微型直齿沟槽管充液旋压—多级拉拔复合成形机理及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子芯片发热量的增加以及散热空间的大幅度减小,导致了高热流密度问题,严重影响着产品的性能及使用寿命。微型热管已为各种极端狭小空间、高热流密度元器件的散热难题提供一条行之有效的解决途径。而所要求的高导热率、高可靠性、热响应快、无需额外动力等特点的热管尺寸也越来越小,小尺寸热管将广泛应用于狭小空间内的电子元件及其应用系统如医疗科学手术设备等。微型热管的传统制造方法有挤压-犁切法和钢球高速充液旋压法,但采用该两种制造方法难以加工出直径Ф6mm特别是直径Ф4mm以下的微型沟槽式热管。本文结合钢球高速充液旋压技术和管材拉拔成形技术,提出了高速充液旋压-多级拉拔复合成形制造方法,用于加工直径在Ф2~6mm范围内的微型直齿沟槽式热管。
     首先采用钢球高速充液旋压技术加工出直径为Ф6mm与齿数适当的微型直齿沟槽管,然后再采用多级拉拔成形方法逐级加工出直径Ф2~6mm范围内的微型直齿沟槽管。通过对多级拉拔成形过程合理简化,建立了微型直齿沟槽管拉拔力学模型、沟槽拱起力学模型以及拉拔加工运动速度场理论计算模型,并进行了理论求解。得到了拉拔成形力、沟槽拱起高度以及拉拔变形加工功率计算公式。而且对微型直齿沟槽管在多级拉拔成形过程中沟槽拱形现象的产生机理进行了系统研究,把沟槽拱形现象形成过程分为沟槽堆积挤压、沟槽根裂、沟槽拱起以及沟槽饱满四个阶段。
     以MSC.MARC为分析平台,建立了微型直齿沟槽管多级拉拔成形有限元三维模型。获得了微型直齿沟槽管多级拉拔成形演变特征、三向主应力应变及等效应力分布规律以及金属流动规律。结果发现:当加工进行到四级拉拔即从直径Ф3mm成形到直径Ф2.5mm,沟槽发生拱形现象和燕尾槽结构特征。同时发现,拉拔力随着拉拔压缩率的增大先减小后增大,五级拉拔从直径Ф2mm拉拔到直径Ф1.8mm(拉拔压缩率为13.1%)拉拔力达到最小,而三级拉拔即从直径Ф4mm拉拔到直径Ф3mm(拉拔压缩率为21.9%),拉拔压缩率最大,拉拔力也达到最大。另外,微型直齿沟槽管进入了入口锥区沟槽拱起高度达到0.5mm,在定径区拱起高度继续增大,最大可达到0.62mm。
     采用扫描电镜、超景深显微镜、以及金相显微镜等微观检测手段,观察和分析了微沟槽几何参数、表面形貌和金相组织特性的变化规律。实验结果表明:当拉拔成形进行到三级拉拔时,微型直齿沟槽管沟槽发生了拱形现象;当拉拔成形进行到四级拉拔时,沟槽产生明显的燕尾槽结构,而且轴向沟槽产生了扭曲断裂现象。拉拔压缩率在0~16%范围内,拱形系数逐渐升高;而拉拔压缩率在16%以上的区域,拱形系数慢慢减小。拉拔力变化的过程一般分为三个阶段:初始接触阶段、稳定拉拔变形阶段、脱离拉拔模具阶段。拉拔力随着拉拔模具角的增大先减小后增大,当拉拔模具角为16°时,拉拔力最小。还总结了微型直齿沟槽管多级拉拔成形中表面成形质量及影响原因,发现微型直齿沟槽管多级拉拔成形工艺会产生表面刮伤、金属压入、褶皱或小裂块、裂纹(螺旋、纵向或横向裂纹)和弯曲等各种表面缺陷。
     采用红外热成像技术,对直径大小分别为Ф6mm、Ф5mm、Ф4mm、Ф3mm、Ф2.5mm、Ф2mm的微型直齿沟槽管毛细性能进行了测试,结果表明,拉拔成形直径大小在Ф3~6mm范围内,毛细高度随着拉拔成形直径的的缩小逐步增加;而拉拔成形直径大小在Ф2~2.5mm范围内,毛细高度急剧下降。接着,建立了微型直齿沟槽管的强化沸腾实验装置,对传热特性进行了测试分析,结果发现,随着拉拔成形直径的减小,努塞尔数也减小,两者呈线性关系。最后,对封装好的微型直齿沟槽式热管进行了启动及轴向等温性能测试:启动时间约为10s;输入功率为25W时,微型热管两端温差约为3℃。
Recently,with the trend of electronics processors towards higher performance andsmaller packaging, the heat dissipation from these devices is growing and the heat flux isgreater than ever, and the size of micro heat pipe,with high thermal conductivity,goodisotherm performance, rapid heat response and no extra power, is becoming smaller andsmaller. Micro heat pipe provide an effective solution for a variety of extremely small spaceand the cooling problem of high heat flux components. And will be wildly used inultra-samllelectronic compents and application systems, special in surgical thermalmanagement. However, it has proven hard tomanufacture micro heat pipe having an outerdiameter less than6mm (especially less than Ф4mm) by the traditional manufacturing methodsuch as extrusion-ploughing or high speed Ball-spinning.The compound spinning anddrawing manufacture technique is developed for the efficient and economical manufacture ofthe micro-grooved copper pipe.then, micro straight groove of copper tube with outer diameterabout Ф2~6mm was obtained using a compound technology of high-speed oil-filledspinning and multi-pass drawing in this paper.
