中国对虾与抗性相关性状的遗传学参数分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国对虾是我国最重要的养殖经济虾类之一。但是九十年代以来,由于疾病和养殖环境的恶化,中国对虾的池塘存活率和养殖产量受到了严重的影响。为了提高养殖中国对虾的生长性状和抗白斑综合症病毒(简称WSSV)的能力,2004年中国水产科学研究院黄海水产研究所在全国水产技术推广总站的支持下,开始和挪威水产研究所遗传育种中心(AKVAFORSK, Genetics Center, AS)合作实施中国对虾的选择育种计划。本研究以中国对虾为材料,采用不平衡巢式设计方法和人工授精技术,每尾雄虾分别与2-3尾雌虾交尾,共构建了57个全同胞家系(分别属于26个父系半同胞家系)。所有家系均在控制条件下育苗、养殖和进行性状测试。分别测定了不同群体的抗WSSV能力和非特异免疫抗性,计算了这些性状的遗传力和遗传相关,并对不同群体的杂交和近交结果进行了分析。结果如下:
     1中国对虾早期体重和抗WSSV性状的遗传力及遗传相关
     测定了26个半同胞家系感染WSSV后的存活时间和死亡时的体重。结果显示,在平均体重1.56g时,中国对虾抗WSSV性状遗传力估计值(h2±S.E.)是0.10±0.03,体重的遗传力估计值(h2±S.E.)是0.18±0.04,两者的表型相关系数为0.15±0.00,检验极显著;但是,两者间的遗传相关系数为0.08±0.23,经检验相关不显著。结合成体测定的生长性状和池塘存活率,根据60:5:35(生长:池塘存活率:抗WSSV能力)的选择指数计算综合育种值,进行了家系预留种。选择群体的平均存活时间为108.83h,高于全群均值7.56h。
     2中国对虾不同群体及其杂交组合抗WSSV能力的比较分析
     根据洄游路线、越冬及其产卵地点的不同,将从不同地点采集的中国对虾的自然种群划分为不同地理群体。在遗传学上,每个地理群体代表了不同的遗传资源。为了比较乳山(RS)群体、青岛(QD)群体、日照(RZ)群体、朝鲜半岛南海岸野生群体(SKW)、朝鲜半岛南海岸养殖群体(SKC)和本实验室培育的两个选育群体(黄海一号/HH1和即抗98/JK98),以及不同地理群体及其杂交组合抗WSSV性状的差异,建立了不同地理群体及其杂交组合的家系,并在仔虾平均体重1.51g时进行人工感染WSSV试验。结果显示,SKW♂×JK98♀交尾组合感染WSSV后存活时间最长,为103.87h;纯系繁育群体中,QD群体感染病毒后存活101.73h,抗病能力最强,而RZ群体存活时间最短,仅85.53h。本试验结果表明,各个地理群体对WSSV的易感性存在差异,利用群体间杂交能提高大多数组合的抗病能力。
    
     3近交对中国对虾早期体重和抗WSSV性状的影响
     过量的捕捞和不合理的人工育苗措施,使中国对虾野生和养殖群体的遗传多样性均出现不同程度的降低,业已引起水产科技工作者的重视。但是迄今为止,尚未见近交对中国对虾体重和抗病性状影响的报道。本试验利用相似环境条件下养殖的40个野生对虾产生的家系和3个兄妹交配产生的家系,定量测定了平均体重1.43~1.58g时1460尾中国对虾早期体重和感染WSSV后存活时间的近交衰退系数。结果显示,野生对虾家系组的平均体重和平均存活时间分别为1.58±0.01g和100.43±0.68h,而兄妹交家系组平均体重和平均存活时间分别是1.43±0.04g和85.84±1.70h,两组间的平均体重和平均存活时间均存在极显著差异(P<0.01)。野生对虾家系组体重和存活时间的表型相关系数为0.16±0.00,而兄妹交家系组两者间的表型相关系数为0.20±0.00,两组间表型相关系数差异不显著(P>0.05)。近交系数每增加10%,体重和感染WSSV后存活时间分别衰退-3.80±0.17%和-5.81±0.11%,与近交能够降低生长和疾病抗性的观点相一致。这表明,在选择育种和种质资源保护过程中,都应该保证基础群体遗传背景最大化,并应选择合适的育种路线,从而有效控制近交。
     4中国对虾六项免疫相关组分的遗传力和遗传相关
     大量研究已证明,血液中的某些免疫组分在对虾抗病和抗逆过程中发挥着重要的调节作用。精确的估计这些性状的遗传参数,特别是遗传力和遗传相关,对于开展遗传育种工作是非常重要的。本试验在控制条件下建立了中国对虾51个全同胞家系,并养殖到平均体重7.64g。每个家系随机捕捞15尾对虾抽取血液,共测定了765尾对虾血清中的总蛋白浓度(PC)、氧合血蓝蛋白浓度(HC)、酚氧化酶(PO)、超氧化物歧化酶(SOD)、酸性磷酸酶(ACP)和碱性磷酸酶(ALP)等血液中与免疫相关酶类的活性,并以最优线性无偏估计(BLUP)理论为基础,计算了上述六项免疫相关组分的估计遗传力、各项性状间的遗传相关和表型相关。结果表明,当中国对虾平均体重7.64g时,血清中上述六项免疫组分的正常含量分别是153.88±1.65mg/ml,36.04±0.71 U/ml,165.24±4.93 U/ml,333.33±2.74 U/ml,52.51±2.15 U/100ml和61.68±2.61U/100ml。雌性和雄性中国对虾间的六种免疫相关组分差异均不显著(P>0.05)。六项血液免疫相关组分的遗传力估计值(h2)分别是0.00±0.13,0.09±0.22,0.03±0.20,0.30±0.20,0.63±0.32和0.39±0.25。对遗传参数剖分结果同时显示,在不同养殖环境下养殖的家系间性状差异较大,六项血液免疫相关组分的共同环境效应(c2)分别为0.10±0.06,0.20±0.11,0.21±0.10,0.00±0.00,0.02±0.01和0.04±0.01。本研究中,除SOD活性外,几乎所有其他性状间的遗传相关、环境相关和表型相关均为正值。结果表明,虽然中国对虾血液中某些免疫相关组分的遗传力估计值很低,但是大多数免疫性状通过选择育种能够得到改善,从而使选育群体整体非特异性免疫水平得到提高。同时,该部分利用家系估计育种值间的表型相关,估计了早期感染WSSV后存活时间与成体六项免疫组分间的遗传相关,结果显示,存活时间与PC、PO和ACP活性间表现为弱正相关,相关系数分别为0.093±0.516、0.058±0.687和0.044±0.760,而存活时间与HC、SOD和ALP活性间表现为负相关,相关系数分别为-0.179±0.209、-0.268±0.057和-0.110±0.441,该结果表明,中国对虾早期抗WSSV性状与成体免疫性状间不存在显著的相关性,这可能与两者使用的材料不同有关,也可能与对虾机体感染疾病和正常状态下免疫活性的表达不同有关。
     5中国对虾两个地理群体及其杂交组合血液免疫组分活性的比较
     利用在相似条件下建立的49个家系,比较了黄渤海(YB)群体、朝鲜半岛南海岸(SK)群体及其杂交组合对虾血液免疫组分的活性。结果显示,SK群体的各项免疫组分含量均高于YB群体,并且除HC和SOD活性外所有杂交组合的免疫组分含量均高于YB群体。几乎所有的杂交组合都显示出正的杂交优势,SK×YB组合的杂交优势均为正,并在HC、PO和ALP活性方面优于其反交组合。结果表明,YB群体和SK群体在许多免疫组分方面存在差异,这一结果为群体间杂交以提高抗逆性提供了基础资料。
     6控制养殖条件下中国对虾6项免疫组分的近交衰退分析
     定量测定了中国对虾血清中总蛋白浓度、血蓝蛋白浓度、酚氧化酶活性、过氧化物歧化酶、酸性磷酸酶活性和碱性磷酸酶活性六项免疫指标的近交衰退系数。结果显示,兄妹交配产生的F2家系,近交系数为25%,中国对虾的五项免疫指标均低于不存在近交的F1家系,并且在酚氧化酶活性、酸性磷酸酶活性和碱性磷酸酶活性方面存在极显著差异(P<0.01)。近交系数每增加10%,六项免疫指标分别衰退-1.74±0.13%、-4.75±0.23%、-10.50±0.31%、0.62±0.09%、-25.42±0.21%和-21.06±0.30%。结果表明,近交能够影响对虾免疫性状的活性。
Chinese shrimp Fenneropenaeus chinensis was one of the important penaeus. However, since 90 times the pond survival and the total output of F. chinensis have been in a low level because of the breakout of many diseases and the deterioration of the cultural environment. Nowadays the reasonable selection breeding program should be built immediately to product seedling with the rapid growth, the strong resistance to disease and adverse. In 2004, Yellow Sea Fisheries Research Institute of Chinese Fishery Sciences Academy (YSFRI) in collaboration with National Fisheries Technical Extension Center (NFTEC) and Akvaforsk Genetic Center (AFGC) initiated“Selective breeding program of Fenneropenaeus chinensis”to demonstrate the advanced selective breeding technology, as applied to develop the Norwegian salmon in Norway and GIFT tilapia in the Philippines. 57 full-sib families (representing 26 paternal half-sib families), which were cultured in the controlled environment were challenged with White Spot Syndrome Virus (WSSV). In this thesis many key questions, i.e. WSSV resistance and the hemolymph analytes, of different populations were tested. And heritability and genetic correlations of many characters were evaluated. Moreover, effects of outbreeding and inbreeding were compared in this study. The following is the results in detail.
     1 Genetic (co)variation of body weight and resistance to WSSV in young F. chinensis
     WSSV has been one of the most economically significant pathogens affecting hatchery-reared and wild shrimp world-wide. The survival time, i.e. from all animals contacted virus to their death, and their body weight were recorded in this study. The estimate of heritability (h2±S.E.) for WSSV resistance was 0.10±0.03 when the average body weight of F.Chinensis was 1.56g. Estimated heritability of body weight was 0.18±0.04. Phenotypic correlation between survival time and body weight was different significantly, but genetic correlation between them was not significant. And their correlation coefficients were 0.15±0.00 and 0.08±0.23, respectively. Combining with the results of growth and pond survival ratio, composite breeding value had been computed by the selective index 60:5:35(body: pond survival: resistance to WSSV). The average survival time of all families was 108.83h, which was higher than that of the selected familes 101.27h.
     2 Comparison resistance to WSSV among the different geographic populations and their hybridization of F. chinensis
