航空发动机进口部件积冰的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机的进口部件,如支板、整流帽罩等在一定的气象和飞行条件下会出现结冰现象,一旦冰层迅速增厚,将会改变流道的形状,减小流通面积,使发动机性能恶化,结冰严重时会使发动机不能正常工作并危及飞行器的安全。尤其更为严重的是,在某些特殊的气象条件下,机翼等外露部件不会出现结冰,但发动机进口部件仍会发生结冰。为了更好的认识发动机进口部件结冰的影响因素及规律,为设计高效的发动机防冰和除冰系统积累技术储备,本文采用数值模拟的方法对发动机进口部件的结冰现象进行了研究。目前,这方面的工作在国内尚处于起步阶段。
     本文的研究工作主要有以下几个方面:
     (1)全面深入地分析了国内外关于飞机和发动机结冰的研究动态。从试验研究和数值模拟两方面详细地介绍了研究状况和进展,着重阐述了数值模拟的研究现状。
     (2)对求解空气-过冷水滴气液两相流场的欧拉-欧拉法进行了研究。将直角坐标系下空气-过冷水滴两相流动的控制方程推导到了任意曲线坐标系下,研究了结冰表面外两相流场的数值计算方法,包括两相流控制方程的离散、空气相的湍流模拟和壁面函数法的实施、两相流计算域网格的生成方法以及在空气流场计算的基础上求解过冷水滴流场的两相流求解过程,并开发了基于欧拉-欧拉法的空气-过冷水滴两相平面流计算程序。
     (3)对求解空气-过冷水滴气液两相流场的欧拉-拉格朗日法进行了研究。将圆柱坐标下基于拉格朗日法的颗粒随机轨道模型的过冷水滴流动控制方程推导到了任意曲线坐标系下,研究了过冷水滴流场的数值计算方法。提出了一种基于颗粒随机轨道模型求解过冷水滴流场的结冰表面水收集系数的统计计算方法。该方法通过统计所有进入结冰表面控制体单元的水滴轨道并对轨道上水滴的流量进行求和来确定水收集系数,并开发了相应的计算程序。
     (4)对结冰模型进行了研究。首先基于Messinger结冰模型(一维,仅考虑能量守恒)的思想建立了一种二维的、同时考虑能量和质量守恒的结冰模型,分别推导了适用于雾凇、明冰和混合冰情况的能量平衡方程式,并研究了基于该模型的结冰计算算法,实现了通过预估矫正来判断结冰类型的功能;在此基础上,引入LEWICE1.6结冰模型的思想,考虑了水滴撞击脱落和表面张力对结冰表面水膜的影响;依据结冰模型及计算方法开发了结冰计算程序。
     (5)把自主开发的结冰计算程序与两相流场求解程序或模块结合,发展了积冰过程的两种计算方法和程序:(a)基于欧拉-欧拉法两相流场计算的积冰过程二维预测方法和程序;(b)基于欧拉-拉格朗日法的商业软件FLUENT两相流计算的积冰过程预测方法和程序。
     (6)采用方法和程序(a)对结冰气象条件下发动机进口支板表面水收集系数和积冰生长率以及冰形进行了数值模拟。分析了水滴平均有效直径、来流速度、液态水含量和环境温度等结冰参数对支板表面的水收集系数分布和积冰生长的影响规律。
     (7)采用方法和程序(b)对结冰气象条件下发动机进口整流帽罩表面水收集系数和积冰生长率以及冰形进行数值模拟。分析了水滴平均有效直径、来流速度、液态水含量、环境温度和旋转速度等参数对帽罩表面的水收集系数分布和积冰生长的影响规律。
Ice accretion may occur on the entry components of an aero-engine, such as the struts and the centre conical body under some meteoric and flight conditions. Once the ice becomes thicker and thicker, the mass flow rate of airflow would reduce, that would lead to engine performance deterioration. If the ice accretes severely, the engine couldn’t work normally and even endanger the aircraft. What is worse is that ice accretion on the aero-engine entry components would occur at some special meteoric conditions under which there would not be ice accretion on the airfoil of aircraft. In order to understand the effect of icing parameters (such as Medial Valid Diameter (MVD), velocity, and Liquid Water Content (LWC) of super-cooled water droplets) on ice accretion on entry parts of aero-engine, a numerical study is conducted in this thesis.
