氨基卟啉及其衍生物与环糊精的超分子体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉及其金属配合物是细胞色素、血红素和叶绿素等生物体的必需物质,在生物学进展中起到了重要的作用。卟啉—CDs超分子体系的研究在基因免疫印迹分析、药物控制释放、手性识别、分子开关以及模拟酶等多个领域有着非常广泛的应用前景。卟啉—CDs的包结机理研究日臻完善,该领域的发展必将对生命科学、医药等方面的研究发展作出巨大的贡献。
     本文合成了5-(4-硝基苯基)-10,15,20-三苯基卟啉(NTPPH2)和5-(4-氨基苯基)-10,15,20-三苯基卟啉(ATPPH2),对化合物进行了详细的表征并确认了其结构。利用荧光光谱法、紫外—可见分光光度法研究了NTPPH2、ATPPH2分别与α-CD、β-CD和γ-CD形成的超分子体系,测定了六种包结物的包结常数和包结比,探讨了推电子基团和吸电子基团对包结过程的影响,结果表明推电子基团更有利于包结物的形成。
     设计合成了一种未见文献报道新型卟啉5-(4-苯甲酰亚胺基苯基)-10,15,20-三苯基卟啉(BATPPH2)及其Zn配合物(BATPPZn),对化合物进行了详细的表征并确认了其结构。利用荧光光谱法、紫外—可见分光光度法和1H NMR技术研究了BATPPH2以及BATPPZn与不同空腔大小的环糊精形成的超分子体系。研究结果表明BATPPH2和BATPPZn尺寸、几何形状与γ-CD的空腔尺寸和性质更为匹配;Zn2+的配位作用使包结物的稳定性降低,但对包结物的包结比并没有产生很大影响。
     合成了一系列不同取代位置和不同官能团数目的氨基卟啉:5-(4-氨基苯基)-10,15,20-三苯基卟啉(ATPPH2)、5,10-二(4-氨基苯基)-15,20-二苯基卟啉(Cis-DADPPH2)、5,15-二(4-氨基苯基)-10,20-二苯基卟啉(Trans-DADPPH2)、5-苯基-10,15,20-三(4-氨基苯基)卟啉(Tri-APPH2)以及四(4-氨基苯基)卟啉(TAPPH2),对化合物进行了详细的表征并确认了其结构。研究了其与环糊精(α-CD、β-CD和γ-CD)超分子体系,探讨了不同数目及不同位置的氨基官能团对包结的影响。结果表明二氨基苯基取代卟啉对位取代(5, 15位)比邻位取代(5, 10位)更有利于与α-CD、β-CD和γ-CD形成稳定、单一的包结物;氨基官能团数目对包结过程产生了一定的影响,其数目的增加有利于包结过程稳定、有序的进行。确定了所有包结物的相关系数,寻找其规律并探讨了其作用机理,联系生命科学寻求其应用的可能性。该系列超分子体系研究具有系统性,在系列性、系统性研究中寻找规律,理论意义较强。
Porphyrin and it’s metal complexes are the requisite substances of cytochrome, hemachrome, chlorophyll, etc, which play significant roles in biological processes. The research of Cyclodextrin-Porphyrin supramolecular system had been widely used in the field of blot analysis of genes, drug controlled releasing, chiral recognition, molecular switches and analog enzyme. Porphyrin-CD’s inclusion mechanism is perfected daily, and the field's development is very contributing to the progress of life science and pharmaceutical research.
     In this thesis, NTPPH2 and ATPPH2 were synthesized and characterized. And the supramolecular system of the porphyrins withα-CD,β-CD andγ-CD were studied in detail by means of fluorescence spectroscopy and UV-visible spectrophotometry. Determined the formation constants of the six supramolecular systems.We discussed the effect of electron-donating group and electron-withdrawing group on inclusion. The results show that the electron-donating group is more conducive to the formation of inclusion.
