, 36(17): 53-55
    112曹万林,曾彬,王敏等.钢管混凝土边框与剪力墙连接键工作性能试验[J].北京工业大学学报, 2009, 35(5): 603-610
    113徐利华.钢管混凝土排柱剪力墙框筒结构的抗震性能分析.兰州理工大学硕士论文. 2010
    114曾彬.钢管混凝土边框与剪力墙组合节点抗震性能试验研究.北京工业大学硕士论文. 2009
    115钱稼茹,江枣,纪晓东.高轴压比钢管混凝土剪力墙抗震性能试验研究[J].建筑结构学报, 2010, 31(7): 40-48
    116曹万林,常卫华.内藏偏心支撑钢桁架混凝土组合剪力墙及其制作方法.中国,发明专利, ZL2005100826811. 2007-8
    117曹万林,常卫华.内藏偏心支撑钢桁架混凝土组合筒体.中国,实用新型, ZL 200520118448.X. 2006-9
    118曹万林,张建伟,陶军平等.内藏桁架的混凝土组合低剪力墙试验[J].东南大学学报, 2007, 37(2): 195-200
    119郑同亮,曹万林,张建伟,等.内藏钢桁架混凝土组合高剪力墙抗震性能试验研究[J].世界地震工程, 2006, 22(2): 77-83
    120曹万林,张建伟,张静娜等.内藏桁架混凝土组合中高剪力墙抗震性能试验研究[J].北京工业大学学报, 2008, 34(6): 720-725
    121 W. L. Cao, Y. Q. Zhang, Zhang J.W., M. Wang, W. H. Chang. Study on Seismic Performance of Shear Walls with Concealed Steel Truss. The 14th World Conference on Earthquake Engineering (14WCEE), Beijing, 2008,05-01-0553
    122曹万林,张建伟,陶军平等.内藏钢桁架混凝土剪力墙与钢桁架抗震性能比较试验研究[J].北京工业大学学报, 2007, 33(1): 31-36
    123张建伟,曹万林,王志惠等.高轴压比下内藏桁架的混凝土组合中高剪力墙抗震性能研究[J].工程力学, 2008, 25(S2): 158-163
    124常卫华,曹万林,赵长军等.内藏钢桁架混凝土核心筒抗震试验及计算分析[J].北京工业大学学报, 2008, 34(4): 379-386
    125曹万林,常卫华,张建伟等.内藏钢桁架带洞口混凝土组合核心筒抗震试验及分析[J].东南大学学报, 2008, 38(2): 283-288
    126常卫华,曹万林,张建伟等.复合受力下内藏钢桁架混凝土核心筒扭转性能试验研究[J].北京工业大学学报, 2008, 34(7): 720-725
    127 Hibbitt, Karlson, Sorenson. ABAQUS Version 6.4: Theory Manual, Users' Manual, Verification Manual and Example problems Manual. Hibbitt, Karlson and Sorenson Inc., 2003
    128庄茁等.基于ABAQUS的有限元分析和应用.北京:清华大学出版社, 2009
    129石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社, 2006
    130成文山.配置无明显屈服点钢筋的混凝土受弯构件截面的弯矩与曲率分析[J].土木工程学报, 1982, 15(4): 1-10
    131过镇海.混凝土的强度和变形-试验基础和本构关系.北京:清华大学出版社, 1997
    132 J. Lee, G. L. Fenves.Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900
    133 M. M. Attard,S. Setunge.Stress-Strain Relationship of Confined and Unconfined Concrete. ACI Materials Journal, 1996,93(5): 432-442
    134 Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes[J]. Journal of Structural Engineering, 1999, 125(5): 477-484
    135福建省工程建设地方标准DBJ13-51-2003.钢管混凝土结构技术规程.福州, 2003
    136中华人民共和国国家标准GB50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社, 2002
    137中华人民共和国国家标准GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社, 2001
    138中华人民共和国国家标准GB50017-2003.钢结构设计规范.北京:中国计划出版社, 2003
    139中华人民共和国行业标准JGJ138-2001.型钢混凝土组合结构技术规程.北京:中国建筑工业出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700