能产辅酶Q_(10)的土壤根瘤杆菌菌株选育及其发酵条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辅酶Q_(10)(Ubidecarenone,conezyme Q_(10)),又名泛醌,是呼吸链中一种重要的递氢体。辅酶Q_(10)具有抗氧化、防衰老、提高机体免疫力等功能,被广泛用于各类心脏病,高血压、肝炎等疾病的治疗。本文对产辅酶Q_(10)的菌种选育和发酵过程进行了初步研究。
     研究了辅酶Q_(10)的定量分析方法:Craven试验显色法和高效液相色谱法(HPLC)。将Craven反应的溶剂改进为丙酮,使该反应的灵敏度提高了近50%。该方法特异性强,操作简单,可在短时问内测定大批样品;确立了HPLC法测定辅酶Q_(10)条件和相应标准曲线,测定方法准确可靠。
     研究了可以批量提取样品中辅酶Q_(10)的化学破胞方法,工艺路线为EDTA预处理→NaOH作用破胞→丙酮抽提萃取。通过Plackett-Burman设计试验和最终优化实验得到较佳的提取工艺条件:0.1mol/L EDTA作用温度为30℃,1ml发酵液中2mol/L NaOH用量和生物量的关系为V=4.335m,R~2=0.971,其作用时间和温度分别为50min和52℃。与碱醇皂化、高压匀浆等方法提取结果比较,化学破胞方法因其条件温和、破胞彻底而提取效果更好。
     以土壤根瘤杆菌AT-hh01为出发菌株,确定了紫外诱变的最佳条件:30W紫外灯,诱变距离为65cm,照射时间为20s;~(60)Co_γ射线诱变的较佳诱变剂量为300 Gy。经过多轮γ射线和紫外诱变,在亮氨酸和D—半乳糖的复合筛选平板中筛选得到了一株突变菌株AT-hh1201-4,辅酶Q_(10)产量为27.2mg/L,较出发菌株AT-hh01提高了51.96%,经过传代10次,证明其遗传性状稳定。
     对土壤根瘤杆菌AT-hh1201-4的摇瓶培养及制备辅酶Q_(10)过程进行了优化。通过考察不同的碳源、氮源对辅酶Q_(10)产量的影响,确定了较好的碳源为葡萄糖和蔗糖,氮源为酵母膏和(NH_4)_2SO_4。以均匀试验设计对Plackett-Burman设计试验筛选所得关键因素一酵母膏、(NH_4)_2SO_4和种龄作了进一步优化,采用二次多项式逐步回归的方法对结果进行拟合,获得优化化条件为:酵母膏46.2g/L,(NH_4)_2SO_425.4g/L,种龄为24h,经实验验证,回归拟合结果较好。经优化后辅酶Q_(10)的平均产量为32.24mg/L,比初始的27.2mg/L提高了18.53%。
     考察了发酵过程中溶氧对辅酶Q_(10)产量的影响。将发酵培养过程分成两个
    阶段对溶氧条件进行考察,第一阶段获得以最大生长速率为目标的通气条件,第二阶段为在第一阶段培养结束后改变通气条件以进一步提高辅酶Q_(10)产量。以正交试验确定第一阶段培养条件为:装液量25ml/250ml,转速210rpm和摇瓶形状为C_3;以二次饱和D—最优设计试验得到第二阶段培养条件为:在第一阶段培养到104h时将转速调为180rpm。经过对溶氧条件的优化,发酵液中辅酶Q_(10)产量达到38.22mg/L,比优化前提高了18.5%。
Ubidecarenone (coenzyme Q_(10), Ubiquinone) is an important electron transfer conmponent in respiratory chain. Coenzyme Q_(10) exhibitating excellent medical and physiological functions such as antioxidant, prevention of senility and boost of immunity is widely used in the therapy on several heart diseases, hypertension, hepatitis and so on. In this paper, coenzyme Q_(10)-producing strain breeding and fermentation conditions optimization were studied.
    Methods for quantitative determination of coenzyme Q_(10) were studed: Craven test and High Performance Liquid Chromatography (HPLC). Replacing the solvent of coenzyme Q_(10) with acetone in Craven test, the sensitivity of the test was improved by about 50%. The Craven test was of high specificity, easy to operate and able to deal with great number of samples in short time. Then the determination condition of coenzyme Q_(10) with HPLC and relevant standard curve were determined. The advantage of assay by HPLC was accurate and reliable.