     The main research work in this thesis is as followings:
     (1) A wide and deep literature review is presented on the research status and trends of aircraft and aero-engine icing accretion, which includes both experimental and numerical studies, and especially the advance in numerical simulation is emphasized.
     (2) The computation method of two-phase flow of air and super-cooled water droplets based on Euler-Euler method is investigated. The control equations of the two-phase flow in Cartesian coordinates system are transformed into arbitrary curvilinear coordinates. The calculation methods are studied, which include the discretization of the control equations, the implementation of turbulent model and wall function for airflow, the generation of gird, and the solving procedure of the two-phase flow. The computer code based on these methods is developed for two dimensional flow.
     (3) The computation method for two-phase flow based on Euler-Lagrange method is investigated. The control equations for water droplets motion, based on particle random trajectory model, are derived for the arbitrary curvilinear coordinates. The numerical simulation techniques for solving the equations are discussed. A statistical method is proposed to calculate the water collection efficiency when the particle random trajectory model is used to simulate the motion of super-cooled water droplets. With this method, the mass flow rate of water droplets entering into every control volume on the impacting surface are calculated by summing every water droplet that enters into the control volume. The computer code of the statistical method is developed.
     (4) A two-dimensional icing model in which both mass and energy conservation are considered is established based on Messinger icing model (one dimensional, only energy conservation is considered). The energy-balancing equations for rime icing, glaze icing and mixed icing are derived respectively. The icing prediction method is presented, in which the icing type is determined by a presupposition-rectification process. Then the idea of used in the icing model of LEWICE 1.6 is introduced, in which the effects of the shedding of super-cooled water droplets after impinging and effects of surface tension on the runback water are considered. The computer code for icing is developed.
     (5) By integrating the icing computation code and the two-phase flow simulation code, a two-dimensional ice accretion prediction code is developed, in which the air-droplet flow computation is base on Euler-Euler method. By integrating the icing computation code and the two-phase flow simulation module of commercial software FLUENT which base on Euler-Lagrange method, a computation method and relevant computer code are developed.
     (6) The numerical investigation of water collection efficiency and ice accretion on the struts of aero-engine is carried out with the developed two-dimensional ice accretion prediction code. The effects of MVD, velocity, LWC of droplets and surrounding temperature on water collection efficiency, ice accretion rate and ice shape are studied.
     (7) The numerical study of water collection efficiency and ice accretion on the centre conical body of aero-engine is conducted with the proposed method integrating icing code and air-droplet flow computation molule of FLUENT. The effects of MVD, velocity, LWC of droplets, surrounding temperature and rotate speed of centre conical body on water collection efficiency, ice accretion rate and ice shape are analyzed.
