基于数据挖掘技术的模糊推理系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模糊推理系统由模糊规则集和模糊推理算法组成。通常模糊推理算法都是固定的标准算法,对系统的整体性能影响不大。因此,模糊系统建模成功的关键取决于模糊规则的质量。
     而模糊规则的生成由模糊系统的结构辨识和隶属度函数的参数优化两步组成。模糊系统的结构辨识旨在为每个输入变量定义适合的模糊分区以及确定对应的模糊IF-THEN规则。结构辨识的方法分为两种:基于先验知识的方法和数据驱动的方法。基于先验知识的方法依据专业知识估计输入输出模糊集的数量,总结IF-THEN规则。尽管该方法有过一些成功的应用,但基于先验知识的方法十分耗时,需要进行复杂的经验总结才能归纳出最终的模糊规则。而数据驱动的方法运用数据挖掘技术或者其他计算机智能方法,能够直接从数据中提取适合的模糊规则。T-S模糊模型和模糊基函数模型是两种广泛应用的模糊模型。已经证明模糊模型能够全局逼近非线性映射函数。为确定模糊基函数模型,王立新和孟德尔提出了一种简单实用的方法从数值数据中抽取模糊规则,并命名为WM算法。由于WM算法简单有效,各领域的研究人员和工程师已经广泛运用该方法进行模糊建模。但对WM算法的进一部研究表明,可以改进WM算法生成模糊规则的鲁棒性。
     本文提出了一种利用数据挖掘技术构建模糊推理系统的新方法。在模糊规则的结构辨识方面,引入数据挖掘中支持度和信任度的概念改进模糊规则提取算法,使架构的模糊系统对异常值和噪声数据具有更好的鲁棒性。在隶属度函数的参数优化方面,本文通过调整模糊隶属度函数的中心位置以及增减模糊集的数量,使模糊系统的拓扑结构与输入输出数据分布相适应。并且优化算法能够从程序生成的不同系统结构中,选择系统近视精度与模糊规则复杂度最好折衷的系统架构。
     最后,针对时间序列问题分别对经典的Mackey-Glass混沌时间序列和实船操纵运动时间序列进行了仿真建模。在对Mackey-Glass混沌时间序列建模中,通过全面的仿真对比分析,证明了本文所提出的数据挖掘算法确实比现有的WM算法有更强的鲁棒性。在对船舶操纵运动时间预报中,运用本文提出的数据挖掘方法处理实船Z型试验收集数据。数据挖掘算法通过提取模糊规则搭建模糊推理系统,对船舶操纵运动进行系统辨识。相比传统的建模方法,模糊推理系统的架构不必依据固有的框架确定船舶动态系数,避免了生成不匹配模型的情况。另外,由于在船舶航行的海况复杂,存在的风、浪、流等外部环境干扰,所收集的船舶操纵数据中经常混入噪声影响系统建模。而基于数据挖掘算法所生成的模糊推理系统具有良好的鲁棒性,因而能够满足实际情况要求,进行较精确的系统辨识和数据预测。
Fuzzy inference systems are composed of a set of fuzzy rules and a fuzzy inference engine. Fuzzy inference algorithms are standard and usually have little impact on the system's performance. Therefore, the success of fuzzy modeling relies heavily on the quality of fuzzy rule base.
     The generation of fuzzy rules generally involves two steps:structure identification of fuzzy rules and parameter optimization of membership functions. Structure identification aims to construct a basic system with a given space partitioning and the corresponding set of fuzzy If-Then rules. The structure identification methods can be grouped into two categories:apriori knowledge-based approaches and data-driven approaches. Apriori knowledge-based approaches employ domain experts to estimate the numbers of fuzzy sets of input/output variables and then summarize the IF-THEN rules. Some successful applications show that this approach works favorably, although it is time-consuming, and some empirical studies have to be carried out before the finalization of the fuzzy rulebase. Data-driven approaches can employ data mining or other computational intelligence techniques to extract fuzzy rules from numerical data directly. Two popular and widely used fuzzy models are the Takagi-Sugeno fuzzy model and the fuzzy basis function model. It has been proved that these fuzzy models have universal approximation power as regards nonlinear maps. To identify the fuzzy basis function model, Wang and Mendel proposed a simple and practical algorithm, termed the WM algorithm, for the extraction of fuzzy rules from numerical data. This algorithm for fuzzy modeling have been highly cited and widely used by researchers and engineers in various domains due to their simplicity and effectiveness. A further study of this WM algorithm revealed that there is further opportunity to improve robustness of the fuzzy rule base.