     We also synthesized BATPPH2 and its Zn complexes, verified their structure. Studied on the supramolecular system of BATPPH2 and BATPPZn with different cavity size of cyclodextrin by fluorescence spectroscopy, UV-vis, and 1H NMR. Investigated the effect that Zn2+ of the porphyrin ring plays on the process of inclusion. The results show that the size of BATPPH2 and BATPPZn matches with the cavity size ofγ-CD best; Zn2+ strongly impeded the process of inclusion, but hardly impact the ratio of complex.
     A series of amino porphyrin with different substituted position (Cis-DADPPH2, Trans-DADPPH2, Tri-APPH2 and TAPPH2) were synthesized, and their structure were confirmed. Studied on their supramolecular system with different cyclodextrins, and researched into the influence of position and the number of amino groups on inclusion, try to find the law and explore its inclusion mechanism. As this series are very systematic, they will have considerably theoretical significance. All of the research have not been reported.
引文
[1] Ariga K, Kunitake T. Supramolecular Chemistry–Fundamentals and Applications[M]. Verlag Heidelberg: Springer, 2006:5-13.
    [2] Lehn J M. Supramolecular chemistry: concept and perspective[M]. Weinheim: VCH,1995:6-26.
    [3] Vogtle F. Cyclophane chemistry[M]. England: John Wiley and Sons, 1993:14-32.
    [4] Handcock R D. Chelate Ring Size and Metel Ion Selection[J]. J. Chem. Ed., 1992, 69:615-621.
    [5] Lehn J M. Supermolecular chemistry-scope and perspectives: molecules, supermoleculars and molecular devices[J]. Chem. Int. Ed. Engl., 1988, 27(1):89-112.
    [6] Diederich F. J. Molecular recognition in aqueous solution: Supermolecular complexation and catalysis[J]. J. Chem. Educ, 1990, 67:813-820.
    [7] Takahashi K. Organic Reactions Mediated by Cyclodextrins[J]. Chem. Rev., 1998, 98:2013- 2033.
    [8] Behr J P. The lock-and-key Principle. tHe state of the Art-100 years on[M]Chichester, John Wiely and Sons, 1994:10.
    [9] Breslow R, Overman L E.“artificial enzyme”combining a metal catalytic group and a hydrophobic binding cavity[J]. J. Am. Chem. Soc., 1970, 92:1075-1077.
    [10] Breslow R. Biomimetic Chemistry and Artificial Enzymes–Catalysis by Design[J]. Acc. Chem. Res., 1995, 28:146-153
    [11]夏琳,邱桂学.化学科学的研究新领域—超分子化学[J].化学推进剂与高分子材料, 2007, 5(1):33-37.
    [12] J W斯蒂德,J L阿特伍德,(赵耀鹏,孙震译).超分子化学[M].北京:化学工业出版社, 2006:231-241.
    [13] Ward M D. Photoinduced Electron and Energy Transfer in Noncovalently Bonded Supramolecular Assemblies[J]. Chem. Soc. Rev., 1997, 26:365-375.
    [14] Connors K. A. The Stability of Cyclodextrin Complexesin Solution[J]. Chem. Rev., 1997, 97:1325-1357.
    [15]郭忠先,沈含熙.卟啉及其类似物超分子功能的分析应用[J].分析化学, 1998, 26(2):226-233.
    [16] Ribo J M, Farrera J A, Valero M L, Virgili A. Self-assembly of cyclodextrins with meso- tetrakis(4-sulfonatophenyl)porphyrin in aqueous solution[J]. Tetrahedron, 1995, 51:3705-3712.
    [17] Hirai H, Toshima N, Hayashi S, et al. Complex formation of water-soluble porphyrin with cyclodextrin[J]. Chem. Lett., 1983, 12:643-646.
    [18] Manka J S, Lawrence D S. Template-driven self-assembly of a porphyrin-containing supramolecular complex[J]. J. Am. Chem. Soc., 1990, 112:2440-2442.
    [19] Zhao S S, Luong J H T. A cyclodextrin–porphyrin assembly as chemosensor for pentachlorophenol [J]. Chem. Commun., 1995:663-664.