引文
[1] Mason, J. G., Strapp, J. W. and Chow, P., The ice particle threat to engine in flight, AIAA 2006-0206, 2006
    [2] Addy, H. E. Jr., Potapczuk, M. G. and Sheldon, D. W., Modern airfoil ice accretion, AIAA 1997-0174, 1997
    [3] Hill, E.G., Toward safer aircraft operations in environmental icing conditions, Federal Aviation Administration, Boeing Retired, 2007
    [4] Chaput, M., Use of water vapor for engine deicing applications, 2007 SAE Aircraft & Engine Icing Conference and Exhibition, Seville, Spain, 2007
    [5]袁燮纲,飞机防冰系统,航空专业教材编审组出版,1996
    [6]安东诺夫A. H.,阿克谢诺夫H. K.,戈里亚切夫A. B.等,航空燃气涡轮发动机防冰系统设计原理和试验方法(刘静等),俄罗斯中央航空发动机研究院,2001
    [7] McVey, Oliver, Pullen, Ramani et al, Inclement weather & aircraft engine icing, GE Aviation, 2007
    [8] Graversen, P., Grand based measuring and warning of weather conditions in which engine icing may occur, 2007 SAE Aircraft & Engine Icing Conference and Exhibition, Seville, Spain, 2007
    [9] Mason, J. G., The ice particle threat to engine, Boeing Commercial Airplanes, 2007
    [10] Mass, D. M. and McCown, N. M., Turbine inlet ice related failures and predicting inlet ice formation, GT2007-28351, Proceedings of GT2007, Montreal, Canada, ASME Turbo Expo 2007
    [11] Hansman, R. J., The influence of ice accretion physics on the forecasting of aircraft icing conditions, Third International Conference on the Aviation Weather System, Anahiem, CA, 1989: 154-158
    [12] Olsen W., Survey of aircraft icing simulation test facilities in North America. NASA TM- 81707, 1981
    [13] Soeder, R. H., Sheldon, D. W., Andracchio, C. R. and Ide, R. F., NASA Lewis icing research tunnel user manual,NASA TM-107159, 1996
    [14] Al-Khalil, K. and Salamon, L., Development of the COX & Company icing research facility,AIAA 1998-0097, 1998
    [15] Herman, E., Goodrich Icing wind tunnel overview, improvements and capabilities, AIAA 2006-0862, 2006
    [16] Gent, R.G., Ford, J. M. and Moser, R. J., Results from super-cooler large droplet mass loss tests inthe ACT Luton icing wind tunnel, AIAA 2003-0389, 2003
    [17] Hammond, D. W. and Luxford, G., The Cranfield university icing tunnel, AIAA 2003-0901, 2003
    [18] Vecchione, L., De Matteis, P. P. and Leone, G., An overview of the CIRA icing wind tunnel, AIAA 2003-0900, 2003
    [19] Berg, A. L. and Wolef, H. E., Aircraft engine icing test techniques and capabilities at the AEDC, AIAA 1976-0010, 1976
    [20] Kind, R. J., Potapczuk, M. G., Feo, A. et al, Experimental and computational simulation of in-flight icing phenomena, Progress in Aerospace Sciences, 1998, 34: 257-345
    [21] Anderson, D. N., Methods for scaling icing test conditions, AIAA 1995-0540, 1995
    [22] Anderson, D. N., Further evaluation of traditional icing scaling methods, AIAA 1996-0633, 1996
    [23] Ruff, G. A. and Anderson, D. N., Quantification of ice accretions for icing scaling evaluations, AIAA 1998-0195, 1998
    [24] Saeed, F., Selig, S. M. and Bragg, M. B., A hybrid airfoil design method to simulate full-scale ice accretion throughout a given Cl-range, AIAA 1997-0054, 1997
    [25] Saeed, F., Selig, S. M. and Bragg, M. B., Experimental validation of the hybrid airfoil design procedure for full-scale ice accretion simulation, AIAA 1998-0199, 1998
    [26] Anderson, D. N., Manual of scaling methods, NASA CR-2004-212875, 2004
    [27] Bartlett, S., Stringfield, M. and Tibbals, T., Determination of liquid water content in the AEDC engine test cell, AIAA 1992-0165, 1992
    [28] Bartlett, C. S. and Phares, W. J., Icing testing of a large full-scale inlet at the Arnold Engineering Development Center, AIAA 1993-0299, 1993