     Chinese shrimp is distributed along the coasts of the northern seacoast of China and the Korean Peninsula. According to their migration routes, spawning and overwintering places, F. chinensis are divided into many geographic variety populations. These populations represent potentially different genetic resources in their economical traits important to aquaculture and for their contribution to hybridization breeding programs. To determine their characteristics of resistance to WSSV, mates were made between and within five populations (Rushan population (RS), Qingdao population (QD), Rizhao population (RZ), the wild population in south coast of Korean Peninsula (SKW) and the cultured population in south coast of Korean Peninsula (SKC)) belong to four geographic variety populations, two breeding populations (Huanghai NO.1 (HH1) and Jikang98 (JK98)), and the offspring was reared to 1.51g. The results indicated that the mating combination of SKW♂×JK98♀is best in resistance to WSSV among all populations, and the average survival time is 103.87h post infecting WSSV. QD population is best in resistance to WSSV among intra-population, and the average survival time is 101.73h. RZ population is most sensitive to WSSV in all populations, and the average survival time is 85.53h. The results of this study suggest that hybridization is an important tool to increase resistance to WSSV of cultured shrimps.
     3 Effects of inbreeding on growth and WSSV resistance of the juvenile Chinese shrimp
     To date, few studies had investigated the effects of inbreeding on growth and disease resistance, although inbreeding depression of such traits could play an important role in the evolution and ecology in Chinese shrimp. Effects of inbreeding on body weight and survival time post infection WSSV of juvenile shrimp were quantified on this study. All families were reared under the similar environment conditions, and the differences of growth time between two groups were not significant. The mean body weight and mean survival time of the wild shrimp group were 1.58±0.01g and 100.43±0.68h, and those of the shrimp group with inbreeding coefficient 25% were 1.43±0.04g and 85.84±1.70h, respectively. The differences of body weight and survival time post infection WSSV between two groups were all extremely significant (P<0.01). The difference of phenotypic correlation was not significant (P>0.05) between body weight and WSSV resistance of the wild shrimp group, which is 0.16±0.00, and the inbred shrimp group, which is 0.20±0.00. On this study the estimated inbreeding depression coefficient was -3.80±0.17% for body weight and -5.81±0.11% for survival time post infection WSSV per 10% increase in inbreeding coefficient. Results were consistent with viewpoint that inbreeding could reduce growth and disease resistance. Those highlight the need to maximize the genetic diversity in base population, and consider rate of inbreeding in selective breeding programs and wild resource protection.
     4 The heritability and genetic correlation of six hemolymph analytes in Chinese shrimp
     The modulation of some hemolymph analytes may function as an important indicator of disease resistance, where precise assessment of genetic parameters is crucial to ensure the success of a selective breeding program. In this study, 51 full-sib families (representing 23 paternal half-sib families) were produced and cultured in the controlled conditions, and the genetic parameters, including the heritability, genetic and phenotypic correlation, of total serum protein concentration (PC), hemocyanin concentration (HC), phenoloxidase (PO) activity, superoxide dismutase (SOD) activity, acid phosphatase (ACP) activity and alkaline phosphatase (ALP) activity in the serum of shrimp F. chinensis were investigated. The results showed that when the average body weight of the shrimp was 7.64g, the concentration of six hemolymph analytes were 153.88±1.65mg/ml, 36.04±0.71 U/ml, 165.24±4.93 U/ml, 333.33±2.74 U/ml, 52.51±2.15 U/100ml and 61.68±2.61U/100ml, respectively. And there were not differences between male and female of all immune parameters and their variation coefficients (P>0.05). Evaluations of heritability (h2) were 0.00±0.13, 0.09±0.22, 0.03±0.20, 0.30±0.20, 0.63±0.32 and 0.39±0.25, respectively, for the traits studied. The results also manifested that rearing the families separately in different tanks affected greatly the common cultured condition, indicated by the effects common to full-sibs other than additive genetics as c2, which were 0.10±0.06, 0.20±0.11, 0.21±0.10, 0.00±0.00, 0.02±0.01 and 0.04±0.01 of the six hemolymph analytes, respectively. In this study, the genetic, environmental and phenotypic correlations among the traits were generally positive except those of SOD activity. Results indicated that immunological parameters of Chinese shrimp could be increased by selective breeding programs though heritability of some traits was quite low. Moreover, genetic correlations between the survival time post affecting WSSV of the young prawn and six immunity analytes of the adult were evaluated according to the phenotypic correlations of their breeding values. Results showed that genetic correlations between the survival time and PC, PO and ACP activities were weak positive. The correlative coefficients were 0.093±0.516, 0.058±0.687 and 0.044±0.760, respectively. And genetic correlations between the survival time and HC, SOD and ALP activities were negative. The correlative coefficients were -0.179±0.209, -0.268±0.057 and -0.110±0.441, respectively. These indicated that the correlation between the young resistance-WSSV and the adult immunity was not significant. These had maybe related to the different tested samples, also maybe related to the different expressed mechanism while being affected and the normal grown.