     In this paper, a novel method based on data mining technique is proposed to construct fuzzy inference system. In structure identification of fuzzy rules, the conceptions of support degree and confidence degree defined in data mining are introduced to improve the fuzzy rule extraction algorithm, which make the resulting fuzzy inference system more robust with respect to the noises or outliers. In parameter optimization of membership functions, the fuzzy inference system is optimized with a partition refining strategy, adjusting the center locations of the membership functions and adding fuzzy sets, so that the structure is more suitable for the input-output data. In addition, the optimization program can select from the different structures obtained to construct a fuzzy system the one providing the best compromise between the accuracy of the approximation and the complexity of the rule set.
     At last, aiming at time series forecasting problems, the classical Mackey-Glass chaotic time series and the actual ship maneuvering time series is simulated. With comprehensive robustness analysis, the fuzzy inference system constructed by data mining algorithm is proved to be more robust than the system constructed by the WM method in the Mackey-Glass chaotic time series modeling. In the ship maneuvering time series modeling, our data mining algorithm is used to deal with the data information generated by an actual ship zig-zag test. The ship maneuvering model is constructed by a fuzzy inference system using fuzzy rule extracting algorithm. Compared with the traditional modeling method, the construction of a fuzzy inference system does not have to characterize the ship manoeuvrability in a unified framework, which avoids constructing a mismatched model. In addition, ship maneuvering characteristics are often interfered by the complex flow, wind and wave on the actual voyage. Lots of unavoidable noise and outliers are mixed in ship maneuvering time series records. The fuzzy inference system based on data mining technology itself is a robust system. Therefore, the system generated by data mining algorithm could meet the actual demand to make an accurate system modeling and data forecasting.
引文
[1]Tom M M. Machine Learning.北京:机械工业出版社,1997.
    [2]张松涛.模糊多模型船舶运动控制系统的研究:(博士学位论文).大连:大连海事大学,2006.
    [3]Zadeh L A. Outline of a new approach to the analysis of complex systems and decision process. IEEE Transactions on Systems, Man and Cybernetics,1973, 3(1):28-44.
    [4]Zadeh L A. Fuzzy sets. Information and Control,1965,8:338-353.
    [5]Mamdani E H. Application of fuzzy algorithms for simple dynamic plant. Proceedings of IEE,1974,121(12):1585-1588.
    [6]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics,1985, 15(1):116-132.
    [7]徐喆,毛志忠.一种基于模糊规则融合的模糊建模方法及其应用.控制与决策,2013,28(2):169-176.
    [8]Li C S, Zhou J Z, Fu B et al. T-S fuzzy model identification with a gravitational search-based hyperplane clustering algorithm. IEEE Transactions on Fuzzy Systems, 2012,20(2):305-317.
    [9]王立新.自适应模糊系统与控制—设计与稳定性分析.北京:国防工业出版社,1995.
    [10]孙增圻.智能控制理论与技术.北京:清华大学出版社,1998.
    [11]王立新著.王迎军译.模糊系统与模糊控制教程.北京:清华大学出版社,2003.
    [12]诸静.模糊控制理论与系统原理.北京:机械工业出版社,2005.
    [13]Valente O J, Pedrycz W. Advances in fuzzy clustering and its applications. West Sussex:John Wiley & Sons, Inc.,2007.
    [14]张立权.基于模糊推理系统的工业过程数据挖掘:(博士学位论文).大连:大连理工大学,2006.
    [15]Guillaume S. Designing fuzzy inference systems from data:An interpretability oriented review. IEEE Trans. Fuzzy Syst.,2001,9:426-443.
    [16]张煜东,吴乐南,王水花.专家系统发展综述.计算机工程与应用,2010,46(19):43-47.
    [17]Bai Y M, Meng X Y. A study on intelligent fault diagnosis in large and complex device. Proceedings of International Conference on Electrical and Control Engineering, ICECE 2010, Wuhan, China,2010:277-280.
    [18]Huang G B, Zhou H M, Ding X J et al. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2012,42(2):513-529.
    [19]Wang L X, Mendel J M. Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics,1992,22:1414-1427.