    [29] Bartlett, C. S., Icing test capabilities in the aeropropulsion system test facility at the Arnold Engineering Development center, AIAA 1994-2471, 1994
    [30] Ashwood, P. F., An altitude test facility for large turbofan engines, AIAA 1072-1069, 1972
    [31] Ide, R. F., Liquid water content and droplet size calibration of the NASA Lewis icing research tunnel, AIAA 1990-0669, 1990
    [32] Miller, D. R., Overview of high speed close-up imaging, AIAA 2004-0407, 2004
    [33] Arrington, E. A. and Gonsalez, J. C., Improvements to the total temperature calibration of the NASA Glenn icing research tunnel, NASA CR-2005-213875, 2005
    [34] Papadakis, M., Elangovan, R., Freund, G. A. Jr. et al, Experimental water droplet impingement data on two-dimensional airfoils, axisymmetric inlet and Boeing 737-300 engine inlet, AIAA 1987-0097, 1987
    [35] Papadakis, M., Kuohsing, E. H., Vu, G. T. et al, Experimental investigation of water dropletimpingement on airfoil, finite wings, and s-duct engine inlet, NASA TM-2002-211700, 2002
    [36] Papadakis, M., Rachman, A., Wong, See-Cheuk et al, Water impingement experiments on a NACA 23012 airfoil with simulated glaze ice shapes, AIAA 2004-0565, 2004
    [37] Render, P., Pan, H., Sherwood, M. et al, Studies into the hail ingestion characteristics of turbofan engines, AIAA 1993-2174, 1993
    [38] Luttrell, J. and West, T., F-22 inlet shed ice particle sizing test, AIAA 2001-0091, 2001
    [39] Hansman, R.J., Kirby, M. S. McKnight, R.C. et al, In-flight measurement of ice growth on an airfoil using an array of ultrasonic transducers, AIAA 1987-0178, 1987
    [40] Flemming, R. J., Bond, T. H. and Britton, R. K., Results of a sub-scale model rotor icing test, AIAA 1991-0660, 1991
    [41] Flemming, R. J., Alldridge, P. and Doeppner, R., Artificial icing tests of the S-92A helicopter in the McKinley climatic laboratory, AIAA 2004-0737, 2004
    [42] Addy, H. E. Jr., Ice accretions and icing effects for modern airfoils, NASA TP-2000-210031, DOT/FAA/AR-99/89, 2000
    [43] Vargas, M., Giriunas, J. A. and Patvasky, T. P., Ice accretion formations on a NACA 0012 swept wing tip in natural icing conditions, NASA TM-2002-211357, 2002
    [44] Vargas, M., Papadakis, M., Potapczuk, M. et al, Ice accretions on a swept GLC-305 airfoil, NASA TM-2002-211557, 2002
    [45] Ratvasky, T. P., Barnhart, B. P., Lee, S. et al, Flight testing and iced business jet for flight simulation model validation, AIAA 2007-0089, 2007
    [46] Essex, H. A., Zlotowski, E. D., and Ellisman C., Investigation of ice formation in the induction system of an aircraft engineⅠ- ground tests, NACA MR- E6B28, 1946
    [47] Essex, H. A., Ellisman C., and Zlotowski, E. D., Investigation of ice formation in the induction system of an aircraft engineⅡ- flight tests, NACA MR- E6E16, 1946
    [48] Belz, R. A., Brasier, C. W., Murphy, P. J. et al, A turbine engine inlet viewing system, AIAA 1986-1647, 1986
    [49] Venkatamani, K. S., Balan, C., Caney, R. D. et al, Wind tunnel tests and modeling studies of ice accretion relevant to aircraft engine, AIAA 2003-0906, 2003
    [50] Bragg, M. B., Kerho, M. F., and Khodadoust, A., LDV flowfield measurements on a straight and swept wing with a simulated ice accretion, AIAA 1993-0300, 1993
    [51] Li, G., Gutmark, E. J., Ruggeri, R. T. et al, Correlation of local heat transfer coefficients and pressure on an airfoil, AIAA 2003-4202, 2003
    [52] Broeren, A. P., Addy, H. E. Jr. and Bragg, M. B., Flowfield measurements about an airfoil withleading-edge ice shapes, AIAA 2004-0559, 2004
    [53] Bragg, M. B., Cummings, M. J., Lee, S. et al, Boundary-layer and heat-transfer measurements on an airfoil with simulated ice roughness, AIAA 1996-0866, 1996
