绿化景观建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以景观元素地形、植物、水体为研究对象,运用计算机图形学中三维模型的有关原理对其进行了建模及其应用研究,主要目的在于为景观规划、农林业研究及经营管理和三维表达提供必要的、高精度的模型基础,进而建立数字景观、数字农林业等现代技术系统,促进农林业和景观领域的可持续发展。
     本文选择了利于建模、功能强大、使用范围广的3ds max作为三维表达的软件平台,研究了地形、植物、水体三维建模的一般方法。其中,地形建模主要讨论了Extrude法、Terrain法、灰度图置换法、Patch Grid法、随机生成法和软件生成法;植物建模主要讨论了十字树法、剪影法、层状树冠法、几何参数实体、基于圆柱体的手工实体模型、混合式模型、程序式三维植物模型和软件生成法,并着重运用分形理论中L-系统方法对植物进行建模,本文以油松为例,通过对油松树干高度、树枝长度、分枝点和分枝角度的调查,分析了它们之间的比例关系,并基于L-系统理论,采用VB编程计算坐标,模拟单株植物的三维模型,并通过模型的理论研究讨论了其在实际中的应用;水体建模主要讨论了表面模型、表面波纹、实体模型,以及运用颜色、反射、折射和透明度等技术模拟水的纹理,运用贴图法、涟漪法模拟波纹效果,运用颗粒系统模拟喷泉、雨、雪等水体运动的效果。本文着重对各景观元素的建模方法进行了比较分析,并提出了三个景观元素以及景观合成在实践中的应用,通过研究得出如下结论:
     1.地形建模在有精确地形图数据的情况下,可采用Terrain法、Patch Grid法和灰度图置换法。其中Terrain法是生成三维地形效果最好、最精确、最直观的方法,Patch Grid法次之,灰度图置换法由于灰度图在应用中较难处理,故生成的三维地形与实际地形有一定差距。对于不要求精确地形,只是作为中远景或配景的地形来说,可用灰度图置换法、Patch Grid法和随机生成法生成。其中随机生成法生成的地形效果最自然,方法也较简单;灰度图置换法次之,Patch Grid法由于要手动控制点层级的各项修改,故生成的地形没有前两种方法简单方便,但是对于要求地形轮廓,又在无地形数据的情况下,就只能采用Patch Grid法,它可随意调控出要求的地形形状。
     2.植物建模通过对十字树法、几何参数模型法、软件直接生成模型法(3ds max软件和Tree strom插件)、二维贴图法进行对比分析得出Tree storm法生成的植物模型是最优的,其它依次是二维贴图法、3ds max法、十字树法、几何参数模型法。从中可以看出Tree storm和二维贴图法制作的植物效果好,也较易操作,但是Tree storm生成的是纯三维模型,更易观察、透视感强。但是随着树木模型的增加,Tree storm的运行速度会很慢,因此在纯三维的模型制作中,可以采用Tree storm+十字树法生成,近景树木用Tree storm生成,中远景用十字树法来完成,这样制作的模型,即可满足良好的三维效果、透视效果和真实感,还解决了运行速度慢的缺点。
     3.水体建模常用表面模型来表现,因为它易于操控,可以在它上面进行变形、贴图等操作;而实体模型一般只用来表现水滴等变形实体。模拟水体波纹常用贴图法和涟漪法,方法简单,模拟波纹效果很好,在设计中使用率较高;而制作喷泉、瀑布、雨雪等景观效果的最好方法就是粒子系统。粒子系统一般常用来表现水的动态效果,而在表现静态景观效果时,常用photoshop贴图法来代替三维模型,可以节省时间,而且可能更有真实感。
     4.通过景观规划设计实例,得出景观合成的可操作方法。三种景观合成方法,根据设计要求,可灵活使用。建议在做小场景的景观规划设计时,尽量采用纯三维模型景观合成方法,还可制作动画效果;在制作较大场景的景观规划设计时,制作纯三维模型耗费时间太多,占用内存过大,而二维模型在大场景制作时又要进行大量的透视、阴影处理等,建议不采用这两种方法,可采用三维模型+二维模型的景观合成方法,选择合理的地形、植物、水体建模方法,在三维软件中选择一个合适的视点进行渲染,再在图形软件中进行后期处理。
     5.基于L-系统理论模拟得到的三维模型具有一定的逼真性,并且可以用于实践中。另外,该模型的分枝结构计算是采用VB编程实现的,VB的高效性和灵活性使模型的后期改进和扩展成为可能。将L-理论用于三维构建的研究和实践,对其它物质的三维构建有一定的借鉴作用。
     本文主要创新点有以下两个方面:
     1.在对景观元素地形、植物、水体的建模方法讨论的基础上,提出了各景观元素和景观合成在实际应用的可操作方法,对今后的学习和工作具有借鉴和指导意义;
     2.提出了基于L-系统理论的植物建模方法,把植物在生理特性和形态结构有机的结合起来,建立真实的植物模型。
This text takes some landscape factors such as terrain, plant and water as research objects. Based on the principle of Computer Graphics. The purpose is providing necessary and exact modeling basic for landscape programming, agriculture and forest research and 3D expression. Moreover, it can enrich the technology of Digital Landscape and Digital Agriculture, take them a continuance development.
     This paper chose to modeling, powerful, the use of a wide range of 3ds max as a three-dimensional expression of the software platform to study the topography, vegetation, water body three-dimensional modeling of the general approach. The terrain modeling discussed the Extrude、method of Terrain,method of grey plan Displace ,method of Patch Grid, method of random creation and method of software creation. The 3D modelling of plant talk over method of cross tree, method of silhouette, method of samdwich crown, Geometric parameter trees,plant model made by cylinders, Composite plant model, programmable three dimensional model of plant and model of software creation, and stresses the use of fractal theory of