基于逆系统方法的非线性预测控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对非线性系统的控制问题,深入研究了基于逆系统方法的预测控制。逆系统方法是一种反馈线性化方法,在非线性系统逆模型存在的前提下,通过构造非线性系统逆模型,并将逆模型与原系统串联组成伪线性系统的方法,完成非线性系统的线性化处理。进而根据伪线性系统设计预测控制器,实现非线性系统的预测控制。
     本文重点进行了以下几方面的探讨研究:
     (1)基于逆系统方法的非线性系统建模。在非线性系统逆模型存在的前提下,通过采样非线性系统的输入输出数据,采用BP神经网络离线训练非线性系统的逆模型。大量的仿真研究发现,由于BP神经网络存在过训练和泛化能力差的问题,造成建立的伪线性系统模型存在较大误差。因此,本文又进一步分析研究了基于最小二乘支持向量机的建模方法,有效的克服了BP神经网络建模的缺陷。仿真结果表明,最小二乘支持向量机在逆系统方法建模方面比BP神经网络具有更高的精度和更好的泛化能力。
     (2)基于逆系统方法的单变量非线性系统控制器设计。针对伪线性系统对于外界干扰和内部参数变化鲁棒性差的问题,设计了PID、动态矩阵控制和广义预测控制器。理论分析和仿真表明,虽然PID控制器可以抑制伪线性系统出现的干扰,但存在无法控制大滞后系统和最优参数调节困难的问题。因此,本文针对伪线性系统分别设计了动态矩阵控制器和广义预测控制器。进一步的分析研究和仿真证明,对于伪线性系统出现的各种干扰和参数变化,两种控制器都能很好的抑制,并取得较好的动静态性能和较强的鲁棒性。
     (3)基于逆系统方法的多变量非线性控制系统设计。在对单变量非线性系统控制的基础上,对多变量非线性系统进行了讨论。本文在构造多变量伪线性系统的基础上,将多变量非线性耦合系统剥离为多个单变量线性系统,并设计了动态矩阵控制器组。通过仿真发现,多变量逆系统方法的解耦和线性化效果是有限的。而通过设计动态矩阵控制器组可以弥补伪线性系统构造过程中产生的误差,并取得较好的控制效果。
     通过文中的理论研究和仿真分析,基于逆系统方法的非线性系统预测控制器的设计方法可以将线性系统的预测控制策略应用到非线性系统中,并能取得很好的控制效果。证明了该方法的有效性,为非线性预测控制提供了一种新颖的控制策略。
The predictive control is researched for the problem of nonlinear system control based on inverse system method. Inverse system method is a feedback linearization method. If the inverse model of nonlinear system exists, the linearization of the nonlinear system is achieved by building inverse model of nonlinear system and cascading the inverse model of nonlinear system with the original system. Then predictive controller is designed in accordance with pseudo-linear system to realize the predictive control for nonlinear system.
     This paper focuses on the following aspects.
     First, nonlinear system model is built based on inverse system method. At the premise of the existing of inverse model, the input and output data of nonlinear system are sampling. And then the inverse model of nonlinear system is approximated by BP neural network offline. Simulation results show that there is big error in pseudo-linear system model because of the bad training and generalization ability of BP neural network. Therefore, the Least squares support vector machines modeling is researched in this paper. It overcomes the shortcomings of neural network effectively. Simulation results show that the least squares support vector machines has higher accuracy and better generalization ability than neural network in inverse system modeling.
     Second, the controller of single variable nonlinear system is designed based on inverse system method. The PID controller, dynamic matrix controller and generalized predictive controller are designed for the reasons that pseudo-linear system does not have robustness for the external disturbances and internal parameter changes. Theoretical analysis and simulation show that PID controller can control the pseudo-linear system with disturbances. But, PID controller can not control large delay system and the optimal parameters are difficult to find. Therefore, dynamic matrix controller and generalized predictive controller are designed for pseudo-linear system in this paper. Further analysis and simulation studies prove that both of the dynamic and static performance of the pseudo-linear system is excellent when disturbances and parameter changes appear. It is also shown that the pseudo-linear system has strong robustness.