    [20] Carofiglio T, Fornasier R, Lucchini V, et al. Very strong binding and mode of complexation of water-soluble porphyrins with a permethylatedβ-cyclodextrin[J]. Tetrahedron Letters, 1996, 37:8019-8022.
    [21] Andrighetto P, Carofiglio T, Fornaser R, Tonellato U. Capillary Electrophoresis Behavior of Water-Soluble Anionic Porphyrins in the Presence ofβ-Cyclodextrin and its O-Methylated Derivatives[J]. Electrophoresis, 2000, 21:619-626.
    [22] Mosinger J, Deumie M, Lang K, et al. Supramolecular sensitizer: complexation of meso- tetrakis(4-sulfonatophenyl)porphyrin with 2-hydroxypropyl-cyclodextrins[J]. J. Photochem. Photobiol. A, 2000, 130:13-20.
    [23] Wang X P, Pan J H, Shuang S M. Study on the supramolecular system of meso-tetrakis (4-sulfonatophenyl) porphyrin and cyclodextrins by spectroscopy[J]. Spectrochimica Acta Part A, 2001, 57:2755-2762.
    [24] Ito T, Ujiie T, Naka M, Nakamura H. Photoinduced electron transfer and its magnetic field depemdence in supramolecular complex of zinc(Ⅱ) tetraphenylporphyrin-viologen chain-linked compound with 2,3,6,-tri-O-methyl-β-cyclodetrin[J]. Chem. Phy. Lett., 2001, 340:308-316.
    [25] Wang X P, Pan J H, Li W H, Zhang Y. Study on the supramolecular system of TAPP with cyclodextrins by polarography[J]. Talanta, 2001, 54:805-810.
    [26] Hamai S, Koshiyama T. Inclusion complexes of Fe(III) tetrakis(4-sulfonatophenyl)porphyrin with cyclodextrins in aqueous solutions[J]. Spectrochimica Acta Part A, 2001, 57:985-992.
    [27] Bonchio M, Carofiglio T, Carraro M, et al. Efficient Sensitized Photooxygenation in Water by a Porphyrin?Cyclodextrin Supramolecular Complex[J]. Org. Lett., 2002, 4:4635-4637.
    [28] Yang J, Gabriele B, Belvedere S, Huang Y, Breslow R. Catalytic Oxidations of Steroid Substrates by Artificial Cytochrome P-450 Enzymes[J]. J. Org. Chem., 2002, 67:5057-5067.
    [29] Ito T, Ujiie T, Naka M, Nakamura H. Rotaxane Type Complexation Behavior of Cyclodextrins with Zinc(II)Tetraphenylporphyrin-Viologen Linked Compounds[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 42:301-311.
    [30] Yang R H, Li K A, Wang K M, et al. Cyclodextrin-porphyrin supramolecular sensitizer for mercury(II)ion[J]. Analytica Chimica Acta, 2002, 469:285-293.
    [31] Kano K, Nishiyabu R, Asada T, Kuroda Y. Static and Dynamic Behavior of 2:1 Inclusion Complexes of Cyclodextrins and Charged Porphyrins in Aqueous Organic Media [J]. J. Am. Chem. Soc., 2002, 124:9937-9944.
    [32] Groves J T, Zhou H CH. Hemodextrin: aself-assembled cyclodextrin-porphyrin construct that binds dioxygen[J]. Biophysical Chemistry, 2003,105:639-648.
    [33] Yang R H, Li K A, Wang K M, et al. Porphyrin Assembly onβ-Cyclodextrin for Selective Sensing and Detection of a Zinc Ion Based on the Dual Emission Fluorescence Ratio[J]. Anal. Chem., 2003, 75:612-621.
    [34] Yang R H, Li K A, Wang K M, et al. Rayleigh light scattering study on the supramolecular interactions of b-cyclodextrin derivatives with tetrakis(4-methoxylphenyl)porphyrin[J]. Spectrochimica Acta Part A, 2003, 59:153-161.