    Chemical disruption which could extract coenzyme Q_(10) in batch was studied. The process route was as follows: treatment of EDTA → treatment of NaOH → extraction with acetone. The optimum technology for extraction by chemical disruption was got by Plackett-Burman design experiment and final optimization experiment as follows: temperature of treatment with 0.1mol/L EDTA was 30°C; the relationship between 2mol/L NaOH and biomass in 1 ml fermentation broth
    was V = 4.335m, R~2 = 0.971; the time and temperature of treatment of NaOH were
    50min and 52°C, respectively. Compared with Saponification with alkali and methanol and high pressure homogenizer, the result of extraction by chemical disruption was better because of its mild and thorough treatments.
    Selected AT-hh01 as the origin strain, the optimum technology for ultraviolet mutation was selected as follows: UV lamp 30W, distance and time of radiation 65cm and 20s; optimum dosage for ~(60)Coγ ray mutation 300Gy. With several circles of mutagenesis treatments and screening, a mutant strain AT-hh1201-4 was bred on the
    composite plate of leucine and D- Glactose. Its yield of coenzyme Q_(10) was 27.2mg/L, which was increased by 51.96% compared with that of the origin strain. Its genetic character was proved to be stable after ten passages.
    Optimization of fermentation conditions of coenzyme Q_(10) produced by AT-hhl201-4 was studied in shake flask cultures. By studying on difference of yield of coenzyme Q_(10) in different nitrogen and carbon sources, better nitrogen and carbon sources were glucose, sucrose and yeast extract, (NH_4)_2SO_4. Employed Uniform Design to optimize the significant parameters got by Plackett-Burman Design, fitted with Duality Quadratic Polynomial Stepwise Regression, the results of the optimization were yeast extract 46.2g/L, (NH_4)_2SO_4 25.4g/L, age of inoculum 24h. Verification experiment showed that the optimized condition leaded the average yield of coenzyme Q_(10) to be increased by 18.53% from 27.2mg/L to 32.24mg/L.
    The influence of dissolve oxygen to the yield of coenzyme Q_(10) in flask culture was studied. The process of fermentation was divided into two stages: one achievement of aeration conditions for the biggest growth rate, the other changing aeration conditions following the first stage to further improve the yield of coenzyme Q_(10). The optimal culture conditions were determined by Orthogonal experiment as follows: liquid volume 25ml/250ml, rotate speed 210rpm and flask shape straight bottom with wider bottleneck. By Second Saturating D-Optimal Design the conditions for the second stage was set as adjusting rotate speed to 180rpm at 104h of fermentation. After optimization of dissolve oxygen in flask fermentation, the yield of coenzyme Q_(10) was 38.22mg/L increased by 18.5% compared with that not being optimized.
引文
[1] 杨学义,宿燕岗,陈灏珠.辅酶Q_(10)的药理和临床应用.中国药理学通报1994;10(2):88-91.
    [2] 王镜岩,朱圣庚,徐长法.生物化学(第版)下册.高等教育出版社 2002:120.
    [3] Takahashi T, Ido T, Nagata S, et al. Labeling of coenzyme Q_(10) and its tissue distribution. Journal of Labelled Compounds and Radiopharmaceuticals 1985;22(6):565-75.
    [4] Sastry PS, Jayaraman J, Rarnasarma T. Distribution of coenzyme Q in rat liver cell fractions. Nature 1961; 189:577.
    [5] 廖满嫒,闫红,李佩珩.辅酶Q_(10)的合成研究进展.北京工业大学学报2002;28(2):155-59.
    [6] 王淑英,邵忠富.辅酶Q_(10)的生物学功能及临床应用.齐齐哈尔医学院学报1994;15(1):47-50.
    [7] Mitchell P, Moyle J. Proton Translocation Coupled to ATP Hydrolysis in Rat Liver Mitochondria. European Journal of Biochemistry 1968;4(4):530-39.
    [8] Sobreira C, Hirano M, Shanske S. Mitochondrial encephalomyopathy with coenzyme Q_(10) deficiency. Neurology 1997; 48:1238-43.
    [9] Lenaz G, Faro R, DeBemardo S. Location and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 1999;9:87-94.
    [10] 陈冬元.辅酶Q_(10)临床应用现状.医师进修杂志1992(10):39-41.
    [11] 吴祖芳,翁佩芳,陈坚.辅酶Q_(10)的功能研究进展.宁波大学学报(理工版)2001;14(2):85-88.
    [12] Takanayagi R, Takeshige K, Minakami S. NADH and NADPH dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol. Biochemical Journal 1980;192 853-60.
    [13] Greenberg S.治疗心血管疾病的新药—辅酶Q_(10).国外医学·药学分册 1991;18(3):141-43.