L-systems approach to modeling plant .This article take the Chinese pine as an example, establishes mathematics equation of the plant growth through the determination to the Chinese pine bough length, the branch length, the winding point, the branching angle and proportionality factor's. Utilizes the L- system theory, uses the VB programming, simulates the three-dimensional model to the single plant, and discussed its application in reality through the model research. The 3D modelling of water debated water surface model,surface corrugation and solid model, and applyied the technique of water color, water transparency,reflection, refraction etc to simulate water's vein, utilized the method of plastering picture and ripple to simulate corrugation effection, used particle system to simulate the effect of water moving to fountain, rain, snow and so on.This article emphatically has carried on the comparative analysis to the various landscapes element's modeling methods, and proposed three landscape elements as well as the landscape synthesis applied research in reality, then draws the following conclusions:
     1. Terrain modeling can use method of Terrain , grey plan Displace and Patch Grid method in the case of having a precise topographic map data. Terrain which is generated three-dimensional topography of the best, most accurate, most intuitive approach, Patch Grid of times. Grey plan is more difficult to handle in the application so there are some certain gap between the actual terrain and three-dimensional topography by method of grey plan Displace. The terrain does not require precise, just as the King of vision or with the terrain, can be used method of grey plan Displace ,method of Patch Grid, method of random creation . Method of random creation is the most natural effect of the topography, and this method is more simple. The method of grey plan Displace is a little worse. Patch Grid law is not more simple and convient than the two methods ahead in generating the terrain due to manual control the modified of point level. We have to use Patch Grid if there is not terrain data and the terrain contour is requested because it can easily control the requirements of the terrain shape.
     2.Tree storm generated by the plant model is the best through a comparative analysis to method of cross tree, geometric parameter model, the software directly Generation Model Law (3ds max software and plug-Tree storm), 2D map drawn by plant modelling. Followed by other 2D map drawn, 3ds max, method of cross tree and geometric parameter model. It can be seen the plant produced good results and easier to operate using the Tree storm and 2D map drawn. But Tree storm-generated three-dimensional model is pure, more observation, strong sense of perspective.However, Tree storm's speed will be very slow with the increasing of the trees model.So we can use Tree storm + Cross tree in pure three-dimensional model, close-range trees with Tree storm generated and in the long-term use the cross tree. You can meet a good three-dimensional effects, effectiveness and realistic perspective, but also solved the shortcoming of the slow speed in this way.