     5 Heterosis of Hemolymph Analytes of Two Geographic Populations in Chinese Shrimp
     To evaluate heterosis of PC, HC, PO, SOD, ACP and ALP activities, mating was produced between and within Yellow and Bo sea (YB) population and southern seacoast of Korean Peninsula (SK) population, and the offspring of 49 families was reared to 8.09g in the controlled environment. Results showed that the content of all hemolymph analytes of SK population was higher than that of YB population, and the differences were significant except of PC and SOD activity. And the immunocompetence of all hybridizations was higher than that in YB♂×YB♀except of HC and SOD activity in YB♂×SK♀. Almost hybridizations had manifested positive heterosis in 6 hemolymph analytes. Heterosis of SK×YB was all positive, and this hybridization was better than YB×SK in HC, PO and ALP activities. The results suggested that the hemolymph analytes of YB and SK populations had many genetic differences, and hybridization was an important tool to increase immune reaction and adverse resistance.
     6 Inbreeding impacts on some hemato-immunological parameters of F. chinensis, reared under controlled environment
     This study quantified the effects of inbreeding on PC, HC, PO, SOD, ACP and ALP activity of F. rearing in the standard condition. Results showed all traits of shrimp with inbreeding coefficient 25% were lower than those of shrimp without inbreeding, and their difference was highly significant in PO activity, ACP activity and ALP activity (P<0.01). The estimated inbreeding depression coefficients of six traits were -1.74±0.13%, -4.75±0.23%, -10.50±0.31%, 0.62±0.09%,-25.42±0.21% and -21.06±0.30% per 10% increase in inbreeding coefficient, respectively. Results indicated that inbreeding could cause the depression of immunological vigor as that of growth and disease resistance.
引文
[1] 相建海. 海水养殖生物病害发生与控制. 北京:海洋出版社,2001. 111-117
    [2] 刘瑞玉. 黄海及东海经济虾类区系的特点. 海洋与湖沼,1959,2(1): 35-42
    [3] 邓景耀, 庄志猛. 渤海对虾补充量变动的分析及对策研究. 中国水产科学, 2001, 7(4): 125-128
    [4] 叶昌臣, 刘传桢, 李培军. 对虾亲体数量与补充量之间的关系. 水产学报, 1980, 4(1): 1-7
    [5] 邓景耀. 对虾放流增殖研究. 海洋渔业,1997,1:1-6
    [6] 刘昌彬, 王金星, 刘存仁, 吴中华, 陈忠科, 张红卫. 非生物环境因子对用爆发性流行病病原实验感染的中国对虾发病的影响. 水产学报,2001,25 (1):58-63
    [7] 吴中华,刘昌彬,刘存仁,王金星,张红卫. 中国对虾暴发性流行病病原的免疫组织化学研究. 山东大学学报(理科版),2002,37 (5):452-457
    [8] Muroga K. Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture, 2001, 202: 23-44
    [9] 丁嫡, 郑莲. 对虾病毒性疾病研究最新进展. 台湾海峡,2001, 20 (3): 396-404
    [10] 汪敏, 戴继勋. 对虾病毒的研究进展. 海洋湖沼通报,2000, 2: 71-77
    [11] Snieszko S F. Diseases of fishes and their control in the U.S. In: The Two Lakes Fifth Fishery Management Training Course Report. Jansen, London, 1973, 55-66
    [12] Wang Y C, Chang P S. Yellow head virus infection in the giant tiger prawn Penaeus monodon cultured in Taiwan. Fish Pathol, 2000, 35 (1): 1-10
    [13] Weppe M, Bonami J R, Lightner D V. Demonstracion de altas cualidades de la cepa de la cepa de P. sty lirostris AQUACOP SPR43 resistente al virus IHHN. In: Memorias del Primer congreso Ecuatoriano de acuicultura. CENA M, Guyaquil, Ecuador, 1992, 229-232
    [14] 石连玉. 我国冷水性鱼类育种概况及展望. 水产研究, 2005,7:43-46
    [15] Donaldson E M, Swanson P, Chan W. Extraordinary salmon growth. Nature, 1994, 371: 209-210
    [16] 胡洪浪. 挪威大西洋鲑良种选育的发展历程. 原良种园地, 2003,6: 64-65
    [17]Argue B J, Arce S M, Lotz J M, Moss S M. Selective breeding of Pacific whiteshrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture, 2002, 204: 447-460
    [18] Hetzel D J S, Crocos P J, Davis G P, Moore S S, Preston NC. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus. Aquaculture, 2000, 181: 215-223
    [19] Ceniacua. Closed-cycle program for penaeid shrimp genetic selection and improvement. The Advocate, 1999, 12: 71
    [20] Goyard E, Patrois J, Peignon M, Vanaa V, Dufor R, Viallon V, Bedier E. Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture, 2002, 204: 461-468(Emmanuel,1992)
    [21] 李健,刘萍,何玉英,宋全山,牟乃海,王清印. 中国对虾快速生长新品种“黄海 1 号”的人工选育. 水产学报, 2005, 29(1): 1-5
    [22] Suzuki R, Fukuda Y. Growth and survival of F1 hybrids arncug samonid fishes. Ibid, 1972, 21: 117-138
    [23] Myers J M, Heggelund P O, Hudson G. Genetics and broodstock management of coho salmon. Aquaculture, 2001, 197: 43-62
    [24] 邬国民. 罗非鱼选育种的方法. 科学养鱼, 2004,12:5
    [25] Bartley D M, Rana K, Immink A J. The use of interspecific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fish., 2001, 10, 325-337
    [26] Basavaraju Y, Devaraj K V, Ayyar S P. Comparative growth of reciprocal carp hybrids between Catla catla and Labeo fimbriatus. Aquaculture, 1995, 129: 187-191
    [27] 刘小林,常亚青,相建海,李富花,宋坚,丁君,董波,刘宪杰. 栉孔扇贝不同种群杂交效果的初步研究. 海洋学报, 2003, 25(1): 93-99
    [28] 柯才焕,田越,周时强,李复雪. 杂色鲍与皱纹盘鲍、盘鲍杂交的初步研究. 海洋科学, 2000, 24(11): 39-41
    [29] Ariani A P, Wittmann K J. Interbreeding versus morphological and ecological differentiation in Mediterranean Diamysis (Crustacea, Mysidacea), with description of four new taxa. Hydrobiologia, 2000, 441: 185-236
    [30] 王玉堂. 关于国外水产种质资源引进问题的探讨. 河北渔业, 2003, 4: 11
    [31] 雷霁霖,马爱军,陈超,庄志猛. 大菱鲆(Scophthalmus maximus L.)养殖现状与可持续发展. 中国工程科学,2005, 7(5): 30-34
    [32] 李家乐,李思发. 中国大陆尼罗罗非鱼引进及其研究进展. 水产学报, 25(1):90-95
    [33] 薛耀怀. 选育前后兴国红鲤的生长对比试验. 淡水渔业, 1988, 6: 26-27
    [34] 赵金奎. 彭泽鲫人工繁育技术. 科学养鱼, 2006, 3: 11
    [35] 陈道印,欧阳敏,熊国荣,喻晓. 鄱阳湖、梁子湖、淤泥湖团头鲂池塘养殖对比试验分析. 江西农业学报, 1999, 11(1): 47-51
    [36] 黄富钦. 华贵栉孔扇贝人工育苗及养成技术. 渔业现代化, 2004, 3: 12-14
    [37] 尤峰. 海产鱼类多倍体育种的研究. 海洋科学, 1997, 1: 33-37
    [38] Dai J X, Bao Z M, Zhang Q Q. Studies on the triploid induction in Penaeus orientalis Ⅰ: Temperature shocks. Herditas, 1993, 15(5): 15-18