     Micro straight groove of copper tube which had an outer diameter of Ф6mm wasobtained by high-speed oil-filled spinning method first.After that,multi-pass drawingprocessing method was designed to manufacture micro straight groove of copper tube withouter diameter about Ф2~6mm.In this paper, the optimal design theory is presented tosimplified the forming process of multi-pass drawing,and then,the drawing force of microstraight groove of copper tube and the model of admissible velocity field、the deformationpower and the arch effect have been established. Use the analytical method to derived thedrawing force、the height of the arch effect and the deformation power. The mechanism ofarch effect of the grooves in the drawing process were investigated. And devided to foursteps,and they are:grooves accumulation extrusion, grooves cracking, arch effect formationand grooves saturation.
     On the basis of elastic-plastic finite element analysis of large deformationtheory,three-dimensional finite analysis model are established by MSC.MARC for muti-passdrawing.The metal flow rule,distribution rule of stress and strain, the influence of formingprocess parameters on drawing quality and the corresponding forming mechanism by themuti-pass drawing has been simulated. Results indicate that the grooves generated the arch effect andswallow tailed during the fourth passes drawing with the outer diameter reduces from3mm to 2.5mm. Moreover,the drawing force decreases firstly and then increases with the increases ofreduction. And when the value of reduction is13.1%, the drawing force is smallest. when thevalue of reduction is21.9%, the drawing become maximum. The value of the height of thearch effect is0.5mm on the reducing area,while the value is0.62mm on the calibrating area.
     To reveal the mechanism of high-speed oil-filled spinning and multi-pass drawingcomposite forming technique, scanning electron microscopy, ultra-deep microscope andmetallurgical microscop methods are performed. The structure evolution of micro straightgroove of copper tube by composite forming was concluded.Results show that the groovesgenerated the arch effect during the third passes drawing and swallow tailed at the fourthpasses. However,arch coefficient increases firstly at0~16%and then decreases above16%asthe increase of drawing reduction. The process of drawing force are generally classified intothree stages: the initial contact, stable drawing deformation, and leaving the drawing die. Thedrawing force decreases firstly and then increases with the increases of die angle. And whendie angle is16°,the drawing force is smallest.Furthermore,There are many kinds of flawseasily generated during multi-pass tube drawing,such as surface scratches,metal pressed into,bonding or segmental teeth, Spiral, vertical or horizontal crack,bending and so on.
     The capillary performance of the micro straight groove with outer diameter of Ф6mm,Ф5mm, Ф4mm, Ф3mm, Ф2.5mm and Ф2mm are done by infrared thermal imagingtechnology.The results show that the capillary force increases firstly with outer diameter about3~6mm and then decreases with outer diameter about2~2.5mm as the decrease of drawingdiameter.Moreover,boiling experimental apparatus of the micro straight groove are alsoestablished,and the heat transfer charateristics were analyzed.Results indicated that the valueof N_u decreases as the decrease of drawing diameter.At last,the start-up and isothermalperformance of micro copper heat pipe with straight grooves are tested. The results show thatthe startup time of micro-heat pipe is about10s,and the value of temperature difference isabout3℃.