     Third, the control system is designed for multivariable nonlinear system based on inverse system method. The multivariable nonlinear system is discussed based on single variable nonlinear control system. After the multivariable pseudo-linear system is built, the multivariable nonlinear coupling system is stripped into a number of single variable linear systems and dynamic matrix controller group is designed. Simulation results show that the decoupling and linearization function of multivariable inverse system method are limited. And through the designing of dynamic matrix controller group, the pseudo-linear system errors can be made up and the control system can obtain better control performance.
     Through the theoretical study and simulation analysis in this paper, the predictive controller design method of nonlinear system based on inverse system method can introduce the linear predictive control strategy to nonlinear system and obtain excellent control performance. The paper validates the effectiveness of this method and proposes a novel method for nonlinear predictive control.
引文
[1]席裕庚,张钟俊.一类新型计算机控制算法:预测控制算法[J].控制理论与应用,1985,2(3):1-7.
    [2]Manfred Morari,Jay H.Lee.Model predictive control:Past,present and future[J].Computers and Chemical Engineering,1999,23(4-5):667-682.
    [3]S.J.Qin,T.a.Badgwell.An overview of industrial model predictive control technology[C].AIChE Symposium Series:Fifth International Conference on Chemical Process Control,California,1996:232-256.
    [4]Z.Kowalczuk,P.Suchomski.Continuous-time generalized predictive control of delay systems[J].IEE Pro-control Theory Application 1,1999,146(1):65-75.
    [5]袁天保,刘新建,秦子增.混合加权连续预测控制研究[J].电机与控制学报,2005,9(6):593-595.
    [6]刘兵,徐立鸿,冯纯伯.多变量连续预测控制的动态补偿[J].控制理论与应用,1997,14(4):570-573.
    [7]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [8]韩京清.控制理论——模型论还是控制论[J].系统科学与数学,1989,9(4):328-335.
    [9]席裕庚.关于预测控制的进一步思考[J].控制理论与应用,1994,11(2):219-221.
    [10]苏宏业,李林欢,褚健.预测控制的新进展[J].机电工程,2001,18(5):4-8.
    [11]杜鹃.基于支持向量机的非线性预测控制研究:(硕士学位论文).杭州:浙江大学,2006.
    [12]Seki H,Ogawa M,Ooyama S.Industrial application of a nonlinear model predictive control to polymerization reactors[J].Control Engineering Practice,2001,9(8):819-828.
    [13]Silva,Dulce C M,Oliveira,et al.Optimization and nonlinear model predictive control of batch polymerization system[J].Computers and Chemical Engineering,2002,26(4-5):649-658.
    [14]Genceli H,Nikolaou M.Design of robust constrained model-predictive controllers with Volterra series [J].AIChE Journal,1995,41(9):2098-2107.
    [15]Doyle F J,Ogounaike B A,Pearson R K.Nonlinear model-based control using second-order Volterra models[J].Automatics.1995,31(5):697-714.
    [16]刘桂芝.基于Hammerstein模型的非线性预测控制[J].微型计算机信息,2007,23(1):97-98.
    [17]王伟.具有Hammerstein形式的非线性系统广义预测控制[J].控制理论与应用,1994,11(6):672-680.
    [18]徐湘元,毛宗源.基于Hammerstein模型预测控制的分析与研究[J].控制理论与应用,2000,17(4):529-532.
    [19]史芸.田学民.一种基于Wiener模型的非线性预测控制[J].江南大学学报(自然科学版),2006,5(4):387-390.
    [20]Norquay S J,Palazoqlu A,Romaqnoli J A.Model predictive control based on Wiener models[J].Chemical Engineering Science,1998,53(1):75-84.
    [21]Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control [J].IEEE Transactions on Systems,Man,and Cybernetics,1985,15(1):116-132.
    [22]Zhao Z,Xia X H.Nonlinear dynamic matrix control based on multiple operating models[J].Journal of Process Control,2003,13(1):51-56.
    [23]Hannu T,Kati V.Internal model control of nonlinear system described by velocity based lineaizations [J].Journal of Process Control,2003,13(3):215-224.