     3.Surface water modeling commonly used to model performance because it easily manipulated and can carry out the deformation, textures and other operations above it though solid model is generally used to drop performance of entities, such as deformation. Utilized the method of plastering picture and ripple to simulate corrugation effection is more simple and better effect of simulated ripple so it has a high utilization rate in the design. The best way to produce the landscape effects of fountains , falls, rain and snow is particle system. Particle systems are generally used to water the dynamic performance effects and 2D textures commonly be used to replace the three-dimensional model method.You can save time and maybe have more sense of reality.
     4. We can draw the operational methods of landscape through landscape planning and design examples. Three landscape synthesis methods can be used flexibly in accordance with design requirements. You may use three-dimensional model of purely visual synthesis methods in small scenes of landscape planning design and can create animation. When we produce large landscape planning design, it will take up too much time and memory to make pure three-dimensional model while the two-dimensional model will use a lot of perspective, the shadow processing in large scene production so we do not advice to use them. We can use the landscape synthesis methods of three-dimensional model + two-dimensional model and choose the reasonable topography, vegetation, water modeling, then select a suitable view to rendering in the three-dimensional software and graphics software in a post-processing.
     5.Three-dimensional model based on the L-system theory of simulated has a realistic and can be used in practice. In addition, the model is the programming with VB and the efficiency and flexibility of VB make it is possible to improve and expand the latter part of the model. The research and practice of L-theory used to construct three-dimensional will be reference to other materials three-dimensional construction.
     6. The 3ds max software has powerful features, a rich modeling tool, the top rendering and animation capabilities in the application. Topography, vegetation and water landscape elements in 3ds max can be very good in the modeling and rendering, However, in order to establish good 3ds max effect of landscape, it is necessary to use 3ds max plug-in the production environment, plug-in trees, landscape plug-in, etc. In addition, we can also use other image processing software to create visual effects synthesis.
     There are two innovations in this text. First, based on the modeling method of terrain, plant and water, provided the maneuverable steps of landscape composing. It has important and directive significance to aftertime study and work. Second, this text provided a modeling method based on L-System, simulated plant growth, which with physiological characteristic and configuration.
引文
[1] 蔡强.计算机图形学的相关技术与发展[J].北京轻工业学院学报,1999,17(3):74-82.
    [2] 陈磊,李锡荣,徐人平.建筑模型的计算机三维建模[J].昆明理工大学学报,2001,26(4):91-94.
    [3] 陈文波,肖笃宁,李秀珍.景观空间分析的特征和主要内容[J].生态报,2002(7):1135-1142.
    [4] 陈亚进.虚拟现实技术在城市规划中的应用[J].福建电脑,2003(1):18-19.
    [5] 陈元琰,张晓竞.计算机图形学实用技术[M].北京科学出版社,2000.
    [6] 成思源.计算机图形学[M].北京:冶金工业出版社,2003.
    [7] 崔慧勇.3DS MAX 6 三维设计金钻案例 50 讲[M].航空工业出版社,2004.
    [8] 冯 莉 , 王 力 . 基 于 L- 系 统 三 维 分 形 植 物 的 算 法 及 实 现 [J]. 计 算 机 仿真,2005,22(11):205-207.
    [9] 付帅.城市三维景观建模技术比较研究[J].地理空间信息 2003,1(4):24-28.
    [10] 傅伯杰,陈利顶,马克明.景观生态学原理及应用[M].北京:科学出版社,2001.
    [11] 高 睿 , 刘 修 国 , 熊 威 . 城 市 三 维 景 观 可 视 化 研 究 与 应 用 [J]. 计 算 机 应 用 研 究 2005,22(3):160-163.
    [12] 高旭,姜楠.分形L系统理论与植物图像的计算机模拟[J].扬州大学学报,2000,3(1):71-74.