引文
[1] Viswannath R,Nair R,Wakharkar V,et al.Emerging dirctions for packagingtechnologies[J].Intel Technology Journal.2002,(6):61~74.
    [2]姚广寿,马哲树,罗林,等.电子电器设备中高效热管散热技术的研究现状及发展.第八届全国热管会议:中国工程热物理学会热管专业组,成都,2002.7.
    [3] Pang Y.F..Integrated Thermal Design and Optimization Study of Active IntergratedPower Electronic Modules[D].Virginia Polytechnic Institute and State University,2002.
    [4]于慈远,于湘珍,杨为民.电子设备热分析/热设计/热测试技术初步研究[J].微电子学,2000,30(5):334-337.
    [5] Ryan J. McGlen,Roshan Jachuck,Song Lin.Integrated thermal management techniquesfor high power electronic devices,Applied Thermal Engineering.2004,24:1143-1156.
    [6]李炳乾.基于金属线路板的新型大功率LED及其光电特性研究[J].光子学报,2005.34(3):372-374.
    [7]丘海平.电子元器件及仪器的热控制技术.北京:电子工业出版社,1991.
    [8] Trutassanawin S.,Groll E.A.,Garimella S.V.,et al.Experimental Investigation of aMiniature-Scale Refrigeration System for Electronics Cooling[J].IEEE Transactions onComponents and Packaging Technologies,2006,29(3):678-687.
    [9] Ioan S,Greg C,Ravi M,Michele S.Air-cooling extension-performance limits forprocessor cooling applications. Annual IEEE Semiconductor Thermal Measurementand Management Symposium,2003:74~81.
    [10] Zuo J.Hoover R and Phillips F. Advanced thermal architecture for cooling of highpower electronics.2001,Http://www.thermacore.com.
    [11] Peterson G P. An introduction to heat pipes-Modelling, testing and applications [M].John Wiley and Sons, New-York,1994.
    [12] Itoh A,Polasek F.Development and application of micro heat pipes, in:Proc.7thInternational Heat Pipe Conference[C], Minsk, Belarus (CIS),1990:295-310.
    [13] Gaugler R S. Heat transfer device. US2350348.1994.
    [14] Trefethen L. On the surface tension pumping of liquids or possible role of thecandlewick in space exploration[R]. G.E. Tech. Info. Serial No.615D115.
    [15] Grover G M,Cotter T P And Erikson G F.Structure of very high thermal conductance[J].Int. J. Appl. Phys,1964,35(6):112-117.
    [16] Cotter T.P.. Theory of heat pipes. Los Alamos Scientific Lab: Report No. LA-3246-MS,1965.
    [17] Cotter T P. Principles and prospects for micro heat pipes, in: Proc.5th Int. Heat PipeConf.[C].Tsukuba, Japan,1984,4:328-334.
    [18] Chen H.J., Groll M.Rosler S.Micro heat pipes:Experimental investigation andtheoretical modeling[A].in Proceedings of the8th international heat pipe conference,Beijing,China,1992,pp:396-400.
    [19]张亚平,冯全科,余小玲.微热管在电子器件冷却中的应用[J].国外电子元器件2008-2-26.
    [20]吴存真,刘光铎.热管在热能工程中的应用[M].北京:水利电力出版社,1993.
    [21]周帼彦,涂善东.换热技术从大型化向微小化的发展[J].热能与动力工程Vol.20,No.5Sep.2005.
    [22]马同泽.热管[M].北京:科学出版社.1983.
    [23]庄骏.张红.热管技术及其工程应用[M].北京:化学工业出版社.2000.
    [24] Narendran N.,Gu Y.,Freyssinier J. P., et al. Solid-state lighting:failure analysis of whiteLEDs[J]. Journal of Crystal Growth,2004,268(3-4):449-456.
    [25]王健,黄先,刘丽,等.温度和电流对白光LED发光效率的影响[J].发光学报,2008,29(2):358-362.