    [54] Papadakis, M., Yeong, H. W., Chandrasekharan, R. et al, Experimental investigation of simulated ice accretions on a full-scale T-tail, AIAA 2001-0090, 2001
    [55] Papadakis, M., Yeong, H. W. and Wong, See-Cheuk, Aerodynamic performance of a swept wing with simulated ice shapes. AIAA 2004-0734, 2004
    [56] Acker, L. W. and Kleinknecht, K. S., Effect of inlet icing on performance of axial-flow turbojet engine in natural icing conditions, NACA RM-E50C15, 1950
    [57] Ranaudo, R. J., Mikkelsen, K. L., Mcknight, R. C. et al, Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions, AIAA 1984-0179, 1984
    [58] Al-Khalil, K. M., Ferguson, T. W. and Phillips, D. M., A hybrid anti-icing ice protection system, AIAA 1997-0302, 1997
    [59] Perkins, P., Hastings, O., and Rieke, W., Thin, lightweight, electrothermal ice protection—new technology supplementing existing ice protection, AIAA 1996-0391, 1996
    [60] Burkett, B., Mitrovic, M. and Sweet, D. et al, Development and test results on a high efficiency ice protection system, AIAA 2006-0863, 2006
    [61] Botura, G. C., Sweet, D. and Flosdorf, D., Development and demonstration of low power electrothermal de-icing system, AIAA 2005-1460, 2005
    [62] Botura, G. C., and Sweet, D., Concept development of low power electrothermal de-icing system, AIAA 2006-0864, 2006
    [63] Zumwalt, G. W., Electromagnetic impulse de-icing applied to a nacelle nose lip, AIAA 1985-1118, 1985
    [64] Nelepovitz, D. O., Rosenthal, H. A. and Rockholt, H. M., Test and analysis of electro-impulse de-icing systems in turbine engine inlets, AIAA 1988-0020, 1988
    [65] Al-Khalil, K., Hitzigrath, R., Philippi, O. et al, Icing analysis and test of a business jet engine inlet duct, AIAA 2000-1040, 2000
    [66] Ruff, G. A. and Berkowitz, B. M., User’s manual for the NASA Lewis ice accretion prediction code(LEWICE), NASA CR-185129, 1990
    [67] Mingione, G., Brandi, V. and Esposito, B., Ice accretion prediction on multi-element airfoils, AIAA 1997-0177, 1997
    [68] Potapczuk, M. G., LEWICE/E: an Euler based ice accretion code, AIAA 1992-0037, 1992
    [69] Hedde, T. and Guffond, D., ONERA three-dimensional icing model, AIAA Journal, 1995, 33(6):1038-1044
    [70] Potapczuk, M. G. and Gerhart, P. M., Progress in development of a Navier-Stokes solver for evaluation of iced airfoil performance, AIAA 1985-0410, 1985
    [71] Pan, J. P. and Loth, E., Detached eddy simulations for airfoil with ice shapes, AIAA 2004-0564, 2004
    [72] Chi, X., Li, Y., Chen, H. et al, A comparative study using CFD to predict iced airfoil aerodynamics, AIAA 2005-1371, 2005
    [73] Croce, G., Beaugendre, H. and Habashi, W. G., CHT3D: FENSAP-ICE conjugate heat transfer computations with droplet impingement and runback effects, AIAA 2002-0386, 2002
    [74] Maltezos, D. G., Osonitsch, C., Shaw, R. J. et al, Particle trajectory computer program for icing analysis of axisymmetric bodies(a progress report), AIAA 1987-0027, 1987
    [75] Caruso, S. C., LEWICE droplet trajectory calculations on a parallel computer, AIAA 1993-0172, 1993
    [76] Bourgault, Y., Habashi, W. G., Dompierre, J. et al, An Eulerian approach to supercooled droplets impingement calculations, AIAA 1997-0176, 1997
    [77] Tong, X-L and Luke, E.A., Eulerian simulations of icing collection efficiency using a singularity diffusion model, AIAA 2005-1246, 2005
    [78] Luliano, E., Brandi, V., Mingione, G. et al, Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow, AIAA 2006-1270, 2006
    [79] Bidwell, C. S., Collection efficiency and ice accretion calculations for a Boeing 737-300 inlet, NASA TM-107347, 1996
    [80] Farag, K. A. and Bragg, M. B., Three dimensional droplet trajectory code for propellers of arbitrary geometry, AIAA 1998-0197, 1998