    [39] Xiang J H, Zhou L H, Liu R Y, Zhu J Z, Li F H, Liu X D. Induction of the tetraploids of the Chinese shrimp, Penaeus chinensis. Proceedings of the Asia Pacific Conference on Agricultural Biotechnology, Beijing. China Science and Technology Press, Beijing, 1992, 841-846
    [40] 王红勇,吴洪流,黄勃. 热休克诱导斑节对虾四倍体的初步研究. 海南大学学报自然科学版,2004,22(2):156-158
    [41] 张成松,李富花,于奎杰,吴长功,郭振宇,相建海. 病原感染条件下中国对虾二倍体和三倍体血液学变化. 2004,水产学报,28(5):535-540
    [42] 杨丛海,王清印,孔杰. 高温处理中国对虾受精卵对性比结构的影响. 海洋科学,1993, 4:1-2
    [43] 戴继勋,张全启,包振民. 60Coγ 射线诱导中国对虾雌核发育的观察. 青岛海洋大学学报,1993, 23(4): 151-156
    [44] 蔡难儿,林峰,柯亚夫. 中国对虾人工诱导雌核发育的研究:I.四部诱导法. 海洋科学,1995, 3: 35-41
    [45] Sun Y J, Nishikawa K, Yuda H, Wang Y L, Osaka H, Fukazawa N, Naito A, Kudo Y, Wada K, Aoki S. Solo/Trio8, a membrane-associated short isoform of trio, modulates endosome dynamics and neurite elongation. Mol. Cell. Biol., 2006, 26: 6923-6935
    [46] 刘志毅, 相建海, 周国瑛, 龚祖埙. 用基因枪将外源 DNA 导入中国对虾. 科学通报, 2000, 45(23): 2539-2544
    [47] Eknath A E, Acosta B O. Genetic Improvement of Farmed Tilap ias (GIFT) Project Final Report, March 1998 to December 1997. ICLARM, Makati City, Philippines, 1998.
    [48] Dey M M, Gupta M V. Socioeconomics of disseminating genetically imp roved Nile tilapia in Asia: an introduction. Aquacult Econ and Manage, 2000, 4 (1/2): 5-11
    [49] 刘峰, 谢新民, 郑艳红. 罗非鱼优良品系—吉富罗非鱼的育成始末. 水产科技情报, 2006,33(1): 8-12
    [50] Arce S M, Argue B J, Thompson D A, Moss S M. Evaluation of a fluorescent, alphanumeric tagging system for penaeid shrimp and its application in selective breeding programs. Aquaculture, 2003, 228: 267-278
    [51] 贾翠红,汝少国,姜明,童裳亮,庄岩. 中国对虾淋巴器官的显微和超微结构的研究.中国水产科学,1999, 6 (1): 9-11
    [52] 刘晓云,刘树青,姜明. 中国对虾类淋巴器结构观察及功能探讨. 青岛海洋大学学报,1999, 29 (1): 167-171
    [53] 李光友. 中国对虾疾病与免疫机制. 海洋科学,1995, 4: 1-3
    [54] Bauchau AG, Crustaceans. In Invertebrate Blood Cells, ed. by Ratcliffe, NA et al., Academic Press, (London, New York), 2385-2420
    [55] 李光友,王青. 中国对虾血细胞及其免疫研究. 海洋与湖沼,1995; 26 (6): 591-596
    [56] 陈平,黄槐,池信才,吴定虎,陈细法. 四种对虾血细胞组成及超微结构. 水生生物学报,1998, 22 (2): 158-163
    [57] 刘晓云,张志峰, 马洪明. 中国对虾血细胞酶细胞化学的初步研究. 青岛海洋大学学报,2002, 32 (2): 259-265
    [58] 蔡渭明,杜爱芳,洪健,于涟. 中国对虾血细胞及其吞噬活力的电镜研究. 浙江农业大学学报,1996, 22(4): 418-424
    [59] S?derh?ll K, Wingren A, Johansson M W, Bertheussen K. The cytotoxic reaction of hemocytes from the freshwater crayfish, Astacus astacus. Cell Immunol, 1985, 94: 326-332
    [60] 邓欢,陈球,刘卫东,安育新. 中国对虾血细胞包掩作用的超微结构和组织化学观察.应用与环境生物学报,1999, 5(3): 296-299
    [61] Chisholm J R S, Smith V J. Comparison of antibacterial activity in the hemocytes of different crustacean species. Comp Biochem Physiol A Physiol, 1999, 110(1): 39-45
    [62] Johansson N W, S?derh?ll K. Cellular defense and cell adhesion in crustaceans. Anim. Biol., 1992, 1:97-107
    [63] Van Holde K E, Miller K I. Haemocvanins. Q. Rev. Biophys., 1982, 15: 1-29
    [64] Jaenicke E, Foll R, Decker H. Spider hemocyanin binds ecdysone and 20-OH-ecdysone. J. Biol. Chem., 1999, 274(26): 34267-34271
    [65] Paul RJ, Pirow R. The physiological significance of respiratory proteins in invertebrates. Zoology, 1998, 100: 319-327
    [66] Adachi K, Hirata T, Nishioka T, Sakaguchi M. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comp. Biochem. Physiol. Part B., 2003, 134: 135-141
    [67] Destoumieux-Garzon D, Saulnier D, Gamier J, Jouffrey C, Bulet P, Bachere E. Crustacean Immunity: Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J. Biol. Chem., 2001, 276: 47070-47077
    [68] Lee S Y, Lee B L, S?derh?ll K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J. Biol. Chem., 2003, 278: 7927-7933
    [69] Washington C, Dankert J R. Phenoloxidase specific activity in the red swamp crayfish Procambarus clarkia. Fish Shellfish Immunol, 1997, 7: 283-295
    [70] 孟孔伦,张玉臻,孔健,马桂荣. 甲壳动物中酚氧化酶原激活系统研究评价. 海洋与湖沼, 1999, 30(1): 110-115
    [71] Aspán A, S?derh?ll K. Purification of prophenoloxidase from freshwater crayfish blood cells and its activation by an endogenous serine proteinase. Insect. Biochem., 1991, 21: 363-373
    [72] 樊廷俊,汪小锋. 中国对虾(Penaeus chinensis)酚氧化酶的分离纯化及其部分生物化学性质. 生物化学与生物物理学报, 2002, 34 (5): 589-594
    [73] S?derh?ll K. Crustacean immunity. Ann. Rev. Fish. Dis., 1992, 2: 3-23
    [74] 丁美丽,林林,李光友,朱谨钊. 有机污染对中国对虾体内外环境影响的研究. 海洋与湖沼. 1997, 28(1): 7-11
    [75] 刘昌彬,王金星,刘存仁,吴中华,陈忠科,张红卫. 非生物环境因子对暴发性流行病病原感染的中国对虾发病的影响。水产学报, 2001, 25(1): 58-63
    [76] 黄志坚,林藩平,邱承亮,吴移山. 富硒酵母对奶牛抗氧化能力和免疫功能的影响. 营养学报,2004, 26(1): 27-30
    [77] 王雷,李光友,毛远兴. 中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究. 海洋与湖沼,1995, 26(2): 179-185
    [78] Mahes wari R, Mullainadan P, Arumugam M. Characterisations of a natural haemaggluinin with affinity for acetylated aminosugars in the serum of the marine prawn, Penaeus indicus (H. Mine Edwards). Fish Shellfish Immunol., 1997, 7(1): 17-28
    [79] Cominettia M R, Marquesb M R F, Lorenzinib D M, Lofgrena S E, Daffrec S, Barracco M A. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev. Comp. Immunol., 2002, 26: 715-721
    [80] 彭其胜,郭文场,杨振国,王玉平. 中国对虾血淋巴液中的凝集素. 中国水产科学,2001, 7(4): 14-18
    [81] 廖绍安,李药,张晓华,纪伟尚,徐怀恕. 日本对虾血清凝集素的基本物理化学性质.中国水产科学,2001, 8(4): 1-4
    [82] 戴聪杰,陈寅山. 日本对虾血清和肌肉提取液凝集活力初步研究. 福建师范大学学报,2002, 18(4): 81-85
    [83] 廖绍安,李药,张晓华,纪伟尚,徐怀恕. 日本对虾血清凝集素及其免疫作用的初步研究. 中国水产科学,2002, 9(3): 224-227
    [84] 彭其胜,郭文场,杨振国,王玉平,田相利. 中国对虾血淋巴液凝集素的血凝活性与促噬活性. 水产学报,2001, 25(3): 197-202
    [85] Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defensemolecules found in horseshoe crab hemolymph: their structures and functions. J. Biochem., 1998, 123: 1-15
    [86] Kopacek P, Hall M, S?derh?ll K. Characterization of a clotting protein isolated from plasma of the freshwater crayfish Pacifastacus leniusculus. Eur. J.Biochem., 1993, 213(1):591-597
    [87] 牟海津,江晓路. 日本囊对虾溶血素的活性测定及性能研究. 海洋与湖沼. 1999, 30(4): 362-367