    [13] 戈建涛.实用 VR 技术在建筑漫游中的应用[J].北方工业大学学报,2000,12(1):20-23.
    [14] 郭炎,李保国.玉米冠层的数学描述与三维重建研究[J].应用生态学报,1999,10(1):39-41.
    [15] 韩金姝.分形 L 系统及其在植物形态模拟中的应用[J].德州学院学报,2006,22(3):84-87.
    [16] 韩向峰,刘希玉.基于 L 系统三维分形图的生成算法[J].计算机应用,2004,24(10):86-87.
    [17] 韩振镖,尹杰.3 维 GIS 在城市规划领域中的应用[J].测绘通报,2002(8):49-55.
    [18] 郝卫亮.基于分形的三维树木形态模型研究[D].中国科学技术大学硕士学位论文,2007.
    [19] 何国松. GIS 技术的发展趋势研究[J]. 咸宁学院学报,2003,23(6):75-76.
    [20] 胡包钢,赵星,严红平等.植物生长建模与可视化—回顾与展望[J].自动化学报 2001,27(6):816-835.
    [21] 黄蔓如.三维动画技术浅谈[J].影视技术,2004(10):35-38.
    [22] 黄心渊,翟海娟.计算机园林景观表现应用教程[M].北京:科学出版社,2006.
    [23] 黄心渊,陈世红.环境动态模拟中的建模技术[J].计算机仿真,2004,21(5):45-48.
    [24] 孔勇.基于L系统的植物形态模拟[D].西安电子科技大学硕士学位论文,2007.
    [25] 蓝 荣 钦 , 李 淑 霞 , 刘 阳 等 . 地 理 信 息 系 统 的 发 展 现 状 和 趋 势 [J]. 地 理 空 间 信息,2004,2(1):8-11.
    [26] 雷蕾, 郭新宇, 周淑秋.基于粒子系统思想的叶片纹理构造[J].计算机工程与应用,2004(36): 218-219.
    [27] 雷磊.三维生成及可视化技术研究[D].哈尔滨工程大学硕士学位论文,2005.
    [28] 李 春 阳 , 郭 永 明 . 虚 拟 现 实 技 术 在 城 市 规 划 与 设 计 领 域 的 实 践 [J]. 测 绘 科学,2003,28(1):38-44.
    [29] 李春雨.计算机图形学理论及实践[M].北京航空航天大学出版社,2004.
    [30] 李庆忠,韩金妹.基于 IFS 的树木形态模拟方法[J].计算机辅助工程,2004,13(4):21-24.
    [31] 李亚斌.大规模三维地形可视化系统的研究[D].大连海事大学硕士学位论文,2004. ,按序距
    [32] 刘峰.3ds max 6 建筑漫游动画制作[M].机械工业出版社,2004.
    [33] 卢圣.园林数字地形建模及应用[J].中国园林,2006,2:62-65.
    [34] 卢圣.园林植物三维建模方法初探[J].北京农学院学报 2004,19(3):49-54.
    [35] 罗运和.计算机图形学基础[M].北京:中国计量出版社,2003.
    [36] 毛卫强,潘云鹤.植物三维建模方法综述[J].计算机科学,2000,27(6):35-37.
    [37] 彭翠芳,郭克希,尹望吾.计算机三维动画技术发展研究[J].湖南电力 2002,22(3):11-14.
    [38] 前川佳德.计算机图形学[M].科学出版社,2002.
    [39] 石春林,金之庆,葛道阔.植物可视化研究进展[J].江苏农业科学,2004(6):11-14.
    [40] 舒娱琴,彭国均,池天河等.三维地形的生成技术及实现[J].测绘工程 2003,12(3):10-13.
    [41] 斯蒂芬·欧文,霍普·哈斯布鲁克.景观建模[M].中国建筑工业出版社,2004.
    [42] 宋力,王宏,余焕.GIS 在国外环境及景观规划中的应用[J].中国园林,2002,6:56-59.
