基于支持向量机的模拟电路故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟电路故障诊断理论和方法研究目前仍然是国际电路测试领域中极具挑战性的前沿和热点研究课题。半导体技术和工艺的飞速发展促进了模拟集成电路、模/数混合信号电路的广泛应用。为了有效缩短电子产品的上市时间和提高电子设备的可靠性,对模拟电路测试和故障诊断提出了更高、更新的要求。由于模拟电路响应的连续性、非线性性和元件参数的容差性等固有的特点以及故障的多样性、复杂性,常规或者传统故障诊断理论和方法对模拟电路进行故障诊断难以在实际工程中达到预期的效果。因此研究高效、适应模拟电路发展需求的故障诊断理论和方法显得尤为重要。近年来快速发展的基于统计学习理论的支持向量机(SupportVector Machine,SVM)为模拟电路故障诊断提供了一种有效的解决方法,是目前国内外研究的热点。本文以现代测试技术、信号处理、系统辨识和可测性分析等理论和技术为基础,深入研究了基于支持向量机的模拟电路故障诊断方法,完成的主要工作如下:
     根据模拟电路故障的特点,结合支持向量机在解决小样本、非线性和高维模式识别问题中所具有结构简单、全局最优、泛化能力强等特点,提出了基于支持向量机的模拟电路故障诊断方法,并构建了基于支持向量的模拟电路故障诊断系统,建立了被测电路故障诊断的支持向量机模型,对支持向量机故障诊断模型性能的影响因数——核函数及其核参数、惩罚参数、多分类支持向量机不同组合方法进行了研究。
     在时域和频域中给出了基于响应曲线波形有效点的模拟电路故障特征提取方法。为减少故障特征数据维数,提出了基于最大相关、最小冗余原则(Criteria ofMax-Relevance and Min Redundancy,MRMR)和支持向量机的故障特征选择方法,建立了电路最优故障特征的选择机制,有效地解决了支持向量机故障诊断模型的复杂性。
     考虑到模拟电路的故障响应包含了非平稳或时变信息,研究了基于小波变换的模拟电路故障特征提取方法,定义了电路特征测度为电路故障特征与正常特征之差的均方根值,提出了基于电路特征测度的最优母小波选择原则,实现了自适应小波变换的模拟电路故障特征提取。
     由于模拟电路工作状态的时变性和实际测得信号的不规则性,测得的信号在一定的尺度范围内具有分形特征,提出了基于多重分形分析的模拟电路故障特征提取方法,给出了基于小波极大模的多重分形奇异谱计算方法,并提取了与多重分形奇异谱有关的6个参数为故障特征。
     有限测试节点的响应不足以表征模拟电路每个元件的状态,研究了模拟电路潜在故障可诊断元件集的选择方法。首先讨论了基于电路拓扑结构的可测性分析,通过可测矩阵的相关性获得了可测组和模糊组,从而把电路潜在的故障元件进行分组,实现了可诊断元件集的选择。其次给出了传递函数零极点与元件参数的变化关系,提出了基于零极点灵敏度分析的可诊断元件集确定方法,由极点模糊组和零点模糊组的关系确定可诊断元件集。最后通过研究被测电路可及节点输出响应的模糊聚类,提出了基于模糊聚类的可诊断元件集确定方法,采用聚类有效性指标来确定可诊断元件集。
     在理论分析的基础上,以模/数信号测试的标准电路和文献中广泛研究的电路为实验对象,采用OrCAD10.5仿真了被测电路各种状态,获得了响应数据,在Matlab7.0中建立了基于支持向量机的模拟电路故障诊断模型,对被测电路的硬故障、软故障和多故障进行了诊断仿真实验。实验结果验证了本文提出方法的可行性和结论的正确性,与广泛研究的基于神经网络的模拟电路故障诊断方法相比,本文所提的基于支持向量机的模拟电路故障诊断方法具有结构简单,诊断准确率更优的特点,解决了神经网络的局部最优值、模型结构难以选择和小样本等问题。
Fault diagnosis theory and methods for analog circuits is still an extremelychallenging research topic in the circuit test field around the world.The rapiddevelopment of semiconductor technology has promoted the wide applications ofanalog integrated circuits and analog/digital mixed-signal circuits.In order to shortenthe time-to-market of the electronic product and increase its reliability,a new theory andfault diagnosis method needs to be established to meet the new requirements of analogcircuit test and fault diagnosis.However,due to the inherent characteristics of analogcircuits,such as its nonlinearity and continuous response,tolerances on componentparameters,etc,as well as the diversity and complexity of their faults,it is difficult forthe conventional or traditional fault diagnosis theories and methods to achieve theexpected results in the practical engineering.Hence,it is very important to explore somehighly efficient fault diagnosis theories and methods to meet the development of analogcircuits.Support vector machine (SVM) based on statistical learning theory,which is aresearch focus both at home and abroad,has provided an effective solution for faultdiagnosis in analog circuits.On the basis of the modern test technology,signalprocessing,system identification and testability analysis,etc,the fault diagnosis methodfor analog circuits based on SVM is deeply researched in the dissertation.The mainresearch contents and achievements are summarized as follows:
     According to the characteristics of analog circuit faults and SVM with simplestructure,the global optimum solution,good generalization to solve pattern recognitionissues with a few samples,nonlinearity and high dimensionality,the fault diagnosismethod for analog circuit based on SVM is presented.At the same time,the faultdiagnosis system of analog circuit based on SVM and a SVM model of fault diagnosisfor the circuits under test (CUT) is established.The factors which influence theperformance of SVM fault diagnosis model,such as kernel function and kernelparameters,punishment parameters and the combination algorithm of multiclass SVM,are researched.
     The feature extraction method based on efficient points of response curve is studied in time domain and frequency domain.In order to reduce the faults' featuredimensions,the fault feature selection method based on criteria of Max-Relevance andMin-Redundancy (MRMR) and SVM is presented,and the selection mechanism of theoptimal feature is established.As a result,the complexity of the SVM fault diagnosismodel is effectively reduced.
     Due to analog circuit fault response included the non-stationary or time-varyinginformation,the fault feature extraction method based on wavelet analysis is studied,and the feature measure of CUT is defined as the RMS value of difference betweennormal and faulty features.Meanwhile,the selection principle of optimal motherwavelet based on feature measurement is presented so as to achieve the faults featureextraction in analog circuits based on adaptive wavelet analysis.
     As a result of the time-variability of analog circuits and the irregularity of actualmeasured signals,the measured signals have fractal properties in certain scale rangesand the fault feature extraction method of analog circuits based on multfractal analysisis presented.In addition,the procedure for estimating multifractal singularity spectrabased on the wavelet's maximum modulus is researched and 6 parameters related tomultifractal singularity spectra are extracted as faults' features.
     The response obtained from the limited test nodes is not enough to reflect the stateof each component in CUT,and there are some ambiguity groups in CUT.The study ofapproaches to selecting the diagnosable component set is very helpful for diagnosingthe potential fault in CUT.Firstly,the testability analysis based on the circuit topologyis studied,the potential fault components are grouped by the testable and ambiguitygroup which is attained by use of linear correlation of the testability matrix of CUT,andthe selection of diagnosable components set is realized.Secondly,according to therelationship between transfer function Pole-zero and parameters of components,theapproach to selecting the diagnosable component set is presented based on thePole-Zero sensitivity analysis of CUT.The diagnosable component set can beascertained by the relationship between the Pole and Zero ambiguity groups.Finally,bystudying the fuzzy cluster of the response obtained from accessible node,the approachto selecting the diagnosable component set is presented based on fuzzy cluster analysisand fuzzy cluster validity index theory.