    [26] Junjie Gu, Masahiro Kawaji, Ryosuke Futamata. Microgravity Performance of MicroPulsating Heat Pipes. Microgravity sci. technol. XVI-1(2005).
    [27] Hyun-Ung Oh eta. A numerical and experimental investigation of the thermal controlperformance of a spaceborne compressor assembly. Cryogenics51(2011)477–484.
    [28]苗建印,张红星,吕巍,等..航天器热传输技术研究进展[J].航天器工程.2010(02).
    [29] Volodymyr Baturkin.Micro-satellites thermal control concepts and components [J/OL].
    [2004.6.9]. http://www. iaanet.org/symp/berlin/IAAB40901.pdf.
    [30]华诚生.管辐射器设计、试验及其在通信广播卫星上的应用.中国空间科学技术1995年第三期.
    [31]苗建印,李亭寒,杨泸宁,等.微小型热管的研制及应用[C]//第十届全国热管会议论文集,2006.9,贵阳.
    [32] L.L. Vasiliev. Micro and miniature heat pipes–Electronic component coolers. AppliedThermal Engineering28(2008)266–273.
    [33] Suman B.Modeling,experiment,and fabrication of micro-grooved heat pipes:Anupdate[J]. Applied Mechanics Reviews.2007,60(1-6):107-119.
    [34]倪涌猛.电外科手术设备的应用.中国医疗器械杂志,2002,26(6):437-438.
    [35]崔建巍.高频手术电刀及控制技术.医疗装备,2005,3:20-23.[4]
    [36]胡秀枋,邹任玲,徐秀林.高频手术设备安全分析及检测.质控与安全,2009,30(10):112-114.
    [37]李维秀.高频手术电刀的基本原理及注意事项.医疗装备,2010,10:67-68.
    [38]艾永丽.电外科手术安全问题探索.中国医学装备,2004,1(1):41-42.
    [39]庄园.不同高温温度致神经上皮细胞凋亡的研究.临床与医疗,2011,27:807-808.
    [40]郭以川,万琪,俞英欣.热刺激对原代培养神经元部分生物学特性的影响.第四军医大学报,2003,24(7):590-593.
    [41] Elliott-Lewis, Ebonia W. MS, BSEE. Thermal Damage Assessment of Novel BipolarForceps in a Sheep Model of Spinal Surgery. Neurosurgery.2010,67,(1):166-172.
    [42] http://wumrc.engin.umich.edu/shiha.
    [43] Fletcher.L.S.and Peterson.G.P.1993,Micro Heat Pipe Catheter [P].U.S.Patent:No.190,539,March2.
    [44] Peterson.G.P. and Fletcher.L.S.1995, Temperature Control Mechanisms for MicroHeat Pipe Catheters[P].U.S.Patent:No.5,417,686,May23.
    [45] Peterson.G.P. and Fletcher.L.S.1997,Treatment Method Using a Micro Heat PipeCatheters[P].U.S.Patent:No.5,591,162,January7.
    [46] W.John Bilski and John Broadbent.Feel the heat:Thermal Design Trends in MedicalDebices.2011,Http://thermacore.com.
    [47] Babin B.R.,Peterson G.P.,Wu.D.Analysis and testing of a micro heat pipeduringsteady-state operation[A]. Proceeding of ASME. AIChE National Heat TransferConference[C]. Philadelphi,1989:89-HT-17.
    [48] B. R. Babin, G. P. Peterson, Wu. D. Steady-State Modeling and Testing of a MicroHeat Pipe[J]. Journal of Heat Transfer.1990,112:595~601.
    [49] Wu.D.,G.P.Peterson.Investigation of the transient characteristics of a micro heatpipe[J]. Journal of Thermophysics and Heat Transfer,1991,5(2):129-134.
    [50] D. Khrustalev, A. Faghri. Thermal Analysis of a Micro Heat Pipe. Journal of HeatTransfer.1994,116(2):189~197.
    [51] J. M. Ma, G. P. Peterson. The Heat Transport Capacity of Micro Heat Pipes[J]. Journalof Heat Transfer.1998,120(11):1064~1071.
    [52] X. Y. Huang, C. Y. Liu. The Pressure and Velocity Fields in the Wick Structure of aLocalized Heated Flat Heat Pipe. Int J. Heat Transfer.2002,39(6):1325~1349.