    [24]Peterson T,Hernandez E,Arkun Y.A nonlinear DMC algorithm and its application to a semibtch polymerization reactor[J].Chem Eng Sci,1992,47(4):737-753.
    [25]Aufderheide B,Bequette B.Extension of dynamic matrix control to multiple models[J].Computers and Chemical Engineering,.2003.27(9):1069-1079.
    [26]曲东才,何友.基于ANN的非线性系统GPC算法及仿真研究[J].控制与决策,2006,21(12):1365-1368.
    [27]Li Qian,Wang shuqing.Fast algorithm for adaptive generalized predictive control base on BP networks[C].Proceedmgs of the Third International Conference on Machine Learning and Cybernetic,Shanghai,2004:738-743.
    [28]Donald Soloway,Pamela J.Haley.Neural generalized predictive control[C].Proceedings of the 1996 IEEE International Symposium on Intelligent Control,Dearborn,1996:277-282.
    [29]Guo Wei,Han Min.Generalized predictive control based on RBF neural network for a class o f nonlinear systems[C].Proceedings of the 2006 American Control Conference,Minneapolis,2006:1569-1574.
    [30]Xie K,Zhang J,Lin T Y.A new dynamic matrix control algorithm based on FNN-TS fuzzy model [C].Proceedings of the IEEE KIPS,Beijing,1997:38-41
    [31]刘忠信,孙青林.基于TS模型的钻杆对中自适应预测控制[J].控制与决策,2002,17(3):372-375.
    [32]王寅,荣冈,王树青.基于模糊模型的非线性预测控制策略[J].控制理论与应用,2002,19(4):599-603.
    [33]Yang jinfang,Wang dongfeng,Han pu.Dynamic matrix control based on support vector regressions error compensation[C].Proceedings of the 6th World Congresson Intelligent Control and Automation,Dalian,2006:2286-2290.
    [34]刘斌,苏宏业,褚健.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402.
    [35]王宇红,黄德先,高东杰等.基于支持向量机的非线性预测控制技术[J].信息与控制,2004,33(2):133-136.
    [36]李春文,苗原,冯元琨等.非线性系统控制的逆系统方法(Ⅰ)单变量控制理论[J].控制与决策,1997,12(5):529-535.
    [37]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [38]廖明,吴宁,谢品芳.神经网络内模控制算法的研究[J].电气传动自动化,1998,20(4):24-28.
    [39]鲁娟娟,陈红.BP神经网络的研究进展[J].控制工程,2006,13(5):449-451.
    [40]聂志刚,黄鲁江.基于BP算法的神经网络内模控制器[J].四川理工学院学报(自然科学版),2008,21(3):85-87.
    [41]金桥,方帅,闫石等.BP网络模型的改进方法综述[J].沈阳建筑工程学院学报(自然科学版),2001,17(3):197-199.
    [42]吕俊,张兴华.几种快速BP算法的比较研究[J].现代电子技术,2003,24(9):96-99.
    [43]Li hua,Huang lujiang.Nonlinear dynamic matrix control based on inverse system method[C].2008 Chinese Control and Decision Conference,Yantai,2008:5075-5078.
    [44]戴先中,刘军,冯纯伯.神经网络α阶逆系统在离散非线性系统控制中的应用[J].控制与决策,1997,12(3):217-221.
    [45]张绍德,李坤,张世峰.基于RBF网络非线性系统逆控制的一种设计方案[J].系统仿真学报,2006,18(9):2688-2690.
    [46]宋夫华,李平.基于支持向量机α阶逆系统方法的非线性内模控制[J].自动化学报,2007,33(7):778-781.
    [47]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [48]陈永义,俞小鼎,高学浩等.处理非线性分类和回归问题的一种新方法(Ⅰ)支持向量机方法简介[J].应用气象学报,2004,15(3):345-354.
    [49]边肇祺,张学工.模式识别[M].北京:清华大学出版社,1988.
    [50]J.A.K.Suykens,J,Vandewalle.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
    [51]阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策,2003,18(3):358-360.
    [52]Alex J.Smola,Bernhard Scholkopf.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.
    [53]李春文,苗原,冯元琨等.非线性系统控制的逆系统方法(Ⅱ)多变量控制理论[J].控制与决策,1997,12(6):625-642.