     Based on the theoretical analysis,targeted at the analog/digital signal benchmark circuits and the circuits widely studied in the references,and simulated the faultscenarios as well as the fault-free operation of CUT by OrCAD10.5,analog circuit faultdiagnosis model based on support vector machine is achieved in Matlab7.0 and asimulating experiment is also carried out to diagnose the soft faults,hard faults andmulti-faults in CUT.The experimental results have testified the feasibility of theproposed method and the validity of the conclusion in this dissertation.Compared withthe widely studied analog circuits fault diagnosis method based on neural network,theproposed method in this dissertation possesses the merits of simpler structure and higherdiagnostic accuracy,and it solves the disadvantage of neural network--local optimalsolution,over-fitting and under-fitting,difficulty in choosing model structures,etc,andrealizes the automatic choice of model structure and good generalization ability forsmall samples to account for the trade off between learning ability and generalizationability of learning machine by minimizing structural risk.
引文
[1]Vinnakota B.Analog and Mixed-Signal Test.Prentce Hall, 1998.
    [2]Kabisatpathy P, Barua A, Sinha S.Fault Diagnosis of Analog Integrated Circuits.Springer, 2005.
    [3]杨士元.模拟系统的故障诊断与可靠性设计.北京:清华大学出版社,1993.
    [4]潭阳红.基于小波和神经网络的大规模模拟电路故障诊断研究[博士学位论文].长沙:湖南大学,2005.
    [5]Li F, Woo P-Y.Fault detection for linear analog IC-the method of short-circuit admittance parameters.IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(1): 105-108.
    [6]Roy A, Sunter S, Fudoli A, et al.High accuracy stimulus generation for A/D converter BIST.Proceedings of International Conference on Test, 2002:1031-1039.
    [7]Milor L S.A tutorial introduction to research on analog and mixed-signal circuit testing.IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1998, 45(10):1389-1407.
    [8]Variyam P N, Chatterjee A.Enhancing test effectiveness for analog circuits using synthesized measurements.Proceedings of 16th IEEE Symposium on VLSI Test, 1998:132-137.
    [9]Wang L-T, Wu C-W, Wen X.VLSI Test Principles and Architectures Design for Testability.Morgan Kaufmann Publishers, 2006.
    [10]Test & Test Equipment.International Technology Radmap for Semiconductor.2005,http://www.itrs.net/Links/2005ITRS/Test2005.pdf.
    [11]Test & Test Equipment.International Technology Radmap for Semiconductor.2006,http://www.itrs.net/Links/2006Update/FinalToPost/03_Test2006Update.pdf.
    [12]Test & Test Equipment.International Technology Radmap for Semiconductor.2007,http://www.itrs.net/Links/2007Winter/2007_Winter_Presentations/03_Test_2007_JP.pdf.
    [13]Bushnell M L, Agrawal V D.Essential of Electronic Testing for Tigital, Memory and Mixed-Signal VLSI Circuits.Springer, 2000.
    [14]Kaminska B, Arabi K, Bell I, et al.Analog and mixed-signal benchmark circuits-first release.Proceedings of the 1997 IEEE International Conference on Test, 1997:183-190.
    [15]Kondagunturi R, Bradley E, Maggard K, et al.Benchmark circuits for analog and mixed-signal testing.Proceedings of IEEE Southeastcon'99, 1999:217-220.
    [16]Variyam P N, Cherubal S, ChatteRJee A.Prediction of analog performance parameters using fast transient testing.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2002, 21(3): 349-361.
    [17]彭敏放.容差模拟电路故障诊断屏蔽理论与信息融合方法研究[博士学位论文].长沙:湖南大学,2006.
    [18]Berkowitz R.Conditions for Network-Element-Value Solvability.IRE Transactions on Circuit Theory, 1962, 9(1): 24-29.
    [19]Navid N, Willson A, Jr.A theory and an algorithm for analog circuit fault diagnosis.IEEE Transactions on Circuits and Systems, 1979, 26(7): 440-457.
    [20]Wu C-C, Nakajima K, Wey C-L, et al.Analog Fault Diagnosis with Failure Bounds.IEEE Transaction on Circuits and Systems 1982, 29(5): 277-284.
    [21]Huang Z, Lin C, Liu R.Node-fault diagnosis and a design of testability.IEEE Transactions on Circuits and Systems, 1983, 30(5): 257-265.