    [14] Carlos SO, Francisco C, Crane FL. Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of accharomyces cerevisiae. Journal Of Biological Chemistry 1998;273:8099-105.
    [15] Crane FL, Hatefi Y, Lester RL. Isolation of a quinone from beef heart mitochondria. Biochimica Et Biophysica Acta 1957;25:220-21.
    [16] Iwamoto Y, Nakamura R. Coenzyme Q and its clinical application the Journal of Hiroshima University Dental Society 1975;7(2):93-101.
    [17] Li K, Shi Y, Chen S. Determination of coenzyme Q_(10) in human seminal plasma by high-performance liquid chromatography and its clinical application. Biomedical Chromatography 2006;20(10): 1082-86.
    [18] 钱雪,王祖巧,韩国平.辅酶Q_(10)的药理与应用.食品与药品2006;8(01_A):16-19.
    [19] 印海峰,凌沛学,张天民.辅酶Q_(10)临床应用研究进展.食品与药品2006;8(10):1-4.
    [20] 王春林,韩进.辅酶Q_(10)口服剂型及其临床应用.中国生化药物杂志1986:2.
    [21] 戴之华.辅酶Q_(10)与纳络酮治疗流行性乙型脑炎118例临床疗效观察.职业与健康2000;16(9):85.
    [22] 刘庆增,王盘兰.辅酶Q_(10)的剂型和生物利用度.药学通报1986;21(6):375.
    [23] 叶青,张宾红,关屹.辅酶Q_(10)的性质及其在化妆品中的应用.香料香精化妆品1999;3:32-34.
    [24] Ruegg R, Gliir U, Goel R N. Helvetica Chimica Acta 1959;42:2316.
    [25] Sato L, Inore S, Yamaguchi R. Journal Of Organic Chemistry 1972;27:1889.
    [26] Naruta Y, Mamyama K. Chemistry Letters 1979:885.
    [27] Lambelet P, Loliger J, Saucy F, et al. Antioxidant Properties of Coenzyme Q_(10) in Food Systems. Journal of Agricultural & Food chemistry 1992;40:581-84.
    [28] Sato K, Miyamoto O, Inoue S. An efficient stereoselective synthesis of coenzyme Q_(10). Journal of the Chemical Society-Chemical Communications 1982;1: 153-54.
    [29] Folkers K. Biomedical and Clinical Aspects of Coenzyme Q. Elserier Holland 1977:316.
    [30] Martino G, Haouet MN, Reail C. Coenzyme Q_(10) and Its Relationship to Other Nutritional Components of Animal Products. Italian Journal of Food Science 1995;1:160-64.
    [31] 王春林.中国大豆辅酶Q_(10)的提取、分离和鉴定.中国医药工业杂志1996;27(3):102-04.
    [32] Ikeda T, Matsumoto T, Kato K. Isolation and identification ofubiquinone Q_(10) from cultured cells of tobacco. Agricultural & Biological Chemistry 1974;38:2297-98.
    [33] 高向阳,康起亮,穆虹.几种有机物对烟草细胞辅酶Q_(10)形成的影响.华南农业大学学报1999;20(1):51-55.
    [34] 郜晓峰,罗应刚,官家发.微生物发酵法生产辅酶Q_(10)研究进展.天然产物研究与开发2006;18:858-62.
    [35] 马志科,昝林森,陈芳.辅酶Q_(10)制备技术及其在医学中的应用.动物医学进展2006;27(8):15-18.
    [36] 中国科技大学研究生院.辅酶Q_(10)的微生物提取技术.中国高校技术市场2000(8).
    [37] 潘春梅,堵国成,陈坚.辅酶Q_(10)高产菌Rhizobium radiobacter的选育.过程工程学报2004;4(5):541-456.
    [38] 吴品芳,陆茂林.三孢拉氏霉合成辅酶Q_(10)及其代谢调控.食品与生物技术学报2006;25(5):61-65.
    [39] 吴祖芳,堵国成,陈坚.营养条件和流加发酵对放射型根瘤菌产辅酶Q_(10)的影响.生物工程学报2003;19(2):212-16.
    [40] 吴祖芳,堵国成,陈坚.从代谢流量分析角度探讨培养条件改变下对放射型根瘤菌WSH2601合成辅酶Q_(10)的影响.微生物学报2005.4;45(2):231-35.
    [41] 李梅,吕炜锋,高向东.产辅酶Q_(10)细菌CPU0402的初步研究.药物生物技术2005;12(3):162-66.
    [42] 刘萍,邱卫华,郑亚安.前体物质对辅酶Q_(10)生物合成的影响.食品与发酵工业2005;31(4):1-5.