    [20]Wang L X. The WM Method Completed:A Flexible Fuzzy System Approach to Data Mining. IEEE Transaction on Fuzzy Systems,2003,11(6):768-782.
    [21]陆建江,张亚非,宋自林.模糊关联规则的研究与应用.北京:科学出版社,2008.
    [22]Han J W, Kamber M. Data Mining Concepts and Techniques. San Francisco:Morgan Kaufmann,2001.
    [23]Crespo F, Weber R. A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets and Systems,2005,150(2):267-284.
    [24]纪希禹.数据挖掘技术应用实例[M].北京:机械工业出版社,2009.
    [25]钱爱玲.复杂结构的时间序列数据挖掘与预测方法研究:(博士学位论文).武汉:华中科技大学,2011.
    [26]Gray J, Chaudhuri S, Bosworth A et al. Data cube:A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery,1997,1(1):29-53.
    [27]Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM SIGMOD Record,1997,26(1):65-74.
    [28]Han J, Cai Y, Cercone N. Data-driven discovery of quantitative rules in relational databases. IEEE Knowledge and Data Engineering,1993,5(I):29-40.
    [29]Carter C, Hamilton H. Efficient attribute-oriented generalization for knowledge discovery from databases. IEEE Trans. Knowledge and Data Engineering,1998, 10 (2):193-208.
    [30]Heinonen O, Mannila H. Attribute-oriented induction and conceptual clustering. Report C-1196-2, Department of Computer Science, University of Helsinki, October 1996.
    [31]Agrawal R, Srikant R. Fast algorithms for mining association rules. Int. Conf. Very Large Data Bases, Santiago, Chile,1994:487-499.
    [32]Yi B K, Jagadish H V, Faloutsos C. Efficient retrieval of similar time sequences under time warping. Proc.1998 Int. Conf. Data Engineering, Orlando, FL, 1998:201-208.
    [33]Quinlan J R. Introduction of decision trees. Machine Learning,1986, 1(1):81-106.
    [34]Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. Proc.14th Joint Int. Conf. On Artificial Intelligence Montreal, Canada,1995:1146-1152.
    [35]Fu L M. A neural-network model for learning domain rules based on its activation function characteristics. IEEE Trans. Neural Networks,1998,9(5):787-795.
    [36]Jiang J R, Sun C T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Networks,1993, 4(1):156-159.
    [37]Fu L M. Learning in certainty-factor-based multiplayer neural networks for classification. IEEE Trans. Neural Networks,1998,9(1):151-158.
    [38]Adjei 0, Chen L, Cheng H D et al. A fuzzy search method for rough sets in data mining. Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada,2001:980-985.
    [39]Duntsch I, Gediga G. Simple data filtering in rough set systems. International Journal of Approximate Reasoning,1998,18(1-2):93-106.
    [40]Agresti A. An introduction to categorical data analysis. New York:John Wiley&Sons,1996.
    [41]Jain A K, Murty M N, Flynn P J. Data clustering:a review. ACM Computing Surveys, 1999,31(3):264-323.
    [42]王文熙.模糊关联规则挖掘算法的研究与应用:(硕士论文).长沙:国防科学技术大学,2010.
    [43]李强.数据挖掘中关联分析算法研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2010.
    [44]毛国君,段立娟,王实等.数据挖掘原理与算法(第二版)[M].北京:清华大学出版社,2007.
    [45]Miguel D, Nicolas M, Daniel S et al. Fuzzy Association Rules:General Model and Applications. IEEE Transactions on Fuzzy Systems,2003,11 (2):214-225.
    [46]赵纪涛,马莉,王现君等.一种自适应的模糊关联规则挖掘算法.计算机技术与发展,2008,18(5):64-66.
    [47]Bai Y M, Meng X Y, Han X J. Mining fuzzy association rules in quantitative databases. Applied Mechanics and Materials,2012,182-183:2003-2007.
    [48]霍纬纲,邵秀丽.基于TD-FP-growth的模糊关联规则挖掘算法控制与决策,2009,24(10):1504-1508.
    [49]王宁.模糊控制系统的解析理论研究及自组织设计:(博士学位论文).大连:大连海事大学,2009.
    [50]Lee C C. Fuzzy logic in control systems:fuzzy logic controller-Part Ⅰ. IEEE Transactions on Systems, Man and Cybernetics,1990,20(2):404-418.