    [22]Bandler J W, Salama A E.Fault diagnosis of analog circuits.Proceedings of the IEEE, 1985,73(8): 1279-1325.
    [23]Satyanarayana T, Subramanyam G, Rao K V R.Implementing an Expert System for Fault Diagnosis of Electronic Equipment.Engineering Applications of Artificial Intelligence, 1995,8(3): 355-364.
    [24]Starzyk J A, Liu D, Liu Z-H, et al.Entropy-based optimum test points selection for analog fault dictionary techniques.IEEE Transactions on Instrumentation and Measurement, 2004, 53(3):754-761.
    [25]Aminian F, Aminian M.Fault Diagnosis of Analog Circuits Using Bayesian Neural Networks with Wavelet Transform as Preprocessor.Journal of Electronic Testing, 2001, 17(1): 29-36.
    [26]Cunningham P.A case study on the use of model-based systems for electronic fault diagnosis.Artificial Intelligence in Engineering, 1998, 12(3): 283-295
    [27]Cunningham P, Smythb B, Bonzanoa A.An incremental retrieval mechanism for case-based electronic fault diagnosis.Knowledge-Based Systems, 1998, 11(3-4): 239-248
    [28]Catelani M, Fort A, Alippi C.A fuzzy approach for soft fault detection in analog circuits.Measurement, 2002, 32(1): 73-83.
    [29]El-Gamal M A, Abdulghafour M.Fault isolation in analog circuits using a fuzzy inference system.Computers & Electrical Engineering, 2003, 29(1): 213-229.
    [30]Grzechca D, Rutkowski J.Adaptive algorithm for analog fault based on a sensitivity matrix and the fuzzy set theory.Proceedings of 9th International Conference on Electronics, Circuits and Systems, 2002:649-652.
    [31]El-Gamal M A, El-Yazeed M F A.A Combined Clustering and Neural Network Approach for Analog Multiple Hard Fault Classification.Journal of Electronic Testing: theory and applications, 1999, 14(3): 207-217.
    [32]Aminian F, Aminian M, Collins H W, Jr.Analog fault diagnosis of actual circuits using neural networks.IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 544-550.
    [33]Aminian M, Aminian F.Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor.IEEE Transactions onCircuits and Systems II: Analog and Digital Signal Processing, 2000, 47(2): 151-156.
    [34]Yang Z R, Zwolinski M, Chalk C D, et al.Applying a robust heteroscedastic probabilistic neural network to analog fault detection and classification.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2000, 19(1): 142-151.
    [35]Catelam M, Fort A.Fault diagnosis of electronic analog circuits using a radial basis function network classifier.Measurement, 2000, 28(3): 147-158.
    [36]Cannas B, Fanni A, Manetti S, et al.Neural network-based analog fault diagnosis using testability analysis.Neural Computing & Applications, 2004, 13(4): 288-298.
    [37]El-Gamal M, Mohamed M.Ensembles of Neural Networks for Fault Diagnosis in Analog Circuits.Journal of Electronic Testing, 2007, 23(4): 323-339.
    [38]Mohamed F, Marzouki M.Test and diagnosis of analog circuits: When fuzziness can lead to accuracy.Journal of Electronic Testing, 1996, 9(1): 203-216.
    [39]Mohamed F, Marzouki M, Touati M H.FLAMES: A fuzzy logic ATMS and model-based expert system for analog diagnosis.Proceedings of European Design and Test Conference, 1996:259-263.
    [40]Liu Z-Q, Yan F.Combining a neural network with case-based reasoning in a diagnostic system.IEEE Transactions on Fuzzy Systems, 1997, 5(2).
    [41]唐人亨.模拟电子系统的自动故障诊断.北京:高等教育出版社,1991.
    [42]林争辉,刘美仅,王海雄.模拟电路的故障激励论.上海交通大学学报,1995, 29(1): 71-78.
    [43]张维强,徐晨,宋国乡.模拟电路故障诊断的小波包预处理神经网络改进算法.信号处理,2007, 23(2): 204-209.
    [44]陈光(礻禹).潘中良.可测性设计技术.北京:电子工业出版社,1996.