    [43] 孙博文.分形算法与程序设计Visual Basic实现[M].北京:科学出版社,2004.
    [44] 孙霞,吴自勤,黄购.分形原理及其应用[M].北京:中国科学技术大学出版社 2003.
    [45] 孙永香,刘彤,郑永果等.虚拟植物的建模方法[J].系统仿真学报,2006,(8):263-266.
    [46] 田国行,李柏兴.园林景观发展研究刍议[J].河南农业大学学报,2004,38(2):193-198.
    [47] 万九香.GIS 技术及其应用和发展前景[J].江西通信科技,2003,9:34-37.
    [48] 万明秀,刘复丹.3DS MAX 在园林绿化景观制作中的应用[J].电脑知识与技术,2004(26):72-74.
    [49] 万庆萱,方建安,张旭.基于迭代函数系统IFS的植物真实图像颜色生成的改进算法[J].中国纺织大学学报,2000,26(03):59-61.
    [50] 王方石.L一系统在植物模拟中的应用[J].北方交通大学学报.1998,6(3):45-48.
    [51] 王 莉 莉 , 赵 沁 平 . 一 种 通 用 的 植 物 逼 真 几 何 建 模 方 法 [J]. 中 国 图 象 图 形 学报,2003,8(8):932-937.
    [52] 王太吉,刘志军.3DS MAX5.0 精彩实例详解-材质灯光篇[M].机械工业出版社 2003.
    [53] 王太吉.3DS MAX5.0 精彩实例详解-场景篇[M].机械工业出版社 2003.
    [54] 王永皎,莫国良,张引等.植物的三维建模研究进展[J].计算机应用研究,2005,11:1-3.
    [55] 王智峰.建筑漫游动画制作技术精粹[M].机械工业出版社 2003.
    [56] 魏琼,蒋湘宁.基于 DOL 系统的树木三维可视化模型研究[J].北京林业大学学报,2003,25(3):33-36.
    [57] 文铮.虚拟现实技术在景观设计教学中的应用前景[J].中外建筑,2006,5:89-91.
    [58] 肖笃宁,李秀珍.景观生态学的学科前沿与发展战略[J].生态学报,2003,23(8):1615-1621.
    [59] 徐杨,朱林,常明.树木三维形态结构的计算机建模[J].计算机工程与应用,2001,21:141-143.
    [60] 徐宇飞,肖建虹,吕翠华.城市三维景观模型动态显示[J].昆明冶金高等专科学校学报2004,20(2):4-7.
    [61] 许盘清,王勇.建筑动画漫游实例[M].清华大学出版社,2003.
    [62] 杨化超.地形三维可视化技术的研究与实践[D].吉林大学硕士学位论文,2002.
    [63] 杨化超,杨国东.三维地面模型的可视化研究[J].世界地质,2001,20(4):410-412.
    [64] 杨建思,杜志强,彭正洪等.数字城市三维景观模型的建模技术[J].武汉大学学报,2003,36(3):37-40.
    [65] 杨剑,张云青,潘伯鸣.面向城市规划的三维建模技术探讨[J]江苏省测绘学会 2003 学术年会专辑:122-131.
    [66] 杨键,耿卫东,潘云鹤等.基于图像的虚拟景观漫游[J].计算机辅助设计与图形学学报, 2001,13(3):229-235.
    [67] 尹玉亮,李培珍,康与云等.分形理论的发展概况及研究现状[J].科技信息,2007(15):1-2.
    [68] 英海燕,李翔.计算机图形学的发展及应用[J].现代情报,2004,24(1):33-35.
    [69] 于延,张长庚. 应用分形L系统模拟植物生长图像的研究[J]. 哈尔滨师范大学自然科学学报,2003,19(2):58-60.
    [70] 余 明 , 过 静 珺 . 三 维 仿 真 虚 拟 现 实 技 术 在 城 市 规 划 中 的 应 用 [J]. 测 绘 科学,2004,29(3):52-54.
    [71] 俞孔坚,刘东云.美国的景观设计专业[J].国外城市规划,1999(2):1-9.