    [43] 王普,张晓军,沈佳佳等.发酵法生产辅酶Q_(10)的季也蒙假丝酵母菌株的选育.浙江工业大学学报2006;34(3):281-85.
    [44] 顾觉奋,陈光明,李淑珍.微生物转化法合成辅酶Q_(10).药学进展2001;25(6):339-43.
    [45] Hajime Y, Yukinobu K, Keiko O, et al. Production of ubiquinone-10 using bacteria. Journal of General & Applied Microbiology 1998;44(1): 19.
    [46] Yoshida H, Kotani Y, Ochiai K, et al. Production of ubiquinone-10 using bacteria. Journal of General & Applied Microbiology 1998;44:19-26.
    [47] 袁静,魏泓.光合细菌产辅酶Q_(10)发酵条件的研究.氨基酸和生物资源2003;25(2):24-27.
    [48] 潘春梅,李寅,堵国成.利用广谱性和特异性组合诱变技术选育辅酶Q_(10)高产菌.应用与环境生物学报2005.6;11(3):363-67.
    [49] 王根华,钱和.发酵条件对豌豆根瘤菌细胞生长和辅酶Q_(10)合成的影响.无锡轻工大学学报2003;22(5):102-05.
    [50] 刘玲,李革.用黄色隐球酵母发酵生产辅酶Q_(10)最佳条件的选择.大连水产学院学报2004;19(3):199-203.
    [51] 吴祖芳,翁佩芳,李寅.辅酶Q_(10)发酵生产的育种思路及发酵条件优化策略.食品与发酵工业2001;27(7):49-53.
    [52] Kuratsu Y, Sakurai M, Hagino H. Productivity and colony morhotogy associated with coenzyme Q_(10) production by Agrobacterium species. Agricultural & Biological Chemistry 1984;48(8): 1997-2002.
    [53] 朱旭芬,曾云中,吴雪昌.生物体内泛醌的种类与合成条件.浙江大学学报2000;27(3):324-28.
    [54] Zhu X, Yuasa M, Okada K. Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis. Journal of Fermentation & Bioengineering 1995;79(5):493-95.
    [55] Rohmer M, Knani M, Simonin R Amplification of 1-deoxy -xyluose 5-phosphate (DXP) synthase level increases coenzyme Q_(10) production in recombinant Escherichia coli. Biochemical Journal 2006;27(5):982-85.
    [56] Wayne WP, Davis DE. Identification of Escherichia coli ubiB, a Gene Required for the First Monooxygenase Step in Ubiquinone Biosynthesis. Journal of Bacteriology 2000; 182(18):5139-46.
    [57] Zahiri HS, Hwal YS, Keasling JD, et al. Coenzyme Q_(10) production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metabolic Engineering 2006;8(5):406-16.
    [58] Mitsubishi Gas Chem Co Inc.. Method for culture of coenzyme Q-producing microorganism. [P]JP 1981;80148084.
    [59] Mitsubishi Gas Chem Co Inc.. Method for culture of coenzyme Q-producing microorganism. [P]JP 1981 ;8155196.
    [60] Kawada I, Uchida K, Aida K. Effects of isopenteny alcohol and its homologues on the ubiquinone production by various microorganisms. Agricultural & Biological Chemistry 1980;44(21):407—11.
    [61] Matsumura M, Kobayashi T, Aiba S. Anaerobic production ofubiquinone-10 by Paracoccos denitrificans. European Journal Of Applied Microbiology And Bioteehnology 1983;17(2):85-89.
    [62] 张延静.假白布勒弹酵母发酵生产辅酶Q_(10)的研究.北京化工大学硕士学位论文2003:66.
    [63] Leppick RA, Young IG. Membrane-associated reaction in ubiquinone biosynthesis in Escherichia coli. 3 -octaprenyl-4-hydroxybenzoate carboxylyase Biochimica Et Biophysica Acta 1976;436:800—10.
    [64] Cai Gq, Driscoll BT, Charles TC. Requirement for the enzymes acetoacetyl coenzyme A synthetase and poly-3-hydroxybutyrate (PHB) synthase for growth of Sinorhizobium meliloti on PHB cycle intermediates. Journal of Bacteriology 2000; 182:2113~2118.
    [65] Sakato K, Tanaka H, Shibata S. Agitation-Aeration studies on coenzyme Q_(10) production using Rhodopseudomonas sphaeroides. Biotechnology and Applied Biochemistry 1992; 16:19-28.
    [66] Cart NG, Exell G. Ubiquinone concentrations in Athiorhodaceae growth under various environmental conditions. Biochemical Journal 1965;96:688-92.