    [88] 康翠洁,王金星,赵小凡,相建海. 中国对虾抗菌肽成熟肽的 cDNA 克隆. 山东大学学报(理学版), 2002, 37(6): 552-565
    [89] 郭振宇,董波,焦传珍,相建海. 养殖期中国对虾抗菌肽的表达. 海洋科学, 2004, 28(1): 48-51
    [90] Moss S M. Marine shrimp farming in the western hemisphere: past problems, present solutions, and future visions. Rev. Fish. Sci., 2002, 10: 601-602
    [91] Gjedrem T, Fimland E. Potential benefits from high health and genetically improved shrimp stocks. In: Browdy, C.L., Hopkins, J.S. (Eds.), Swimming Through Troubled Water. Proceedings of the Special Session on Shrimp Farming. World Aquaculture Society, Baton Rouge, LA, 1995, 60-65
    [92] Wang Q, White B L, Redman R M, Lightner D V. Per os challenge of Litopenaeus vannamei postlarvae and Fafantepenaeus duorarum juveniles with six geographic isolates of white spot syndrome virus. Aquaculture, 1999, 170: 179-194
    [93] Chou H Y, Huang C Y, Wang C H, Chiang H C, Lo C F. Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis. Aqua. Org., 1995, 23: 165-173
    [94] Flegel T W, Alday-Sanz V. The crisis in Asin shrimp aquaculture: current status and future needs. J. Appl. Ichthyol., 1998, 14: 269-273
    [95] Lighter D V. A handbook of shrimp pathology and diagnostic procedures for disease of cultured Penaeid shrimp. World Aquaculture Society, Baton Rouge, LA, USA, 1996
    [96] Lighter D V. The penaeid shrimp viruses TSV, IHHNV, WSSV, and YHV: current status in the Americas, available diagnostic methods, and managementstrategies. J. Appl. Aquac., 1999, 9: 27-52
    [97] Jiang GJ, Yu RC, Zhou MJ. Modulatory effects of ammonia-N on the immune system of Penaeus japonicus to virulence of white spot syndrome virus. Aquaculture, 2005, 241: 61-75
    [98] Burgents J E, Burnett K G, Burnett L E. Disease resistance of Pacific white shrimp, Litopenaeus vannamei, following the dietary administration of yeast culture food supplement. Aquaculture, 2004, 231: 1-8
    [99] Bachere E. Shrimp immunity and disease control. Aquaculture, 2000, 191: 3-11
    [100] Arcos F G, Racotta I S, Ibarra A M. Genetic parameter estimates for reproductive traits and egg composition in Pacific white shrimp Penaeus (Litopenaeus)vannamei. Aquculture, 2004, 236: 151-165
    [101] Henryon M, Berg P, Jensen J, Adersen S. Genetic variation for resistance to clinical and subclinical diseases exsit in growing pigs. Anim. Sci., 2001, 73: 375-387
    [102] Pante M J R, Gjerde B, McMillan I, Misztal I. Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss, Aquaculture, 2002, 204: 383-392
    [103] Gitterle T, Salte R, Gjerde B, Cock J, Johansen H, Salazar M, Lozano C, Rye M. Genetic (co)variation in resistance to White Spot Syndrome Virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei. Aquaculture, 2005, 246: 139-149
    [104] Gitterle T, Rye M, Salte R, Cock J, Johansen H, Lozano C, Suárez JA, Gjerde B. Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 2005, 243: 83-92
    [105] Madsen P, Jensen J. A user’s guide to DMU. A package for analyzing multivariate mixed models. Version 6, release 4.3. Danish Institute of Agricultural Sciences, Department of Animal Breeding and Genetics, Research Centre Foulum, Denmark, 2002
    [106] 盛志廉, 陈瑶生. 数量遗传学,北京:科学出版社, 2001
    [107] 张沅. 育种规划学, 北京:中国农业出版社, 2001
    [108] Fjalestad KT, Carr WC, Lotz J, Sweeney JN, Gjedrem T. Genetic variation and selection response in body weight and disease resistance in Pacific white shrimp(Penaeus vannamei). Aquaculture, 1999, 173: 10
    [109] Argue BJ, Arce SM, Lotz JM, Moss SM. Selective breeding of Pacific white shrimp (Litopenaeusvannamei) for growth and resistance to Taura Syndrome Virus. Aquculture, 2002, 204: 447-460
    [110] Henryon M, Jokumsen A, Berg P, Lund I, Pedersen PB, Olensen NJ, Slierendrecht WJ. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture, 2002, 209: 59-76
    [111] Gj?en HM, Refstie T, Ulla O, Gjerde B. Genetic correlations between survival of Atlantic salmon in challenge and field tests. Aquaculture, 1997, 158: 277-288
    [112] Gjedrem T, Salte R, Gj?en HM. Genetic variation in susceptibility of Atlantic salmon to furunculosis. Aquaculture, 1991, 97: 1-6
    [113] Perry G M I, Tarte P, Croisetiere S, Belhumeur P, Bernatchez L. Genetic variance and covariance for 0+ brook charr (Salvelinus fontinalis) weight and survival time of furunculosis (Aeromonas salmonicida) exposure. Aquaculture, 2004, 235: 263-271
    [114] Gjedrem T, Gj?en HM. Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis. Aquac. Res., 1995, 26: 129-134
    [115] Rupp R, Boichard D. Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking easy in first lactation Holsteins. J. Dairy Sci., 1999, 82: 2198-2202
    [116] Raadsma HW, Egerton JR, Wood D, Kristo C, Nicholas FW. Disease resistance in Merino sheep: III. Genetic variation in resistance following challenge and subsequent vaccination with homologous rDNA pilus vaccine under both induced and natural conditions. J. Anim. Breed. Genet., 1994, 111: 367-390
    [117] Heringstad B, Klemetsdal G, Steine T. Selection responses for clinical mastitis and protein yield in two Norwegian dairy cattle selection experiments. J. Dairy Sci., 2003, 86: 2990-2999
    [118] Wu JL, Namikoshi A, Nishizawa T, Mushiake K, Teruya K, Muroga K. Effectsof shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. Dis. Aquat. Org., 2001, 47: 129-135
    [119] Di L V, Bonnichon V, Roch P, Parrinello N, Bonami JR. Comparative WSSV infection routes in the shrimp genera Marsupenaeus and Palaemon. J. Fish Dis., 2005, 28(9): 565-569
    [120] Chou HY, Huang CY, Lo CF, Kou GH. Studies of transmission of white spot syndrome associated baculovirus (WSBV) in Penaeus monodon and P. japonicus via waterborne contact and oral ingestion. Aquaculture, 1998, 164: 263-276