    [72] 曾锋,球柏青,张黎明.基于迭代函数系统的彩色植物模拟[J].电子科技,2005,10:6-8.
    [73] 曾令仿,龚国清,杨志强.三维城市景观实时漫游的分析与设计[J].现代计算机2002,6:18-20.
    [74] 翟 旭 峰 , 朱 杰 杰 , 潘 志 .3ds MAX 建 模 及 其 在 虚 拟 现 实 中 的 应 用 [J]. 计 算 机 仿真,2004,2(4):94-97.
    [75] 詹发新.地形可视化的进展与评述[J].北京测绘,2004(2):8-11.
    [76] 张 立 亭 , 陈 竹 安 , 刘 海 飞 等 . 三 维 可 视 化 校 园 图 的 制 作 [J]. 东 华 理 工 学 院 学报,2004,27(2):185-188.
    [77] 张立亭,周世健,陈竹安等.基于 3DSMAX 的城市小区 3 维图的制作[J].测绘学院学报,2004,21(2):124-127.
    [78] 张明书,张燕,王维民等.三维植物的计算机模拟算法研究[J].计算机技术与发展,2006,16(10):108-110.
    [79] 张树兵.基于 L 系统植物三维建模方法的研究及实现[D].华北工学院硕士学位论文,2004.
    [80] 张树兵,王建中.L一系统的植物建模方法改进[J].中国图像图形学报,2000,7(5):457-460.
    [81] 张义宽.计算机图形学[M].西安电子科技大学出版社,2004.
    [82] 张 勇 , 邹 志 荣 . 三 维 软 件 新 技 术 在 园 林 效 果 图 制 作 中 的 应 用 [J]. 陕 西 农 业 科学,2005(1):46-49.
    [83] 张志艺,赵祺,肖巍巍等.三维虚拟园区建设方法探讨[J].地理空间信息,2003,1(3):18-19.
    [84] 赵灵军,陈圣波,胡卓伟.VRML 数据模型的三维可视化研究[J].遥感信息,2004,2:50-52
    [85] 赵玲玲,王峰鹏,杨奎河等.计算机三维动画技术在建筑设计中的应用[J].邯郸大学学报, 2000(3):35-36.
    [86] 赵 星 ,de Reffye Philippe, 熊 范 纶 等 . 虚 拟 植 物 生 长 的 双 尺 度 自 动 机 模 型 [J].2001,24(6):608-615.
    [87] 赵中元.三维动画技术在城市规划中的应用初探[J].城市规划,1995,5:49-50.
    [88] 郑晓.虚拟自然环境的研究方法[J].武汉工业学院学报,2002,(1):67-70.
    [89] 钟国,仇文革,高新强.3D 动画和 Photoshop 渲染图在隧道洞门景观设计中的应用[J].公路 2001(10):9-12.
    [90] 仲 兰 芬 , 王 琰 , 程 磊 . 三 维 分 形 树 木 IFS 生 成 算 法 [J]. 沈 阳 理 工 大 学 学 报 ,2005,24(1):28-31.
    [91] 周青.建筑漫游动画制作高级技法[M].机械工业出版社,2002.
    [92] 周新地,汪如钢,刘兴权等. Autocad、3DMAX、Photoshop 在城市规划设计中的应用[J].四川建筑科学研究,2003,29(4):110-111.
    [93] 朱露,吴素芝,林慧敏.虚拟现实技术在城市规划中的应用与展望[J].城市规划 2003,27(8):47-48.
    [94] A.D.Bell, D.Roberts, A. Smith. Branching patterns: The simulation of plant architecture [J]. Journal of theoretical biology (Y0022-5193),1979, 81(2): 351-375.
    [95] Aono M,Kunii T. Botanical Tree Image Generation[J]. IEEE Computer Graphics and Applications, 1984, 4(5): 10-34.
    [96] Arthur L M. Predicting scenic beauty of forest environment some empirical test[J]. Forest Science,1977,23:151-160.