    [45]王承.基于神经网络的模拟电路故障诊断方法研究[博士学位论文].成都:电子科技大学,2005.
    [46]袁海英.基于时频分析和神经网络的模拟电路故障诊断及可测性研究[博士学位论文].电子科技大学,2007.
    [47]王定中,李于凡.有源网络故障可测性的拓扑条件.华南理工大学学报(自然科学版),1998, 26(10): 7-12.
    [48]袁海英,陈光(礻禹).模拟电路的可测性及故障诊断方法研究.电子测量与仪器学报,2006,20(5): 17-20.
    [49]陈圣俭,洪炳熔,王月芳,et al.可诊断容差模拟电路软故障的新故障字典法.电子学报,2000, 28(2): 127-129.
    [50]彭敏放,何怡刚.容差模拟电路的模糊软故障字典法诊断.湖南大学学报(自然科学版),2005, 32(1): 25-28.
    [51]张伟,许爱强,陈振林.模拟电路节点电压灵敏度权序列故障字典法.电子测量与仪器学报,2006, 20(4): 46-49.
    [52]何怡刚,梁戈超.模拟电路故障诊断的BP神经网络方法.湖南大学学报(自然科学版),2003, 30(5): 35-39.
    [53]王承,陈光(礻禹),谢永乐.多层感知机在模拟/混合电路故障诊断中的应用.仪器仪表学报,2005, 26(6): 578-581.
    [54]王承,陈光(礻禹),谢永乐.基于径向基函数神经网络的模拟/混合电路故障诊断.电路与系统学报,2007, 12(2): 65-68.
    [55]He Y, Sun Y.Neural network-based L_1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance.IEE Proceedings of Circuits, Devices and Systems, 2001,148(4): 223-228.
    [56]Zhu D, Chen E, Yang Y.A Quantum Neural Networks Data Fusion Algorithm and Its Application for Fault Diagnosis.Advances in Intelligent Computing, 2005: 581-590.
    [57]Zhu D, Yang Y, Li W.Blind Fault Diagnosis Algorithm for Integrated Circuit Based on the CPN Neural Networks.Advances in Neural Networks, 2004: 619-626.
    [58]彭敏放,何怡刚,王耀南,et al.模拟电路的融合智能故障诊断.中国电机工程学报,2006,26(3): 19-24.
    [59]Wang P, Yang S.Soft fault test and diagnosis for analog circuits.IEEE International Symposium on Circuits and Systems, 2005:2188-2191
    [60]Wang P, Yang S.A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2005, 52(10): 2118-2127.
    [61]Savir J, Guo Z.Test limitations of parametric faults in analog circuits.IEEE Transactions on Instrumentation and Measurement, 2003, 52(5): 1444-1454.
    [62]边肇祺.模式识别.北京:清华大学出版社,2000.
    [63]Vapnik V N.Statistical Learning Theory.许建华,张学工,译.统计学习理论.北京:电子工业出版社,2004.
    [64]Cortes C, Vapnik V.Support-Vector Networks.Machine Learning, 1995, 20(3): 273-297.
    [65]Cristianini N, Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-based Learning Mechods.李国正,王猛,曾华军,译.支持向量机导论.北京:电子工业出版社,2000.
    [66]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition.Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
    [67]Liang F.An Effective Bayesian Neural Network Classifier with a Comparison Study to Support Vector Machine.Neural Computation, 2003, 15(8): 1959-1989.
    [68]Boser B E, Guyon I, Vapnik V.A Training Algorithm for Optimal Margin Classifiers.Proceedings of the fifth annual workshop on Computational Learning theory, 1992:144-152.
    [69]Vapnik V, Golowich S, Smola A.Support Vector Method for Function Approximation,Regression Estimation, and Signal Processing.Advances in Neural Information Processing Systems, 1997, (9): 281-287.
    [70]张学工.关于统计学习理论与支持向量机.自动化学报,2000, 26(1): 32-42.
    [71]Chang C-C, Lin C-J.Training v-Support Vector Classifiers: Theory and Algorithms.Neural Computation, 2001, 13(9): 2119-2147.