    [53] S. Launay, V. Sartre, M. Lallemand. Thermal Study of a Water-Filled Micro Heat Pipeincluding Heat Transfer in Evaporating and Condensing Microfilms. Proceedings of12th International Heat Transfer Conference, Grenoble, France.2002:471~476.
    [54] F.Lefevre,R.Revellin,M.Lallemand. Theoretical Analysis of Two-Phase Heat Spreaderswith Different Cross-section Micro Grooves.7th Int. Heat Pipe Symposium, Jeju,Korea.2003:97~102.
    [55] Hopkins R.,Faghri A.,Khrustalev D..Flat Miniature Heat Pipes with Micro CapillaryGrooves[J].ASME Journal of Heat Transfer,1999,121:102-109.
    [56] ShungWen Kang,Derlin Huang.Fabrication of star grooves and rhombus grooves microheat pipe[J].Journal of Micromechanics and Microengineering,2002,12:525-531.
    [57] J.K.Sung,K.S.Joung,H.D.Kyu.Analytical and experimental investigation on theoperational characteristics and the thermal optimization of a miniature heat pipe with agrooved wick structure[J].International Journal of Heat and Mass Transfer,2003,46:2051-2063.
    [58] Moon.S.H.,Yun.H.G.,Ko.S.C.,et al.Micro Heat Pipe With Poligonal Cross-SectionManufactured Via Extrusion or Drawing[P].U.S.Patent:No.200440112572.2003.
    [59] B.Suman,S.De. Transient Modeling of Micro Grooved Heat Pipe. International Journalof Heat and Mass Transfer.2005,48:1633~1646.
    [60] G. P. Peterson,L.S. Fletcher. Effective Thermal Conductivity of Sintered Heat PipeWicks [J]. J.Thermo physics,1987:1(4).
    [61] Chen Y M, Wu S C, Chu C I. Thermal performance of sintered miniature heat pipes[J].Heat and Mass Transfer/Waerme-und Stoffuebertragung.2001,37(6):611-616.
    [62]张洪济,辛道明,陈远国,等.烧结粉末吸液芯-水热管性能及蒸发传热的试验研究[J].重庆大学学报(自然科学版),1980,(03):68-83.
    [63]李西兵.烧结式微热管的制造方法及其传热性能研究[D].广州:华南理工大学,2009.
    [64] Hanlon M A, Ma H B. Evaporation heat transfer in sintered porous media[J].Journal ofheat transfer,2003,8:644-652.
    [65]何中坚.纤维热管制造及其传热机理研究[D].广州:华南理工大学,2010.
    [66] Peterson G.P.,Analysis of heat pipe thermal switch,in:Pro.6th International Heat PipeConference,Grenoble,Frcance,1987,pp.177-182.
    [67] Andraka C.E.,Wolf D.A., Diver R.B.Design,fabrication,and testing of a30kWtscreen-wick heat-pipe solar receiver[A].Proceedings of the27th Intersociety EnergyConversion Engineering[C],San Diego, CA, USA,1992:5.185-5.190.
    [68] Ishikawa S.,Sukumoda S.,Furuuchi T.,Fukatami T.Heat Transfer Characteristics ofInner W-grooved Tube for the Groove Shape [J].Journal of the Japan Copper and BrassResearch Association,2000,(1):171-178.
    [69] Plesch D, Bier W, Seidel D, Schubert K. Miniature heat pipes for heat removal frommicroelectronic circuits[J].Micromechanical Sensors,Actuators and SystemsASME-DSC,1991,32:303-314.
    [70] Peterson G P. Investigation of micro heat pipes fabricated as an integral part of siliconwafers[A].Proc.8th International Heat Pipe Conference[C].Beijing, China,1992:385-395.
    [71] Koch H,Kreeb H,Perdu M,Modular axial grooved heat pipes[A].in:Proc.2ndInternational Heat Pipe Conference[C]. Bologna,1976:77-82.
    [72] Chen P., Liu X., Tang Y., et al. Research on ploughing–extrusion process mechanismof multi/micro dimensional grooves inside cylindrical micro heat pipe [J]. Journal ofHarbin Institute of Technology,2005,12(2):1-4.