    [121] Soto MA, Lotz JM. Epidemiological parameters of white spot syndrome virus (WSSV) infections in Litopenaeus vannamei and L. setiferus. J. Invertebr. Pathol., 2001, 78: 9-15
    [122] Vidal OM, Granja CB, Aranguren F, Brock JA, Salazar M. A profound effect of hyperthermia on survival of Litopenaeus vannamei juveniles infected with white spot syndrome virus. J. World Aquac. Soc., 2001, 32: 364-372
    [123] Carr WH, Fjalestad KT, Godin D, Swingle J, Sweeney JN, Gjedrem T. Genetic variation in weight and survival in a population of specific pathogen-free shrimp, Penaeus vannamei. In: Flegel, T.W., MacRae, I.H. (Eds.), Diseases in Asian Aquaculture III. Fish Health Section. Asian Fisheries Society, Manila, Philippines, 1997, 265-271
    [124] Perry G M I, Tarte P, Croisetière S, Belhumeur P, Bernatchez L. Genetic variance and covariance for 0+ brook charr (Salvelinus fontinalis) weight and survival time of furunculosis (Aeromonas salmonicida) exposure. Aquaculture, 2004, 235: 263-271
    [125] 岳志芹,王伟继,孔杰,戴继勋. 用 AFLP 方法分析中国对虾抗病选育群体的遗传变异. 水产学报, 2005, 29(1): 13-19
    [126] 张天时,刘萍,李健,孔杰,王清印. 用微卫星 DNA 技术对中国对虾人工选育群体遗传多样性的研究. 水产学报, 2005, 29(1): 6-12
    [127] Emmanuel G, Sophie A, Vincent V, Vincent B, Olivier M, Dominique P, Jim W, Pierre B, Aquacop. Residual genetic variaability in domesticated populations of the pacific blue shrimp (Litopenaeus stylirostris) of New Caledonia, French Polynesiaand Hawaii and some management recommendations. Aquac. Living Res., 2003, 16: 501-508
    [128] Stephen CW, Duff RJ. A genetic comparison of two species of clam shrimp in the genus Eulimnadia: An electrophoretic approach. Hydrobiologia, 2002, 486: 295-302
    [129] Borrell Y, Espinosa G, Romo J, Blanco G, Vázquez E, Sánchez JA. DNA microsatellite variability and genetic differentiation among natural populations of the Cuban white shrimp Litopenaeus schmitti. Marine biology, 2004, 144: 327-333
    [130] Soto-Hernandez J, Grijalva-Chon JM. Genetic differentiation in hatchery strains and wild white shrimp Penaeus (Litopenaeus) vannamei from northwest Mexico. Aquaculture International, 2004, 12: 593-601
    [131] Gjedrem T, Gj?en HM. Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis. Aquac. Res., 1995, 26: 129-134
    [132] Gitterle T, Salte R, Gjerde B, Cock J, Johansen H, Salazar M, Lozano C, Rye M. Genetic (co)variation in resistance to White Spot Syndrome Virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei. Aquaculture, 2005, 246: 139-149
    [133] Odile GS, Lantier F, Lantier I, Bumstead N, Elsen JM, Beaumont C. Heritability of susceptibility to Salmonella enteritidis infection in fowls and test of the role of the chromosome carrying the NRAMP1 gene. Genet. Sel. Evol., 2002, 34: 211-219
    [134] Argue BJ, Arce SM, Lotz JM, Moss SM. Selective breeding of Pacific white shrimp (Litopeneaus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture, 2002, 204: 447-460
    [135] Sandra JK, Peter JC, Charis YB, Greg JC, Gerard PD, Nigel PP. Comparative growth and survival of inbred and outbred Penaeus (marsupenaeus) japonicus, reared under controlled environment conditions: indications of inbreeding depression. Aquaculture, 2004, 241: 151-168
    [136] Hulata G. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica, 2001, 111: 155-173
    [137] Faure N, Serieys H, Cazaux E, Kaan F, Bervillé A. Partial hyhybridization in wide crosses between cultivated sunflower and the perennial Helianthus species H.mollis and H.orgyalis. Annals of Botany, 2002, 89: 31-39
    [138] Gaylord TG, Gatlin DM. Dietary lipid level but not L-carnitine affects growth performance of hybrid striped bass (Morone chrysops female×M. saxatilis male). Aquaculture, 2000, 190: 237-246
    [139] Gomez, K.A., Gomez, A.A., Statistical procedure for agricultural research, 1984, 2nd ed., New York
    [140] 刘萍,李健,何玉英,孔杰,王清印. 中国明对虾种质资源研究现状与保护策略. 黄海水产研究, 2004, 25(5): 80-85
    [141] 马春艳,孔杰,孟宪红,刘萍,张秀梅. 中国对虾 5 个地理群体的 RAPD分析. 水产学报, 2004, 28(3): 245-249
    [142] Lawrence AL, Bray WA, Wilkenfeld JS, Lester LJ. Successful inter-specific cross of two species of marine shrimp Penaeus stylirostris and Penaeus setiferus in captivity, 15th annual Conf. of the world Aquaculture Society, Vancouver, Canada, 1984: 39
    [143] Bray WA, Lawrence AL, Lester LJ, Smith LL. Hybridization of Penaeus setiferus and Penaeus schmitti Birkenroad. J. Crustac. Biol., 1990, 10: 278-283
    [144] Lin MN, Ting YY, Hanyu I. Hybridization of two closethelycum peneaid species Penaeus monodon × P.penicillatus and P.penicillatus × Penaeus monodon, by means of spermatophore transplantation. Bull. Taiwan Fish. Res. Inst., 1988, 45: 83-101
    [145] Bartley DM, Rana K, Immink AJ. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fish., 2001, 10: 325-337
    [146] Paaver T, Gross R, Ilves P. Growth rate, maturation level and flesh quality of three strains of large rainbow trout (Oncorhynchus mykiss) reared in Estonia. Aquaculture International, 2004, 12: 33-45
    [147] Rahman MA, Uehara T, Lawrence JM. Growth and heterosis of hybrids of two closely related species of Pacific sea urchins (Genus Echinometra) in Okinawa. Aquaculture, 2005, 245: 121-133
    [148] 马大勇,胡洪浪,孔杰. 近交及其对水产养殖的影响. 水产学报, 2005, 29 (6): 849-855
    [149] Preston N P, Clifford H C. Genetic improvement of farmed shrimp. Global Aquaculture Advocate, 2002, 5: 48-50
    [150] Falconer D S, Mackay T F C. Introduction to Quantitative Genetics. Longman Press, Essex, 1996, 464
    [151] Bierne N, Tsitrone A, David P. An inbreeding model of associative over-dominance during a population bottleneck. Genetics, 2000, 155: 1981-1990