    [35] Konishi T, Ikeda A, Asai M, et al. Improvement of Quantum Yields for Photoinduced Energy/Electron Transfer by Isolation of Self-Aggregative Zinc Tetraphenyl Porphyrin–Pendant Pol- ymer Using Cyclodextrin Inclusion in Aqueous Solution [J]. J. Phys. Chem. B, 2003, 107:1261-1266.
    [36] Ikeda A, Hatano T, Konishi T, et al. Host–guest complexation effect of 2,3,6-tri-O-methyl-β- cyclodextrin on a C60–porphyrin light-to-photocurrent conversion system[J]. Tetrahedron, 2003, 59:3537-3540.
    [37] Kano K, Nishiyabu R, Yamazaki T, Yamazaki I. Convenient Scaffold for Forming Heteroporp- hyrin Arrays in Aqueous Media.[J]. J. Am. Chem. Soc., 2003, 125:10625-10634.
    [38] Wang Y H, Zhu M Z, Ding X Y, et al. Photoinduced Electron Transfer between Mono-6-p- nitrobenzoyl-β-cyclodextrin and Adamantanamine-Cn-porphyrins. [J]. J. Phys. Chem. B, 2003, 107:14087-14093.
    [39] Liu Y, Pan J H, Wei Y L, Zhang Y. Electroanalytical method of TCPP and its supramolecular system with cyclodextrins [J]. Talanta, 2004,63:581-584.
    [40] Hamai S, Ohshida T. Inclusion Complexes of Cyclodextrins with Tetrakis(4-carboxyphenyl)- porphyrin and Tetrakis(4-sulfonatophenyl)porphyrin in Aqueous Solutions[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 50:209-217.
    [41] Kano K, Kitagishi H, et al. Anion Binding to a Ferric Porphyrin Complexed with Per-O-methy- latedβ-Cyclodextrin in Aqueous Solution[J]. J. Am. Chem. Soc., 2004, 126:15202-15210.
    [42] Sasaki K, Kuroda Y, Kano K, et al. Construction of porphyrin–cyclodextrin self-assembly with molecular wedge[J]. Chem. Commun., 2004:408-409.
    [43] Nishiyabu R, Kano K. Double Self-Inclusion by Rotating Glucopyranose Units in Per-O-me- thylatedβ-Cyclodextrin Moieties Attached to a Porphyrin in Aqueous Solution[J]. Eur. J. Org. Chem., 2004:4985-4988.
    [44] Liu Y, Liang P, Chen Y, Zhang Y M. et al. Interlocked Bis(polyrotaxane) of Cycodextrin- Porphyrin Systems Mediated by Fullerenes[J]. Macromolecules, 2005, 38:9095-9099.
    [45] Kano K, Nishiyabu R, Doi R. Novel Behavior of O-Methylatedβ-Cyclodextrins in Inclusion of meso-Tetraarylporphyrins[J]. J. Org. Chem., 2005, 70:3667-3673.
    [46] Guo X L, Shuang S M, Dong C, et al. Comparative study on the inclusion behavior between meso-tetrakis(4-N-ethylpyridiniurmyl)porphyrin andβ-cyclodextrin derivatives[J]. Spectrochi- mica Acta Part A , 2005, 61:413-418.
    [47] Guo X L, An W T, Shuang S M, et al. Study on spectroscopic characterization of meso- tetrakis(4-hydroxyphenyl)porphyrin(THPP) inβ-cyclodextrin and its derivatives[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173:258-263.
    [48] Fukushima M, Tatsumi K. Effect of Hydroxypropyl-β-cyclodextrin on the Degradation of Pentachlorophenol by Potassium Monopersulfate Catalyzed with Iron(III)-Porphyrin Complex [J]. Environ. Sci. Technol., 2005, 39:9337-9342.
    [49] Antonia B S, Athena K, Jocelyne B, et al. Photophysical properties of glucoconjugated chlorins and porphyrins and their associations with cyclodextrins[J]. Journal of Photochemistry and Photobiology B: Biology, 2005, 81:154-162.