    [73] Chen P.,Tang Y.,Liu X., et al. Formation of integral fins function–surface by extrusion–ploughing process [J].Transactions Nonferrous Metals Society of China,2006,16(5):1029-1034.
    [74] Tang Y., Chi Y., Wan Z., et al. A novel finned micro–groove array structure andforming process [J].Journal of Materials Processing Technology,2008,203(1~3):548-553.
    [75]陈平.小型圆热管内壁微沟槽挤压-犁削成形机理及传热性能研究[D].博士论文.广州:华南理工大学,2006.
    [76]汤勇,周劲松,叶邦彦.充液旋压内螺旋翅片铜管的表面加工质量[J].华南理工大学学报(自然科学版),2000,28(10):71-74.
    [77]汤勇,周德明,叶邦彦,等.超高速增压旋压时全膜润滑的临界条件及影响[J].华南理工大学学报(自然科学版),2001,29(2):15-18.
    [78]李勇,汤勇,肖博武,等.加工沟槽式微热管的微型多齿刀具研究[J].中国机械工程,2008,19(3):258-261.
    [79] Li Y., Tang Y., Li X., et al. Study on inner micro-grooves of heat pipe spinning processand multi–tooth mandrel [J]. Key Engineering Materials,2008,375-376:358-363.
    [80] Li Y., Xiao H., Lian B., Tang Y. et al. Forming method of axial micro grooves insidecopper heat pipe [J].Transaction of Nonferrous Metals Society of China,2008,18:1229-1233.
    [81]李勇,汤勇,肖博武,等.铜热管内壁微沟槽的高速充液旋压加工[J].华南理工大学学报(自然科学版),2007,35(3):1-5.
    [82]李勇.沟槽式微热管内壁轴向齿槽钢球高速旋压成形机理研究[D].广州:华南理工大学,2008.
    [83] Tang Y., Chi Y., CHEN J.C., et al. Experimental study of oil-filled high-speed spinforming micro-groove fin-inside tubes[J].Machine Tools and Manufacture,2007,47:1059-1068.
    [84] Furushima, T., Manabe, K.. FE analysis of size effect on deformation and heat transferbehavior in microtube dieless drawing[J]. J. Mater. Process. Technol.,2008:201,123-127.
    [85] Kazunari, Y., Hiroaki, F.. Mandrel drawing and plug drawing of shape-memory-alloyfine tubes used in catheters and stents[J], J. Mater. Process. Technol.,2004:153-154,145-150.
    [86]赵小林.微型沟槽管犁削-拉拔成形机理与传热性能研究[D].广州:华南理工大学,2008.
    [87]练彬.微型沟槽管拉拔成形及热管传热性能研究[D].广州:华南理工大学,2010.
    [88] Deng J X,Yang X F,Wang J H.Wear mechanisms of Al2O3/TiC/Mo/Ni ceramicwire-drawing dies[J].Materials Science and Engineering A-structural MatertialsProperties Microstructure and Processing.2006,424(1-2):347-354.
    [89]温景林,丁桦,曹富荣.等.挤压与拉拔技术.北京:化学工业出版社,2007:257-259.
    [90] Sawamiphakdi K, Lahoti G D, Gunasekera J S, et al. Development of utility programsfor a cold drawing process[J].Journal of Materials Processing Technology.1998,166(3):345-358.
    [91] Sadok L, Kusiak J, Packo M, et al.State of strain in the tube sinking process[J]. Journalof Materials Processing Technology.1996,60(1-4):161-166.
    [92]张才安.工艺因素对钢管外径精度的影响[J].重庆大学学报(自然科学版).1997(02).
    [93]张才安,徐宗涛,吴正筠,等.钢管同管壁厚差的研究[J].钢管.1989(06).
    [94]张才安,雷盛怀,陈国文.穿孔顶头工作锥起皱分析[J].钢管.1992(04).
    [95]张召铎.铜管拉拔成形摩擦机理及润滑剂性能测试装置研究[D].山东:山东大学,2005.
    [96]李明新.无芯棒拔制钢管壁厚变化研究[D].湖南:中南大学,2007.
    [97] Schade P. Wire drawing failures and tungsten fracture phenomena[J].InternationalJournal of Refractory Metals&Hard Materials.2006,24(4):332-337.