    [51]Lee C C. Fuzzy logic in control systems:fuzzy logic controller-Part Ⅱ. IEEE Transactions on Systems, Man and Cybernetics,1990,20(2):419-435.
    [52]Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems,2006,14(5):676-697.
    [53]肖健,白裔峰,于龙.模糊系统结构辨识综述.西南交通大学学报,2006,41(2):135-142.
    [54]吕红丽.Mamdani模糊控制系统的结构分析理论研究及其在暖通空调中的应用:(博士学位论文).济南:山东大学.2007.
    [55]Koczy L T. Fuzzy if-then rule models and their transformation into one another. IEEE Transactions on Systems, Man and Cybernetics, Part A,1996,26(5):621-637.
    [56]Zeng X J, Singh M G. Approximation accuracy of fuzzy systems as function approximators. IEEE Transactions on Fuzzy Systems,1996,4(1):44-63.
    [57]Zeng X J, Singh M G. A relationship between membership functions and approximation accuracy in fuzzy systems. IEEE Transactions on Systems, Man and Cybernetics, Part B,1996,26(1):176-180.
    [58]Zeng X J, Singh M G. Approximation theory of fuzzy systems-SISO case. IEEE Trans. Systems,1994,2(2):162-176.
    [59]Zeng X J, Singh M G. Approximation theory of fuzzy systems-MIMO case. IEEE Trans. Systems,1995,3(2):219-235.
    [60]Kosko B. Fuzzy systems as universal approximator. Proceedings of IEEE International Conference on Fuzzy Systems,1992:1153-1162.
    [61]伊卫国.基于关联规则与决策树的预测方法研究及其应用:(博士学位论文).大连:大连海事大学,2012.
    [62]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. SIGMOD Record (ACM Special Interest Group on Management of Data),1993,22(2):207-216.
    [63]彭斌.基于关联规则的基因芯片数据挖掘与应用:(博士学位论文).重庆:第三军医大学,2008.
    [64]崔雷.医学数据挖掘.高等教育出版社,2006.
    [65]刘独玉,杨晋浩,钟守铭.关联规则挖掘研究综述.成都大学学报(自然科学版),2006,25(1):54-58.
    [66]吉根林,孙志挥.挖掘支持度和兴趣度最优的数量关联规则.小型微型计算机系统,2004,25(2):225-228.
    [67]张艳.基于数量型数据挖掘的模糊概念关联规则.计算机时代,2009,10:49-53.
    [68]苑森淼,程晓青.数量关联规则发现中的聚类方法研究.计算机学报,2000,23(8):866-871.
    [69]伊卫国.基于关联规则与决策树的预测方法研究及其应用:(博士学位论文).大连:大连海事大学,2012.
    [70]Minaei B, Barmaki R, Nasiri M. Mining numerical association rules via multi-objective genetic algorithms, Information Sciences,2013,233:15-24.
    [71]刘君强,孙晓莹,王勋等.挖掘最大频繁模式的新方法.计算机学报,2004,27(10):1328-1334.
    [72]Xiaobing L, Kun Z, Witold P. An improved association rules mining method. Expert Systems with Applications,2012,39:1362-1374.
    [73]钱雪忠,惠亮.关联规则中基于降维的最大频繁模式挖掘算法.计算机应用,2011,31(5):1339-1343.
    [74]梅志芳,王建.关联规则兴趣度问题研究.计算机工程,2010,36(1):38-42.
    [75]Chen Y L, Weng C H. Mining fuzzy association rules from questionnaire data. Knowledge-Based Systems,2009,22(1):46-56.
    [76]刘大有,王生生.基于定性空间推理的多层空间关联规则挖掘算法.计算机研究与发展,2004,41(4):565-570.
    [77]陆建江,张文献.关联规则在肿瘤诊断中的应用.计算机工程,2003,29(12):8-9,47.
    [78]张朝辉,陆玉昌,张拔.发掘多值属性的关联规则.软件学报,1998,9(11):801-805.
    [79]Miller R J, Yang Y. Association rules over interval data. ACM Special Interest Group on Management of Data,1997,26(2):452-461.
    [80]沈斌,姚敏.关联且项项正相关频繁模式挖掘.浙江大学学报(工学版),2009,43(12):2171-2178.
    [81]王纵虎,刘志镜,陈东辉.基于粒子群优化的模糊C-均值聚类算法研究.计算机科学,2012,39(9):166-169.