    [72]Sch(o|¨)lkopf B, Smola A J.New Support Vector Algorithms.neural Computation, 2000, 12(5): 1207-1245.
    [73]Suykens J A K, Vandewalle J.Least Squares Support Vector Machine Classifiers.Neural Processing Letters, 1999, 9(3): 293-300.
    [74]Van Gestel T, Suykens J, Baesens B, et al.Benchmarking Least Squares Support Vector Machine Classifiers.Machine Learning, 2004, 54(1): 5-32.
    [75]Steinwart I.On the influence of the kernel on the generalization ability of support vector machines.http://www.minet.uni-jena.de/Math-Net/reports/sources/2001 /01-01 report.ps.
    [76]Chapelle O, Vapnik V.Model Selection for Support Vector Machines.Advances in Neural Information Processing Systems, 2000, 12: 230-236.
    [77]Cherkassky V, Ma Y.Practical selection of SVM parameters and noise estimation for SVM regression.Neural networks, 2004, 17(1): 113-126.
    [78]Kulkarni A, Jayaraman V K, Kulkarni B D.Support vector classification with parameter tuning assisted by agent-based technique.Computer&Chemical Engineering, 2004, 8(3): 311-319.
    [79]Osuna E, Freund R, Girosit F.Training support vector machines: an application to face detection.Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997:130-136.
    [80]Platt J C.Using Analytic QP and Sparseness to Speed Training of Support Vector Machines.Advances in Neural Information Processing Systems 1999, 11: 557-563.
    [81]Chen P-H, Fan R-E, Lin C-J.A study on SMO-type decomposition methods for support vector machines.IEEE Transactions on Neural Networks, 2006, 17(4): 893-908.
    [82]Jayadeva, Khemchandani R, Chandra S.Twin Support Vector Machines for Pattern Classification.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
    [83]Li Z, Tang X.Using Support Vector Machines to Enhance the Performance of Bayesian Face Recognition.IEEE Transactions on Information Forensics and Security, 2007, 2(2): 174-180.
    [84]Yang J, Zhang Y,Zhu Y.Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension.Mechanical Systems and Signal Processing, 2007, 21(5): 2012-2024.
    [85]Ceperic V, Baric A.Modeling of analog circuits by using support vector regression machines.Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, 2004:391-394.
    [86]Ding M, Vemur R I.An active learning scheme using support vector machines for analog circuit feasibility classification.18th International Conference on VLSI Design, 2005:528-534.
    [87]Kiely T, Gielen G.Performance modeling of analog integrated circuits using least-squares support vector machines.Proceedings of 2004 Design, Automation and Test in Europe Conference and Exhibition, 2004:448-453.
    [88]罗志勇,史忠科.一种模拟电路的支持向量机故障诊断方法.计算机工程,2006, 32(15):34-36.
    [89]万九卿,李行善.基于串行支持向量分类器的模拟电路故障诊断.北京航空航天大学学报,2003, 29(9): 789-792.
    [90]吴洪兴,彭宇,彭喜元.基于支持向量机多分类方法的模拟电路故障诊断研究.电子测量 与仪器学报,2007, 21(4): 27-31.
    [91]Wang A, Liu J, Li H, et al.A Novel Algorithm for Fault Diagnosis of Analog Circuit with Tolerances Using Improved Binary-tree SVMs Based on SOMNN Clustering.Third International Conference on Natural Computation, 2007:491-496.
    [92]Wang A, Liu J, Wang H, et al.A Novel Fault Diagnosis of Analog Circuit Algorithm Based on Incomplete Wavelet Packet Transform and Improved Balanced Binary-Tree SVMs.Bio-Inspired Computational Intelligence and Applications, 2007: 482-493.
    [93]Wang A, Qiu Z, Liu B, et al.Fault Diagnosis of Circuits with Tolerance Based on Support Vector Machines.Proceedings of International Conference on Communications, Circuits and Systems, 2006:2235-2238.