    [98]欧栋生,汤勇,万珍平,陆龙生,练彬.微型直齿沟槽铜管充液旋压-多级拉拔复合成形[J].华南理工大学学报(自然科学版),2010,38(12):14-19.
    [99] TANG Yong,OU dong sheng,Wan zhen ping,Lu long sheng,Lian bin. Influence ofDrawing Process Parameters on Forming of Micro Copper Tube with Straight Grooves.[J].Transactions of Nonferrous Metals Society of China.2011,10(21):2264-2269.
    [100]赵波,程雪利,刘传绍,高国富,焦锋.微细加工与装备技术进展[J].现代制造工程.2006,6:143-146.
    [101]许泽川.微小型薄壁内沟槽管缩径机理研究[D].广州:华南理工大学,2010.
    [102]胡龙飞.十字型钢管拉拔的弹塑性有限元模拟研究[D].合肥:合肥工业大学,2005.
    [103]翟福宝,林新波,张质良,等.有限元模拟在金属塑性成形中的应用[J].锻压机械.2000(03).
    [104]应富强,张更超,潘孝勇.金属塑性成形中的三维有限元模拟技术探讨[J].锻压技术.2004(02).
    [105]陆璐,王辅忠,王照旭.有限元方法在金属塑性成形中的应用[J].材料导报.2008(06).
    [106]赵柏森,王怀建,李海峰.金属塑性成形工艺有限元数值模拟技术[J].热加工工艺.2010(07).
    [107]刘传璞,刘锦云.钢管拉拔过程数值模拟的现状和发展趋势[J].四川冶金.2003(04).
    [108]杜凤山,吴维勇,刘才,等.管材空拔成形过程的计算机仿真[J].工程力学.1998(03).
    [109] Kazunari Y, Masaki W, Hiroshi I. Drawing of Ni-Tishape-memory-alloy fine tubesused in medical tests[J].Journal of Materials Processing Technology,2001,118:251255.
    [110] Rasty,J.Isothermal and thermomechanical finite-element analysis of the tube drawingprocess using a fix tapered plug.Journal of materials Engineering andperformance,1992.
    [111] Sadok L, Kusiak J, Packo M, et al.State of strain in the tube sinking process[J]. Journalof Materials Processing Technology.1996,60(1-4):161-166.
    [112]吴振亭,李顺江.基于ANSYS技术的铜管空拔过程数值模拟分析[J].机械科学与技术.2008(05).
    [113]黄成江,李殿中,戎利建,等.拉拔道次对空拔管质量影响的三维弹塑性有限元分析[J].材料科学与工艺.2000(03).
    [114] J.Luksza,J.Majta,M.Burdek,M. Ruminsk.i Modelling and measurements of mechanicalbehavior in multi-pass drawing process[J].Journal of Materials Processing Technology80-81(1998):398-405.
    [115] J. Luksza, M. Burdek.The influence of the deformation mode on the final mechanicalproperties of products in multi-pass drawing and flat rolling. Journal of MaterialsProcessingTechnology,2002,125-126:725-730.
    [116]刘赣华,黄武新.外螺纹铜管拉深成形过程的有限元模拟[J].锻压技术.2007(03).
    [117] Karnezis P, Farrugia D C J. Study of cold tube drawing by finite-element modelling [J].1998(80-81):690-694.
    [118] Lee S, Kim D, Jeong M, et al. Evaluation of axial surface residual stress in0.82-wt%carbon steel wire during multi-pass drawing process considering heat generation[J].Materials& Design.2012,34(0):363-371.
    [119]黄东南,张士宏,许沂,张金利.游动芯头拉拔模具受力和温度分布的数值模拟2003年MSC.Software中国用户论文集.
    [120]李勇,许泽川,汤勇,等.薄壁轴向微沟槽铜管高速旋压成形的数值模拟[J].华南理工大学学报(自然科学版),2010(38),1:128-133.
    [121]郑丽,王爱明,李菊香.热管吸液芯的研究进展[J].制冷技术,2011,39(4):43-47.
    [122] B. Suman,A steady state model and maximum heat transport capacity of anelectrohydrodynamically augmented micro-grooved heat pipe,Int. J. Heat MassTransfer49(21–22)(2006)3957–3967.