    [54]何丹,戴先中,张兴华等.非线性MIMO系统线性化解耦的一种新方法(Ⅱ)离散时间系统[J].控制与决策,1999,14(6):631-635.
    [55]陈庆伟,吕朝霞,胡维礼等.基于逆系统方法的非线性内模控制[J].自动化学报,2002,28(5):715-721.
    [56]戴先中,何丹,陈毓等.基于NNα阶逆的非线性大时延系统预测控制[J].控制理论与应用,2000,17(4):589-592.
    [57]Bennett S.A brief history of automatic control[J].IEEE Control Systems,1996,16(3):17-25.
    [58]Kiam Heong Ang,Gregory Chong,Yun Li.PID control system analysis,design and technology [J].IEEE transactions on control systems technology,2005,13(4):559-574.
    [59]刘金锟.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [60]Cutler,C.R.,Ramaker,B.L.Dynamic matrix control:A computer control algorithm[C].Proceedings JACC,San Francisco,USA,1980:62-68.
    [61]D.W.Clarke,C.Mohtadi and P.S.Tuffs.Generalized predictive control-PartⅠ:The basic algorithm[J].Automatica,1987,23(2):137-148.
    [62]D.W.Clarke,C.Mohtadi and P.S.Tuffs.Generalized predictive control-PartⅡ:Extensions and interretations [J].Automatica,1987,23(2):149-160.
    [63]胡耀华,贾欣乐.广义预测控制综述[J].信息与控制,2002,12(3):248-256.
    [64]王伟.广义预测控制理论及其应用[M].北京:科学出版社,1998.
    [65]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [66]Lennart Ljung.System identification-Theory for the user[M].BeiJing:Tsinghua University,2001.
    [67]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988.
    [68]候媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真[M].北京:科学出版社,2004.
    [69]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [70]戴先中,陈珩,何丹等.神经网络逆系统及其在电力系统控制中的应用[J].电力系统自动化,2001,25(3):11-17.
    [71]梁有伟,胡志坚,陈允平.基于神经网络逆系统的电力系统稳定器的研究[J].电工技术学报,2004,19(5):61-65.
    [72]李东海,苗建明.电力系统非线性控制的逆系统原理[J].电子技术应用,1995,11(2),23-25.
    [73]李春文,刘艳红,陈铁军等.基于逆系统方法的广义非线性系统控制及电力系统应用[J].控制理论与应用,2007,24(5):799-802.
    [74]唐超颖,沈春林.逆系统方法在航天器姿态控制系统中的应用[J].航天控制,2003,1(2):32-36.
    [75]康景利,龚云,史学虹等.逆系统方法在制导系统中的应用[J].北京理工大学学报,1996,16(4):439-443.
    [76]宋夫华,李平.空气重介流化床基于逆系统方法的内模控制[J].浙江大学学报(工学版),2006,40(9):1540-1544.
    [77]戴先中,张兴华,刘国海.感应电机的神经网络逆系统线性化解耦控制[J].中国电机工程学报,2004,24(1):112-117.
    [78]张兴华,戴先中,陆达军.感应电机的逆系统线性化方法解耦控制[J].电气传动,2001,31(2):28-31.
    [79]Sing CH,Postlethwaite B.PH control handling nonlinearity and deadtime with fuzzy relational model-based control[J].IEE Pro-Control Theory Application,1997,144(3):23-28.
    [80]Gustafsson TK,Waller KV.Nonlinear and adaptive control of PH[J].Ind.EngChem.Res,1992,2(31):268-2693.
    [81]赵群.非线性系统的模糊广义预测控制算法研究:(硕士学位论文).兰州:兰州理工大学,2007.
    [82]刘斌,苏宏业,褚健.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1342.
    [83]王树青,金晓明.先进控制技术应用实例[M].北京:化学工业出版社,2005.
    [84]贾小勐.基于神经网络的PH中和过程辨识及控制器设计:(硕士学位论文).大连:大连理工大学,2003.
    [85]姚莉.PH过程自动控制系统研究与仿真:(硕士学位论文).长沙:中南大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700