    [50] Hamai S, Sasaki Y, Hori T, et al. Interactions of Tetrakis(4-sulfonatophenyl)porphyrin withγ-Cyclodextrin and Alkyl trimethylammonium Bromides in Aqueous Solutions[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54:67-76.
    [51] Zhang H F, Pan J H, Gao X L, et al. Supramolecular System of meso-Terakis (4-methoxyl-3- sulfonatophenyl) porphyrin with Cyclodextrins by Three Different Methods[J]. Chinese Journal of Analytic Chemistry, 2006, 34(11):1541-1545.
    [52] Zhang H F, Pan J H, Chang H B. Electroanalytical method for TPPS4 ,the interaction of TPPS4 with BSA and the influence of CDs on it by fluorescence spectroscopy[J]. Acta Pharmaceutica Sinica 2006, 41:203-209.
    [53] Dai X H, Dong C M, Fa H B, Yan D Y. Supramolecular Polypseudorotaxanes Composed of Star-Shaped Porphyrin-Cored Poly(E-caprolactone) andα-Cyclodextrin[J] Biomacromolec- ules, 2006, 7:3527-3533.
    [54] Leng X B, Choi C F, Lo P C. Assembling a Mixed Phthalocyanine-Porphyrin Array in Aqueous Media through Host-Guest Interactions[J]. Organic. Letters, 2007, 9:231-234.
    [55] Qiu W G, Li Z F, Bai G M, Meng S N. Study on the inclusion behavior between meso-tetrakis[4-(3-pyridiniumpropoxy) phenyl]prophyrin tetrakisbromide andβ-cyclodextrin derivatives in aqueous solution[J].Spectrochimica Acta Part A, 2007, 66:1189-1193.
    [56] Ma H L, Wu J J, Chao J B, et al. Study on the Association Phenomenon of Cyclodextrin to Porphyrin J-aggregates by NMR Spectroscopy[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58:221-226.
    [57] Kong L H, Guo Y J, Li X X, Pan J H. Study on the supramolecular systems of 5-(2-hydroxy phenyl)-10,15,20-tris (4-methoxy phenyl) porphyrin with cyclodextrins[J]. Spectrochimica Acta Part A, 2007, 66:594-598.
    [58] Guo Y J, Chao J B, Pan J H, Study on the interaction of 5-pyridine-10,15,20- tris-(p-chloro- phenyl)porphyrin with cyclodextrins and DNA by spectroscopy[J]. Spectrochimica Acta Part A, 2007, 68:231-236.
    [59] Kano K, Itoh Y, Kitagishi H, Hayashi T, Hirota S. A Supramolecular Receptor of Diatomic Molecules (O2, CO,NO) in Aqueous Solution[J]. J. Am. Chem. Soc., 2008, 130:8006-8015.
    [60] Long L P, Jin J Y, Zhang Y, Yang R H, Wang K M. Interactions between protein and porphyrin-containing cyclodextrin supramolecular system: a ?uorescent sensing approach for albumin[J]. Analyst, 2008, 133:1201-1208.
    [61] Liu Y, Ke C F, Zhang H Y, Cui J. Complexation-induced transition of nanorod to network agg- regates: alternate porphyrin and cyclodextrin arrays[J]. J. Am. Chem. Soc., 2008, 130:600-605.
    [62]陈湧,迟恒,刘育.均苯三酰胺桥联三环糊精/Zn2+/金刚烷衍生物三元超分子体系的合成及其羧肽酶A模拟研究[J].化学学报, 2008, 66:91-96.
    [63] Fathalla M, Li S C, Diebold U, Alb A, Jayawickramarajah J. Water-soluble nanorods self- assembled via pristine C60 and porphyrin moieties[J]. Chem. Commun., 2009:4209-4211.
    [64] Kano K, Kitagishi H. HemoCD as an Artificial Oxygen Carrier: Oxygen Binding and Autoxidation[J]. Artificial Organs, 2009, 33:177-182.