    [123] S.W.Chen,J.C.Hsieh,C.T.Chou,H.H.Lin,S.C.Shen,M.J.Tsai, Experimental investigationand visualization on capillary and boiling limits of micro-grooves made by differentprocesses, Sens. Actuat. A: Phys.139(1–2)(2007)78–87.
    [124] Ochterbeck JM,Kim B H.Groove Optmization for Axially Grooved Heat Pipes[C].InProceedings of19964th Int Symposium on Heat Transfer BeijingISHT.Oct7-11,1996:660-665.
    [125] Zhang C B,Chen Y P,Shi M H,et al.Optimization of Heat Pipe With Axial“Ω”-ShapedMicro Grooves Based on a Niched Pareto Genetic Algorithm (NPGA)[J].AppliedThermal Engineering,2009,29:3340-3345.
    [126]朱旺法,陈永平,张程宾,等.燕尾形轴向微槽热管的流动和传热特性[J].宇航学报.2009(06).
    [127]张丽春,马同泽,张正芳,等.燕尾槽微小型热管的实验研究[J].工程热物理学报.2004(03).
    [128]曲伟,马同泽,苗建印.微小空间薄液膜相变传热的微尺度效应[J].航天器工程.2004(02).
    [129]范春利,曲伟,孙丰瑞,等.微小型热管的研究现状与进展[J].电子器件.2004(01).
    [130] Chen H,Groll.M,Rosler S.Micro heat pipe:experimental investigation and theoreticalmodeling Proc.8thInt.Heat Pipe Conf..Beijing,China:1992.
    [131] Lee Y S,Lee Y P,Lee Y.An experimental study on micro two-phase closedthermosyphones with inserts.Proc.8thInt.Heat Pipe Conf..Beijing,China:1992.
    [132] Decastro A, Campos H B, Cetlin P R. Influence of die semi-angle on mechanicalproperties of single and multiple pass drawn copper[J].Journal of Materials ProcessingTechnology.1996,60(1-4):179-182.
    [133] Vega G,Haddi A,Imad A. Investigation of process parameters effect on the copper-wiredrawing[J].Materials&Design.2009:3308-3312.
    [134] Malberg M,Bech J,Bay N,et al.Influence of process parameters in drawing ofsuperconducting wire[J].IEEE Transactions on Applied Superconductivity.1999,9(2Part2):2577-2580.
    [135] Heringhaus F,Raabe D,Gottstein G.On the correlation of microstructure andelectromagnetic properties of heavily cold worked Cu-20wt%Nb wires [J].ActaMetallurgica Et Materialia.1995,43(4):1467-1476.
    [136] OU dong sheng, Tang Yong,Wan zhen ping,Lu long sheng,Lian bin.Effect of drawingparameters on elongation of micro copper tube with straight grooves.[J].KeyEngineering Materials.2012,499:62-67.
    [137]曲伟,马同泽.微小型平板热管的传热特性分析[A].中国工程热物理学会传热传质学学术会议论文集[C].中国上海,2002:473-476.
    [138] Adkins D.R., Dykhuizen R.C..Procedures for measuring the properties of heat pipewick materials[A].Proceedings of the28th Intersociety Energy ConversionEngineering Conference[C].Washington DC,1993:911-917.
    [139] Faghri A.. Heat Pipe Science and Technology[M].Washington DC: Taylor&Francis,1995:14.
    [140] Holley B., Faghri A.. Permeability and effective pore radius measurements for heatpipe and fuel cell applications[J]. Applied Thermal Engineering,2006,26(4):448-462.
    [141] Cao Y,Faghri A.Micro/Miniature heat pipes and operating limitations[J].J.EnhancedHeat transfer,1994,1,3:265-274.
    [142] Guo.T.W,Zhu.T.Y,Experimental Research on the Enhancement of Boiling HeatTransfer of Liquid Helium in Narrow Channel,J.Cryogenics,1997,37(2):67~70.
    [143]吴晓敏,朱竞飞,王维城.小热管强化传热的研究[J].工程热物理学报.2004(02).
    [144]蒋章焰.热管理论与实用.北京:科学出版社.1981.
    [145]陈志斌.CPL中微沟槽犁切-挤压成形技术研究及毛细性能测试[D].广州:华南理工大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700