    [82]Dhillon I S, Modha D S. Concept decompositions for large sparse text data using clustering. Machine Learning,2001,42(1-2):143-175.
    [83]Bezdek J C. Cluster validity with fuzzy sets [J]. Cybernetics and Systems,1974, 3(3):58-73.
    [84]Bezdek J C, Ehrlich R, Full W. FCM:THE Fuzzy c-Means Clustering Algorithm. Computers and Geosciences,1984,10(2-3):191-203.
    [85]Kuok C M, Fu A, Wong M H. Mining fuzzy association rules in databases. ACM Sigmod Record,1998,27(1):41-46.
    [86]陆建江.数量型属性模糊关联规则的研究:(博士学位论文).南京:解放军理工大学通信工程学院,2002.
    [87]Lu J J, Xu B W, Wu L. Mining Association Rules with Linguistic Terms. Proceedings of the International Conference on Tools with Artificial Intelligence, 2003:129-133.
    [88]王永富,王殿辉,柴天佑.一个具有完备性和鲁棒性的模糊规则提取算法.自动化学报,2010,36(9):1337-1342.
    [89]张天平,冯纯伯.一类不确定动态系统的输出反馈模糊变结构控制.控制理论与应用,1996,13(4):432-440.
    [90]张天平,冯纯伯.一类非线性系统的输出反馈模糊控制.控制与决策,1996,11(5):545-550.
    [91]王永富.非线性系统的模糊建模与自适应控制及其应用:(博士学位论文).沈阳:东北大学,2004.
    [92]Ishibuchi H, Nozaki K, Yamamoto N et al. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst.,1995, 3:260-270.
    [93]王永富,王殿辉,柴天佑.基于数据挖掘与系统理论建立摩擦模糊模型与控制补偿.自动化学报,2010,36(3):412-420.
    [94]Bai Y M, Meng X Y, Han X J. Partition refined fuzzy inference systems from data, Proceedings of 2011 International Conference on Opto-Electronics Engineering and Information Science, ICOEIS 2011, Xi'an, China,2011:2874-2877.
    [95]Jeng J T, Chuang C C. New fuzzy modeling based on input-output pseudo linearization and its digital approximation via Walsh functions. International Journal of Fuzzy Systems,2001,3:503-511.
    [96]Nozaki K, Ishibuchi H, Tanaka H. A simple but powerful heuristic method for generating fuzzy rules from numerical data, Fuzzy Sets Syst.,1997,86:251-270.
    [97]Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst.,1995, 3:260-270.
    [98]Rojas I, Pomares H, Ortega J, Prieto A. Self-organized fuzzy system generation from training examples. IEEE Trans. Fuzzy Syst.,2000,8:23-26.
    [99]丁永生,应浩,邵世煌.模糊系统逼近理论:现状与展望.信息与控制,2000,29(2):157-163.
    [100]Wang L X, Mendel J M. Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Trans. Neural Networks,1992,3(5):807-814.
    [101]Fu T C. A review on time series data mining. Engineering Applications of Artificial Intelligenee,2011,24(1):164-181.
    [102]Weng Y J, Zhu Z Y. Research on time series data mining based on linguistic concept tree technique. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,2003,2:1429-1434.
    [103]Akhmetov D F, Yasuhiko D, Ovaska S J. Fuzzy neural network with general parameter adaptation for modeling of nonlinear time-series. IEEE Transactions on Neural Networks,2001,12(1):148-152.
    [104]Vajpai J, Arun J B. A soft computing based approach for modeling of chaotic time series. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2006, 4232:505-512.
    [105]Last M, Klein Y, Kandel A. Knowledge discovery in time series databases. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2001,31(1): 160-169.
    [106]Wang T Y, Huang C Y. Applying optimized BPN to a chaotic time series problem. Expert Systems with Applications,2007,32:193-200.
    [107]Gu H, Wang H. Fuzzy prediction of chaotic time series based on singular value decomposition. Applied Mathematics and Computation,2007,185:1171-1185.
    [108]Harpham C, Dawson C W. The effect of different basis functions on a radial basis function network for time series prediction:A comparative study. Neurocomputing,2006,69:2161-2170.
    [109]Guerra F A, Coelho L S. Radial basis neural network learning based on particle swarm optimization to multistep prediction of chaotic Lorenz's system. Proceedings of the Fifth International Conference on Hybrid Intelligent Systems,2005:521-523.