    [152] Pante M J R, Gjerde B, Mcmillan I. Inbreeding levels in selected populations of rainbow trout, Oncorhynchus mykiss. Aquaculture, 2001, 192: 213-224
    [153] Bensten H B, Olesen I. Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture, 2002, 204: 349-359
    [154] Bierne N, Beuzart I, Vonau V. Microsatellite-associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris. Aquaculture, 2000, 184: 203-219
    [155] Frankham R, Gilligan D M, Morris D, Briscoe D A. Inbreeding and extinction: Effects of purging. Genetics, 2001, 2: 279-285
    [156] Preston N P, Crocos P J, Keys S J, Coman G J, Koenig R. Comparative growth of selected and non-selected Kuruma shrimp Penaeus (Marsupenaeus) japonicus in commercial farm ponds; implications for broodstock production. Aquaculture, 2004, 231: 73-82
    [157] Wang S Z, Hard J J, Utter F. Salmonid inbreeding: a review. Reviews in Fish Biology and Fisheries, 2001, 11: 301-319
    [158] Van Oosterhout C, Trigg R E, Carvalho G R, Magurran A E, Hauser L, Shaw P W. Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. Journal Evolution Biology, 2003, 16: 273-281
    [159] Nakadate M, Shikano T, Taniguchi N. Inbreeding depression and heterosis in various quantitative traits of the guppy, Poecilia reticulata. Aquaculture, 2003, 220: 219-226
    [160] Shikano T, Chivokubo T, Taniguchi N. Effect of inbreeding on salinity tolerancein the guppy Poecilia reticulata. Aquaculture, 2001, 202: 45-55
    [161] Hong W, Zhang Q. Review of captive bred species and fry production of marine fish in China. Aquaculture, 2003, 227: 305-318
    [162] Gjerde B, Gunnes K, Gjedrem T. Effect of inbreeding on survival and growth in rainbow trout. Aquaculture, 1983, 34: 327-332
    [163] Keys S J, Crocos P J, Burridge CY, Coman G J, Davis G P, Preston N P. Comparative growth and survival of inbred and outbred Penaeus (Marsupenaeus) Japonicus, reared under controlled environment conditions: indications of inbreeding depression. Aquaculture, 2004, 241: 151-168
    [164] Goyard E, Patrois J, Peignon J M, Vanaa V, Dufor R, Viallon V, Bedier E. Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture, 2002, 204: 461-468
    [165] Meyer P. Introductory Probability and Statistical Applications. Addison-Wesley Publishing, Reading Massachusetts, 1970
    [166] 李思发,杨怀宇,邹曙明. 快速近交对团头鲂遗传结构的影响和近交效应的估算. 水产学报, 2005, 29(2): 161-165
    [167] Keller L F, Waller D M. Inbreeding effects in wild populations. Trends in Ecology & Evolution, 2002, 17: 230-241
    [168] Naciri G Y, Launey S, Lebayon N, Gerard A, Baud J P. Influence of parentage upon growth in Ostrea edulis: evidence for inbreeding depression. Genetic Research, 2000, 76: 159-168
    [169] Li S, Cai W Q. Genetic improvement of the herbivorous blunt snout bream (Megalobrama amblycephala). Naga, 2003, 26: 20-23
    [170] Gallardo J A, Garcia X, Lhorente J P, Neira R. Inbreeding and inbreeding depression of female reproductive traits in two populations of Coho salmon selected using BLUP predictors of breeding values. Aquaculture, 2004, 234: 111-122
    [171] Sbordoni V, La R G, Cobolli S M. Genetic changes in seven generations of hatchery stocks of the kuruma shrimp, Penaeus japonicus (Crustacea: Decapoda). Selection, Hybridization and Genetic Engineering in Aquaculture, 1987, 1: 143-155
    [172] Su G S, Liljedahl L E, Gall G A E. Effects of inbreeding on growth andreproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture, 1996, 142: 139-148
    [173] Myers J M, Heggelund P O, Hudson G, Iwamoto R N. Genetics and broodstock management of coho salmon. Aquaculture, 2001, 197: 43-62
    [174] Langdon C J, Evans F, Jacobson D, Blouin M. Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture, 2003, 220: 227-244
    [175] Pérez-Jar L, Rodríguez-Ramos T, Ramos L, Guerra-Borrego Y, Racotta I S. Changes in metabolic and immunological variables of wild and pond-reared southern white shrimp Litopenaeus schmitti adult males during continuous reproductive activity. Aquaculture, 2006, 252: 591-597
    [176] Pascual C, Gaxiola G, Rosas C. Blood metabolites and hemocyanin of the white shrimp Litopenaeus vannamei: the effect of culture conditions and a comparison with other crustacean species. Mar. Biol., 2003, 142: 735-745
    [177] Muňoz M, Vandenbulcke F, Gueguen Y, Bachère E. Expression of penaeidin antimicrobial peptides in early larval stages of the shrimp Penaeus vannamei. Dev. Comp. Immunol., 2003, 27: 283-289
    [178] Liu C H, Chen J C. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish. Shellfish. Immun., 2004, 16: 321-334
    [179] Pascual C, Sánchez A, Zenteno E, Cuzon G, Gabriela G, Brito R, Gelabert R, Hidalgo E, Rosas C. Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture, 2006, 251: 416-429
    [180] Rosas C, Cooper E L, Pascual C, Brito R, Gelabert R, Moreno T, Miranda G, Sánchez A. Indicators of physiological and immunological status of Litopenaeus setiferus wild population (Crustacea, Penaeidae). Mar. Biol., 2004, 145: 401-413
    [181] 王玥, 胡义波, 姜乃澄. 氨态氮、亚硝态氮对罗氏沼虾免疫相关酶类的影响. 浙江大学学报:理学版, 2005, 32(6): 698-705
    [182] Pascual C, Zenteno E, Cuzon G, Sánchez A, Gaxiola G, Taboada G, Suárez J, Maldonado T, Rosas C. Litopenaeus vannamei juveniles energetic balance andimmunological response to dietary protein. Aquaculture, 2004, 236: 431-450
    [183] Destoumieux D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachere E. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J. Biol. Chem., 2001, 276: 47070-47077
    [184] Adachi K, Hirata T, Nishioka T, Sakaguchi M. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comp. Biochem. Physiol., 2003, 134: 135-141