    [94]Bredensteiner E J, Bennett K P.Multicategory Classification by Support Vector Machines.Computational Optimization and Applications, 1999, 12(1): 53-79.
    [95]Krebel U H G.Pairwise Classification and Support Vector Machines.Advances in Kernel Methonds: Support Vector Learning, 1999, 255-268.
    [96]Platt J C, Cristianini N, Shawe-Taylor J.Large Margin DAG's for Multiclass Classification.Advances in Neural Information Processing Systems, 2000, 12: 547-553.
    [97]Yuan H, Chen G, Xie Y.Feature extraction based on neural network in analog circuit fault diagnosis.Journal of Systems Engineering and Electronics, 2007, 18(2): 434-437.
    [98]袁海英,陈光(礻禹),谢永乐.故障诊断中基于神经网络的特征提取方法研究.仪器仪表学报,2007, 28(1): 90-94.
    [99]Sarle W S.Neural Network FAQ.ftp://ftp.sas.com/pub/neural/FAQ2.html.
    [100]Sun Y, Chen G, Li H.Analog Circuits Fault Diagnosis Based on Support Vector Machine.8th International Conference on Electronic Measurement and Instruments, 2007:3-630-3-634.
    [101]孙永奎,陈光(礻禹),李辉.支持向量机在模拟电路故障诊断中应用.电子测量与仪器学报,2008, 22(2): 72-75.
    [102]Hsu C-W, Lin C-J.A comparison of methods for multiclass support vector machines.IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
    [103]Keerthi S S, Lin C-J.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel.Neural Computation, 2003, 15(7): 1667-1689.
    [104]Chang C-C, Lin C-J.libsvm 2.84.http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.[105]Theodoridis S, Koutrounmbas K.Pattern Recognition.李晶皎,王爱侠,张广渊,译.模式识别.北京:电子工业出版社,2006.
    [106]Guyon I, Elisseeff A.An Introduction to Variable and Feature Selection.Journal of machine learning research, 2003, 3(7-8): 1157-1182.
    [107]Webb A R.Statistical Pattern Recognition.王萍,杨培龙,罗颖昕,译.统计模式识别.北京:电子工业出版社,2004.
    [108]Dash M, Liu H.Feature Selection for Classification.Intelligent Data Analysis 1997, 1(3):131-156.
    [109]Mao K Z.Feature subset selection for support vector machines through discriminative function pruning analysis.IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2004, 34(1): 60-67.
    [110]Bell D A, Wang H.A Formalism for Relevance and Its Application in Feature Subset Selection Machine Learning, 2000, 41(2): 175-195.
    [111]朱雪龙.应用信息论基础.北京:清华大学出版社,2001.
    [112]Peng H, Ding C, Long F.Minimum redundancy maximum relevance feature selection.IEEE Intelligent Systems, 2005, 20(6): 70-71.
    [113]Peng H, Long F, Ding C.Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
    [114]成礼智,郭汉伟.小波与离散变换理论及工程应用.北京:清华大学出版社,2005.
    [115]孙永奎,陈光(礻禹),李辉.基于自适应小波分解和SVM的模拟电路故障诊断.仪器仪表学报,2008, 29(10).2105-2109.
    [116]吴振升,杨学昌,桂俊峰.基于分形的配电网接地故障分支识别方法.清华大学学报(自然科学版),2007, 47(4): 470-473.
    [117]杜恩祥,李科杰.基于多重分形和小波变换的声目标信号特征提取.自动化学报,2004,30(5): 742-746.
    [118]Falconer K.Fractal Geometry- Mathematical Foundation and Applications.曾文曲,译.分形几何—数学基础及其应用.北京:人民邮电出版社,2007.
    [119]Grassberger P, Procaccia I.Characterization of Strange Attractors.Physical Review Letters,1983, 50(5): 346-349.
    [120]孙霞,吴自勤.规则表面形貌的分形和多重分形描述.物理学报,2001, 50(11):2126-2131.
    [121]黄立基,丁菊仁.多标度分形理论及进展.物理学进展,1991, 11(3): 269-330.