    [110]Fu Y Y, Wu C J, Jeng J T, Ko C N. ARFNNs with SVR for prediction of chaotic time series with outliers. Expert Systems with Applications,2010,37(6):4441-4451.
    [111]Wong W K, Xia M, Chu W C. Adaptive neural network model for time-series forecasting. European Journal of Operational Research,2010,207(2):807-816.
    [112]Chen C H, Hong T P, Tseng V S. Fuzzy data mining for time-series data. Applied Soft Computing Journal,2012,12 (1):536-542.
    [113]Fabian, M. Algorithms for time series knowledge mining. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, PhiladelPhia, PA, USA,2006:668-673.
    [114]Batyrshin I Z, Sheremetov L B. Perception-based approach to time series data mining. Applied Soft Computing Journal,2008,8(3):1211-1221.
    [115]Weng Y J, Zhu Z Y. Research on time series data mining based on linguistic concept tree technique. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,2003,2:1429-1434.
    [116]Kreyszig E. Advanced Engineering Mathematics. New York:Wiley,1988.
    [117]Aydin I, Karakose M, Akin E. The prediction algorithm based on fuzzy logic using time series data mining method. World Academy of Science, Engineering and Technology,2009,39:91-98.
    [118]Bai Y M, Li T S. Robust time series forecasting using fuzzy inference systems. Proceedings of the 24th Chinese Control and Decision Conference, CCDC 2012, Taiyuan, China,2012:2703-2706.
    [119]Bai Y M, Li T S. Robust fuzzy inference system for prediction of time series with outliers. Proceedings of 2012 International Conference on Fuzzy Theory and Its Applications, iFUZZY 2012, Taiwan, China,2012:394-399.
    [120]洪碧光.船舶操纵.大连海事大学[M].大连:大连海事大学出版社,2008.
    [121]Abkowitz MA. Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification. Transactions of Society of Naval Architects and Marine Engineers,1980,88:283-318.
    [122]Ogawa A, Kasai H. On the mathematical model of manoeuvring motion of ship. International Ship-building Progress,1978,25(292):306-319.
    [123]Zhang X G, Zou Z J. Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. Journal of Hydrodynamics,2011,23:353-360.
    [124]Huang L W, Zhang D. Ship Maneuvering Simulation Based on Real-time Numerical Simulation of Flow.2010 International Conference on Computer and Communication Technologies in Agriculture Engineering,2010:450-453.
    [125]Kijima K, Tanaka S. On A Prediction Method of Ship Manoeuvring Characteristics. Intl Conf on Marine Simulation and Ship Manoeuvrability,1993,1:285-285.
    [126]Yoon H K, Rhee K P. Identification of hydrodynamic coefficients in ship maneuvering equations of motion by Estimation-Before-Modeling technique. Ocean Engineering,2003,30:2379-2404.
    [127]Feelders A, Daniels H, Holsheimer M. Methodological and practical aspects of data mining. Information and Management,2000,37(5):271-281.
    [128]Jules J, Berman. Confidentiality issues for medical data miners. Artificial Intelligence in Medicine 2002,26(1-2):25-36.
    [129]Rygielski C, Wang J C, Yen D C. Data mining techniques for customer relationship management. Technology in Society,2002,24(4):483-502.
    [130]Bose I, Mahapatra R K. Business data mining:a machine learning perspective. Information and Management,2001,39(3):211-225.
    [131]Agresti A. An introduction to categorical data analysis. New York:John Wiley & Sons,1996.
    [132]Bai Y M, Li T S. Ship maneuvering modeling based on fuzzy rules extraction and optimization, Proceedings of 10th International Symposium on Neural Networks, ISNN 2013, June, Dalian, China.
    [133]Kim W C, Ahn S C, Kwon W H. Stability analysis and stabilization of fuzzy state space models. Fuzzy Sets and Systems,1995,71(1):131-142.
    [134]Ying H. Sufficient conditions on general fuzzy systems as function approximators. Automatica,1994,30(3):521-525.
    [135]Roubos J A, Mollov S, Babuska R, et al. Fuzzy model-based predictive control using Takagi-Sugeno models. International Journal of Approximate Reasoning,1999, 22(1):3-30.
    [136]Hirota K, Pedrycz W. Fuzzy modelling environment for designing fuzzy controllers. Fuzzy Sets and Systems,1995,70(2-3):287-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700