    [65] Ferro S, Jori G, Mazzaglia A, et al. Inclusion of 5-[4-(1-dodecanoylpyridinium)]-10,15,20-tri- phenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins:phy-siccochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity[J]. Biomacromolecules, 2009, 10:2592-2600.
    [66] Kralova J, Kral V, Kral A, et al. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy[J]. J. Med. Chem., 2010, 53:128-138.
    [67]赵鸿斌,蔡剑等. meso-四(对烷氧基苯基)卟啉金属配合物合成及液晶性[J].化学学报, 2000, 58(5):543-547.
    [68]赵鸿斌,宁静恒等. meso-四(对烷氧苯基)卟啉金属配合物的合成和性能研究(Ⅲ)[J].有机化学, 2001, 21(5):383-387.
    [69]谢琼玉,赵鸿斌,王霞瑜等. meso-四(对烷氧基苯基)卟啉配合物的合成、表征和液晶性研究[J].无机化学学报, 2004, 20(11):1309-1314.
    [70]宁静恒,赵鸿斌,周宁等. meso-四(对烷氧苯基)卟啉金属配合物的合成和性能研究(IV) [J].有机化学, 2005, 25(11):1381-1385.
    [71]贺江平,赵鸿斌等. meso-四(邻烷氧基苯基)卟啉合锌的合成、表征和性能研究[J].有机化学, 2006, 26(12):1663-1666.
    [72]胡羽,赵鸿斌,宁静恒等.烷氧基苯基卟啉与环糊精的超分子体系研究[J].化学学报, 2008, 66(21):2391-2396.
    [73] Collmen J P, Gagne R R, Reed C, Halbent R T, et al. Picket fence porphyrins-Synthetic models for oxygen binding hemoproteins. J. Am. Chem. Soc., 1975, 97(6):1427-1439.
    [74] Krupre, W. J.; Chemberlin, T. A.; Kochanny, M. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins[J]. J. Org. Chem. 1989, 54(11):2753-2756.
    [75]李国成.水溶性氨基卟啉和磺酸卟啉的合成研究[D].湖南大学硕士论文. 2005:18-20.
    [76]刘传生,许兰兰,赵鸿斌,等.四(4-氨基苯基)卟啉及其金属配合物的表面光电压性能的研究[J].精细化工中间体, 1999, 16(1):68-70.
    [77] Sun E J, Shi Y H, Zhang P, et al. Spectroscopic properties and cyclic voltammetry on a series of meso-tetra(p-alkylamidophenyl)porphyrin liquid crystals and their Mn complexes[J]. Journal of Molecular Structure, 2008, 889:28-34.
    [78]许兰兰,赵鸿斌,徐勇军,等.氨基卟啉共价化学修饰多壁碳纳米管[J].化学学报, 2008, 66(10):1228-1234.
    [79] Kong L H, Guo Y J, Pan J H, et al. Study on thesupramolecular systems of 5-(2-hydroxy phenyl)-10,15,20-tris (4-methoxyphenyl) porphyrin with cyclodextrins Spctrochimica Acta Part A, 2007, 66:594-598
    [80] Hamai S, Koshiyama T. et al. Inclusion complexes of Fe(III) tetrakis(4-sulfonatophenyl)porph- yrin with cyclodextrinsin aqueous solutions[J]. Spectrochimica Acta Part A, 2001, 57, 985-992.
    [81] Catena G C, Bright, F V, et al. Thermodynamic Study on the Effects ofβ-Cyclodextrin Inclusion with Anilinonaphthalenesulfonates[J]. Anal. Chem., 1989, 61:905-909.
    [82] Nishiyabu R, Kano K. Double Self-Inclusion by Rotating Units in Per-O-methyLatedβ-CD Moieties Attached to a Porphyrin in Aqueous Solution[J]. Eur. J. Org. Chem., 2004:4985-4988.
    [83]孔令宏,郭玉晶,潘景浩,等. 5-邻硝基-10,15,20-三苯基卟啉—环糊精超分子体系研究[J].分析化学, 2007, 35(4):537-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700