    [67] Ikenaka Y, Kawamukai M, Matsuda H. Process for producing coenzyme Q_(10)[P]. CA Patent 2002;2432079.
    [68] Lavate WV, Dyer JR, Springer CM. The isolation, characterization, and general properties of a partly reduced coenzyme Q_(10) from Penicillium Stipitatum. Journal Of Biological Chemistry 1965(240):524-31.
    [69] Lenaz G. Cenzyme Q. John Wiley & Sons Ltd. 1985.
    [70] 郝苏丽,吴越,徐康森.高效液相色谱法测定辅酶Q_(10)含量的研究.中国生化药物杂志1998;19(4):167-70.
    [71] Pumphrey AM, Redfeam ER. A Method for Determining the Concentration of Ubiquinone in Mitochondrial Preparations. Biochemical Journal 1959;76:61-64.
    [72] Fabrizio M, Daniele F, Stefano B. Assay of Coenzyme Q_(10) in Plasma by a Single Dilution Step. Analytical Biochemistry 2002;305:49-54.
    [73] Bishop DG, Still JL. The Occurrence and Estimation of Coenzyme Q in Serratia marcescens. Archives of Biochemistry and Biophysics 1962;97:208-12.
    [74] Sambrook J, Fritsch EF, Maniatis T. Molecular Clone: a Laboratory Manual. Science Press 1999:926.
    [75] 吴品芳,陆茂林,陶文沂.皂化法分离测定三孢拉氏霉菌体中辅酶Q_(10)的研究.生物技术2006;16(1):43-45.
    [76] 李春英,赵春建,祖元刚.均匀设计法优选辅酶Q_(10)的超声提取工艺.化学工程2006;34(6):60-63.
    [77] 吴蕾,洪建辉,甘一如.高压匀浆破碎释放重组大肠杆菌提取包含体过程的研究.高校化学工程学报2001;15(2):191-94.
    [78] Choi GS, Kim YS, Seo JH, et al. Restricted electron flux increases coenzyme Q(10) production in Agrobacterium tumefaciens ATCC4452 Process Biochemistry 2005;40(10):3225-29.
    [79] Tsukahara Y, Wakatsuki A, Okatani Y. Antioxidant role of endogenous coenzyme Q against the ischemia and reperfusion-induced lipid peroxidation in fetal rat brain. Acta Obstetricia Et Gynecologica Scandinavica 1999;78(8):669-74.
    [80] 徐小利,马润泉.医学生物化学[C].北京:人民卫生出版社1990:174-76.
    [81] 李宗信,黄小波,廖福龙.D-半乳糖诱发氧自由基升高对大鼠动脉衰老的影响.中国老年学杂志2005;25(3):301-02.
    [82] 崔旭,李文彬,张炳烈.D-半乳糖脑老化模型的脂质过氧化机理[J].中国老年学杂志1998;18(2):38-40.
    [83] Jenner TJ, Fulford J and O, Neill P. Contribution of base lesions to radiationinduced clustered DNA damage: implication for models of radiation response. Journal of Radiation Research 2001 ;156(5 Pt 2):590-93.
    [84] 马燕,黄春萍,黄敏.用亮氨酸抗性法选育L-甲硫氨酸高产突变株.四川师范大学学报2004;27(3):303-06.
    [85] 李卫旗,何国庆.~(60)Coγ射线诱变选育热凝胶多糖高产菌株的研究.核农学报2003;17(5):343-46.
    [86] 方开泰.均匀设计及应用.数理统计与管理1994(1):57-64.
    [87] 李波,徐泽民,李方.试验设计与优化.中国皮革2003;32(1):26-28.
    [88] Zhang CF, Li J. Uniform Design and Statistic Optimization. Quality Manag. 1994(8):41~42.
    [89] 夏之宁,谌其亭,穆小静.正交设计与均匀设计的初步比较.重庆大学学报1999;22(5):113-18.
    [90] Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika 1946;37:305-25.
    [91] Robert AS, Mayer RP. Efficient screening of process variables. Industrial & Engineering Chemistry 1966;58(2):36-40.
    [92] Williams KR. Comparing screening Designs. Statistical Approaches to Experimental Data 1963;55(6):29-32.
    [93] 焦志勇,周绍美.二次饱和D—最优设计.山东农业科学1989(2):48-51.
    [94] 强中发,陈占全.农业现代试验设计.青海农林科技1989(3):53-59.
    [95] 张永成.饱和D-最优设计方法在农业试验中的应用.与铃薯杂志1997;11(3):171-76.
    [96] 季夜眉.概率与数理统计(第一版).电子工业出版社2001:148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700