    [122]Hentschel H G E, Procaccia I.The infinite number of generalized dimensions of fractals and strange attractors.Physica.D, 1983, 8(3): 435-444
    [123]Muzy J F, Bacry E, Arneodo A.Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method.physical Review E, 1993, 47(2): 875-884.
    [124]Lin D C, Sharif A.Wavelet transform modulus maxima based fractal correlation analysis.The European Physical Journal B-Condensed Matter and Complex Systems, 2007, 60(4): 483-491.
    [125]Turiel A, Perez-Vicente C J, Grazzini J.Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study.Journal of Computational Physics,2006, 216(1): 362-390.
    [126]Sakes R.A measure of testability and its application to test point selection theory.Proceeding of the 20th Midwest Symposium on Circuits and Systems, 1977: 576-583.
    [127]Fedi G, Manetti S, Piccirilli M C.Comments on“Linear circuit fault diagnosis using neuromorphic analyzers”.IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1999, 46(4): 483-485.
    [128]Fedi G, Luchetta A, Manetti S, et al.A new symbolic method for analog circuit testability evaluation.IEEE Transactions on Instrumentation and Measurement, 1998, 47(2): 554-565.
    [129]Le D K, DeCarlo R A.On generic diagnosability of circuits under the assumption of limited faults.IEEE Transactions on Circuits and Systems, 1991, 38(9): 1113-1115.
    [130]Fedi G, Manetti S, Piccirilli M C, et al.Determination of an optimum set of testable components in the fault diagnosis of analog linear circuits.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, 46(7): 779-787.
    [131]Manetti S, Piccirilli M C.A singular-value decomposition approach for ambiguity group determination in analog circuits.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(4): 477-487.
    [132]孙永奎,陈光(礻禹),李辉.基于可测性分析和支持向量机的模拟电路故障诊断.仪器仪表学报,2008, 29(6): 1182-1186.
    [133]Starzyk J A, Pang J, Manetti S, et al.Finding ambiguity groups in low testability analog circuits.IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2000, 47(8): 1125-113 7.
    [134]Slamani M, Kaminska B.Analog circuit fault diagnosis based on sensitivity computation and functional testing.IEEE Design & Test of Computers, 1992, 9(1): 30-39.
    [135]胡寿松.自动控制原理.北京:国防工业出版社,1994.
    [136]Albustani H.Modelling Methods for Testability Analysis of Analog Integrated Circuits Based on Pole-Zero Analysis [Dissertation].Duisburg-Essen University, 2004.
    [137]Lee J Y, Huang X, Rohrer R A.Pole and zero sensitivity calculation in asymptotic waveform evaluation.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1992, 11(5): 586-597.
    [138]Nikolova N K, Bandler J W, Bakr M H.Adjoint techniques for sensitivity analysis in high-frequency structure CAD.IEEE Transactions on Microwave Theory and Techniques, 2004,52(1): 403-419.
    [139]陈水利,李敬功,王向公.模糊集理论及其应用.北京:科学出版社,2005.
    [140]Kim D-W, Lee K H, Lee D.On cluster validity index for estimation of the optimal number of fuzzy clusters.Pattern Recognition, 2004, 37(10): 2009-2025.
    [141]Wang W, Zhang Y.On fuzzy cluster validity indices.Fuzzy Sets and Systems, 2007, 158(19): 2095-2117.
    [142]iris.http://archive.ics.uci.edu/ml/datasets/Iris.
    [143]Pal N R, Bezdek J C.On cluster validity for the fuzzy c-means model.IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
    [144]Pakhira M K, Bandyopadhyay S, Maulik U.Validity index for crisp and fuzzy clusters.Pattern Recognition, 2004, 37(3): 487-501.
    [145]Pakhira M K, Bandyopadhyay S, Maulik U.A study of some fuzzy cluster validity indices,genetic clustering and application to pixel classification.Fuzzy Sets and Systems, 2005, 155(2): 191-214.
    [146]孙永奎,陈光(礻禹),李辉.模糊聚类与SVM诊断模拟电路单软故障的方法.计算机辅助设计与图形学学报,2008, 20(5): 612-617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700