    [185] 叶星,郑清梅,白俊杰,劳海华,简清,罗建仁.短沟对虾和斑节对虾酚氧化酶原基因的克隆和序列分析. 海洋与湖沼, 2003, 34(5): 533-540
    [186] Yeh S T, Lee C S, Chen J C. Administration of hot-water extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of white shrimp Litopenaeus vannamei. Fish. Shellfish. Immun., 2006, 20: 332-345
    [187] López N, Cuzon G, Gaxiola G, Taboada G, Valenzuela M, Pascual C, Sánchez A, Rosas C. Physiological, nutritional, and immunological role of dietary β-1,3-glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture, 2003, 224: 223-243
    [188] Muňoz M, Cedeňo R, Rodríguez J, Van der Knapp W P W, Mialhe E, Bachère E. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture, 2000, 191: 89-107
    [189] Neves C A, Santos E A, Bainy A C D. Reduced superoxide dismutase activity in Palaemontes argentinus (Decapoda, Paleminedae), infected by Probopyrus ringueleti (Isopoda, Bopyridae). Dis. Aquat. Organ., 2000, 39: 155-158
    [190] Campa-Córdova A I, Hernández-Saavedra N Y, Ascencio F. Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp. Biochem. Physiol., 2002, 133: 557-565
    [191] 张明, 王雷, 郭振宇, 王宝杰. 脂多糖和弧菌对中国对虾血清磷酸酶、超氧化物歧化酶和血蓝蛋白的影响. 海洋科学, 2004, 28(7): 22-25
    [192] Zhang R Q, Chen Q X, Xiao R, Xie L P, Zeng X G, Zhou H M. Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase activity by dithiothreitolor 2-mercaptoethanol. Int J Biochem Cell Biol, 2000, 32: 865-872
    [193] 宋理平, 黄旭雄, 周洪琪, 刘兴国. Vc、β-葡聚糖和藻粉对中国对虾幼虾生长、成活率及免疫酶活性的影响.上海水产大学学报, 2005, 14(3): 276-281
    [194] 刘栋辉,何建国,刘永坚,郑石轩,田丽霞. 极低盐度下饲料蛋白质量分数对凡纳对虾生长表现和免疫状况的影响. 中山大学学报, 2005, 44(增刊 2): 217-223
    [195] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248-254
    [196] Nickerson K W, Van H K E. A xomparishon of molluscan and arthropod hemocyanin. Comp. Biochem. Physiol., 1971, 39: 855-872
    [197] Perazzolo L M, Barracco M A. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev. Comp. Immunol., 1997, 21: 385-395
    [198] Kautsky N, Ronnback P, Tedenqren M. Ecosystem perspectives on the management of disease in shrimp pond farming. Aquaculture, 2000, 191: 145-161
    [199] Alavandi S V, Vijayan K K, Santiago TC, Poornima M, Jithendran K P, Ali S A, Rajan J J S. Evaluation of Pseudomonas sp. PM11 and Vibrio fluvialis PM17 on immune indices of tiger shrimp, Penaeus monodon. Fish. Shellfish. Immun., 2004, 17: 115-120
    [200] Song Y L, Yu C, Lien T W, Huang C C, Lin M N. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish. Shellfish. Immun., 2003, 14: 317-331
    [201] Chen J C, Chen C T, Cheng S Y. Nitrogen excretion and changes of hemocyanin, protein and amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser., 1994, 10: 85-94
    [202] Chisholm J R S, Smith V. Variation of antibacterial activity in the haemocytes of the shore crab, Carcinus maenas, with temperature. J. Mar. Biol. Assoc. UK, 1994, 74: 979-982
    [203] Chen J C, Cheng S Y. Studies on hemocyanin and haemolymph proteins levels of Penaeus japonicus based on sex, size and moulting cycle. Biochem. Mol. Biol., 1993, 106 (2): 293-296
    [204] Rodríguez J, Moullac G L. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 2000, 191: 109-119
    [205] Cheng W, Chieu H T, Tsai C H, Chen J C. Effect of dopamine on the immunity of white shrimp Litopenaeus vannamei. Fish. Shellfish. Immun., 2005, 19: 375-385
    [206] Campa-Córdova A I, Hernández-Saavedra N Y, De Phippis R, et al. Generations of superoxide anion and SOD activity in haemolymph and muscle of American white shrimp (Litopenaeus vannamei) as a response to β-glucan and sulphated polysaccharide. Fish Shellfish Immun, 2002, 12: 353—366
    [207] Bachère E. Shrimp immunity and disease control. Aquaculture, 2000, 191: 3-11
    [208] Rutten M J M, Komen H, Bovenhuis H. Longitudinal genetic analysis of Nile tilapia (Oreochromis niloticus L.) body weight using a random regression model. Aquaculture, 2005, 246: 101-113
    [209] Liu RY. Character of the economic macrurous crustacean fauna in the Yellow Sea and the East China Sea. Oceanologia Et Limnologia Sinica 1959; 2(1): 35-42
    [210] Deng JY, Zhu JS, Jiang YW. A summary of surveys of the penaeid shrimp spawning ground in the Bohai Bay. Marine fisheries research 1983; 5: 17-32
    [211] Liu P, Li J, He YY, Kong J, Wang QY. Present situation and protective measures of genetic resources in Fenneropenaeus chinensis. Marine fisheries research 2004; 25(5):80-85
    [212] Liu P, Meng XH, Kong J, Zhang ZM, Ma CY, Wang QY. SSR polymorphic analysis in Fenneropenaeus chinensis. Program natural Science 2004; 14(3):333-338
    [213] Liu SQ, Jiang XL, Mou HJ, Wang HM, Guan HS. Effects of immunopolysaccharide on LSZ, ALP, ACP and POD activities of Penaeus chinensis serum. Oceanologia Et Limnologia Sinica 1999, 30(3): 278-283
    [214] Liu XL, Chang YQ, Xiang JH, Li FH, Song J, Ding J, Dong B, Liu XJ. Studies on hybridization of the different geographic variety populations of Chlamys farreri. Acta Oceanologica Sinica 2003, 25(1): 93-95
    [215] Zheng HP, Zhang GF, Liu X, Que HY. Comparison of growth and survival between the self-fertilized and hybridized families in Argopecten irradians irradians. Journal of fisheries of China, 2004, 28(3): 267-272
    [216] Wang XC, You F, Ni GT, Zhang QX, Li SY. Hybridization between stone flounder Kareius bicoloratus and olive flounder Paralichthys olivaceus. Marine Sciences, 2003, 27(1): 1-4
    [217] You WW, Ke CH, Cai MY, Wang ZY, Wang YL. Preliminary studies on hybridization between Japanese stock and Taiwan stock of Haliotis diversicolor. Journal of Xiamen University, 2005, 44(5): 701-705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700