    [97] A .Salomaa.Formal languages[M].Academic Press,New York,1973.
    [98] Ashford, Janet, and John Odam. Getting Started with 3D: A Designer's Guide to 3D Graphics Illustration[M]. Berkeley, CA: Peachpit Press, 1998.
    [99] Barnsley M F,Demko S G . Iterated function systems and the global construction of fractals[J]. The Proceedings of the Royal Society, London Ser, 1985, A399: 243-275.
    [100] Barnsley M F. Fractals everywhere[J]. Boston: Academic Press Professional, 1993,10-152.
    [101] Barnsley M F,Elton JH,Hardin DP.Recurrent iterated function systems Constructive Approximation,1989,5:3-312.
    [102] Beardsley, John. Earthworks and Beyond: Contemporary Art in the Landscape[M]. New York, NY: Abbeville Press, 1984.
    [103] Bouchon J,de Reffye P,Barthelemy D.Model is ationet Simulation del' Architecture des Vegetaux[M].Paris:INRA,1997.
    [104] Brunier, Yves. Yves Brunier: Landscape Architect Paysagiste[M]. Basel, Switzerland: Birkhauser-Verlag fur Architektur, 1996.
    [105] Chiba N, MuraokaK,et al. Rendering of Forest SceneryUsing 3D Textures[J]. The Journal of Visualization and ComputerAnimation,1997, 8 (4): 191-199.
    [106] de Reffye P, Edelin C, Franqon J, et al. Plant models faithful to botanical structure and development[J]. Computer Graphics,1988, 22(4):151-158.
    [107] Deardon P A. Statistical technique for the evaluation of the visual quality of the landscape for land-use purposes[J].Environment Management,1980,10:51-68.
    [108] Foley, James D., and Andries Van Dam. Computer Graphics, Principles and Practice, and edition[M]. Reading, MA: Addison-Wesley, 1992.
    [109] Gimblett H R,Itami R M,Fitzgibbon,J E,Mystery in an information p rocessingmodel of landscape preference[J]. Journal of Landscape,1985,4:87-95.
    [110] Godin C,Carglio Y.A multiscale model of plant topological structures[J].Theor Bio,1998,84(3):1—46.
    [111] G.T.Herman and G.Rozenberg.Developmental systems and languages[M].North-Holland,Amsterdam, 1975.
    [112] H.Abelson and A.A.DiSessa.Turtle geometry[M].M.I.T.Press,Cambridge,1982.
    [113] Hutchinson J. Fractals and self-similarity[J]. University Journal of Mathematics, 1981,30(1):713-747.
    [114] Iverson W D. And that’s about the size of it visual magnitude as a measurement of the physical landscape [J]. Journal of Landscape,1985,4:14-22.
    [115] Jaeger M, de Reffye P. Basic concepts of computer simulation of plant growth[J].J Biosci, 1992,17:275-291.
    [116] Krus zewski P.Analgorithm for sculpting trees. Computers and Graphics,1999,23:739-749.
    [117] Kurth W. Morphological models of plant growth: possibilities and ecological relevance[J]. Ecological Modelling, 1994, 75-76:299-308.
    [118] Lange E,Bishop I. Our visual landscape: analysis, modeling, visualization and protection[J]. Landscape and Urban Planning,2001,54:1-3.
    [119] Laurini, Robert and Derek Thompson. Fundamental of Spatial Information Systems[M]. London, England: Academic Press, 1992.
    [120] Laurini, Robert, and Derek Thompson. Fundamentals of Spatial Information Systems[M]. London, England: Academic Press, Harcourt Brace & Co, 1992.
    [121] Lemmon H E. COMAX: An expert system for cotton crop management[J].Science, 1986,233:29-33.
    [122] Lemmon H, Chuk N. Object-oriented design of a cotton crop model[J].Ecological Modeling, 1997,94:45-51.
    [123] Levy, Leah and Peter Walker. PeterWalker: Minimalist Gardens[M]. Washington, DC:SpaceMaker Press, 1997.
    [124] Lindenmayer A. Mathematical models for cellular interaction in development[J]. Journal of Theoretical Biology,1968,18(1):280-315.
    [125] Maguire, David, Michael Goodchild and David Rhind (Eds.) Geographical Information Systems: Principles and Applications[M]. New York, NY: Wiley, 1991.
    [126] Mandelbrot B B.Fratcals:Form,Chance and Dimension[M].San fancisco:freeman W H,1977.
    [127] Mandelbrot, B.B. The Fractal Geometry of Nature[M]. New York, NY: W. H. Freeman and Co., 1982.
    [128] Mitchell, William J, Robin Liggett, and Thomas Kvan. The Art of Computer Graphics Programming: A Structured Introduction for Architects and Designers[M]. New York, NY: Van Nostrand Reinhold, 1987.
    [129] Mitchell, William J., and Malcolm McCullough. Digital Design Media, And edition[M]. New York, NY: Van Nostrand Reinhold, 1995.
    [130] Motloch, John L. Introduction to Landscape Design[M]. New York, NY: Van Nostrand Reinhold, 1991.
    [131] N.Macdonald.Trees and networks in biological models[J]. Wiley&Sons,New York,1983.
    [132] Pommel B,et al.Use of virtual 3D maize canopies to assess the efect of plot hetero geneity on radiation interception[J].Agric for Meteor,2001,110(1):55-67.
    [133] Prusinkiewicz P ,HammeI M. Automata,language,and iterated function systems.In:Fractal Modeling in 3D Computer Graphicsand Imagery,J C Hart, FK Musgrave(eds.),ACMSIGGRAPH,Course Note C14,1991.115-1432.
    [134] Prusinkiewicz P,Hammel M,Mjolsness E.Animation of plant development[J]. Computer Graphics,1993,27(3):351-360.
    [135] Prusinkiewicz P.A look at the visual modeling of plant using L-system[J]. Agronomic,1990,211-2242.
    [136] Prusinkiewicz P, Hanan J. Visualization of botanical structures and processes using parametric L-systems[J]. Scientitlc Visualization and GraphicsS imulation, 1990,88(1):183-201.
    [137] Prusinkiewicz P, Lindenmayer A, The Algorithmic Beauty or plants, New York: Springer Verlag,1990: 1-50.
    [138] Prusinkiewicz P. In proceedings of Graphics Interface[J]. 86-vision Interface86, 1986,47-253.
    [139] Prusinkiewicz P. Modeling of spatial structure and development of plant: a review[J]. Scientia Horticulturae, 1998, 74(1):113-149.
    [140] Reddy V R, Baker D N, Jenkins J N. Validation of GOSSYM: part II. Mississippi conditions.Agri Syst,17:133-154.
    [141] Reeves W T,Blau R.Approximate and probabilistical gorithms for shading and rendering structure dparticle systems[J]. Computer Graphics, 1985,19(3):313~3222.
    [142] Room P M, Hanan J S, Prusinkiewicz P. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists[J]. Trends in Plant Science, 1996, 1(1):33-38.
    [143] Smith G S,Curtis J P,Edwards C M .A Method for Analysing Plant Architechture As it Relates to Fruit Quality Using Three-dimensional Computer Graphics[J].Amtals of botany, 1992,70(1):265-269.
    [144] Smith G S. Spatial Analysis of the Canopy of Kiwifruit Vines as it Relates to the Physical,Chemical and Postharvest Attributes of the Fruit[J].Annals of botany, 1994, 73(3):99-11.
    [145] Sullivan, Chip. Drawing the Landscape[M]. New York, NY: Van Nostrand Reinhold, 1995.
    [146] VonWodtke, Mark. Design with Digital Tools: Using New Media Creatively[M]. New York, NY: McGraw-Hill, 1999.
    [147] Weber,J.Penn,Creation and rendering of realistic trees[J].SIGGRAPH,1995.119-128.
    [148] Witten T A,Sander L M.Phys.Rev.Lett.1981,47(1):1400-1403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700