    [81] Nathman, J. K. and McComas, A., Icing collection efficiency from direct simulation, AIAA 2007-0505, 2007
    [82] Hamed, A., Das, K. and Basu, D., Numerical simulations of ice droplet trajectories and collection efficiency on aero-engine rotating machinery, AIAA 2005-1248, 2005
    [83] Messinger, B. L., Equilibrium temperature of an unheated icing surface as a function of airspeed, Journal of Aeronautical Science, 1953, 20(1): 29-42
    [84] Wright, W. B., Gent, R. W. and Guffond, D., DRA/NASA/ONERA collaboration on icing research partⅡ- prediction of airfoil ice accretion, NASA CR-202349, 1997
    [85] Hedde, T. and Guffond, D., Development of a three-dimensional icing code, comparison withexperimental shapes, AIAA 1992-0041, 1992
    [86] Paraschivoiu, I. and Saeed, F., Aircraft icing, John Wiley & Sons, INC. online book, url: http://www.meca.polymtl.ca/ion/000-main.pdf
    [87] Bourgault, Y., Habashi, W. G. and Beaugendre, H., Development of a shallow water icing model in FENSAP-ICE, AIAA 1999-0246, 1999
    [88] Myers, T. G. and Hammond, D. W., Ice and water film growth from incoming supercooled droplets, International Journal of Heat and Mass Transfer, 1999, 42: 2233-2242,
    [89] Myers, T. G., An extension to the Messinger model for aircraft icing, AIAA Journal, 2001, 39(2): 211-218
    [90] Myers, T. G., Charpin, J. P. F. and Thompson, C. P., Slowly accretion ice due to supercooled water impacting on a cold surface, Physics of Fluids, 2002, 14(1): 240-256
    [91] Wright, W. B. and Bidwell, C. S., Additional improvements to the NASA Lewis ice accretion code LEWICE, AIAA 1995-0752, 1995
    [92] Fortin, G., Ilinca, A., Laforte, Jean-Louis et al, Prediction of 2D ice accretion by bisection method and by rivulets and beads modeling, AIAA 2003-1076, 2003
    [93] Hansman, R. J., Jr., Analysis of surface roughness generation in aircraft ice accretion, AIAA 1992-0298, 1992
    [94] Anderson, D. N. and Shin, J., Characterization of ice roughness from simulated icing encounters, AIAA 1997-0052, 1997
    [95] Olsen, W. and Walker, E., Experimental evidence for modifying the current physical model for ice accretion on aircraft surface, NASA TM-87184, 1986
    [96] Hansman, R. J., Breuer, K. S., Hazan, D. et al, Close-up analysis of aircraft ice accretion, AIAA 1993-0029, 1993
    [97] Tsao, J. C. and Rothmayer, A. P., A mechanism for ice roughness formation on an airfoil leading edge contributing to glaze ice accretion, AIAA 1998-0485, 1998
    [98] Tsao, J. C. and Rothmayer, A. P., Triple-desk simulation of surface glaze ice accretion, AIAA 2000-0234, 2000
    [99] Rothmayer, A. P, On the creation of ice surface roughness by interfacial instabilities, AIAA 2003-0972, 2003
    [100] MacArthur, C. D., Keller, J. L. and Luers, J. K., Mathematical modeling of ice accretion on airfoils, AIAA 1982-0284, 1982
    [101] Potapczuk, M. G. and Bidwell, C. S., Numerical simulation of ice growth on a MS-317 swept wing geometry, AIAA 1991-0263, 1991
    [102] Tran, P., Brahimi, M. T., Paraschivoiu, I. et al, Ice accretion on aircraft wings with thermodynamic effects, AIAA 1994-0605, 1994
    [103] Caruso, S., NEARICE: an unstructured-mesh Navier-Stokes-based ice accretion prediction method, AIAA 1994-0606, 1994
    [104] Tran, P., Brahimi, M. T., Tezok, F. et al, I., Numerical simulation of ice accretion on multiple element configurations, AIAA 1996-0869, 1996
    [105] Snellen, M., Boelens, O. J. and Hoeijmakers, H. W. M., A computational method for numerically simulating ice accretion, AIAA 1997-2206, 1997
    [106] Mingione, G., Brandi, V. and Saporiti, A., A 3D ice accretion simulation code, AIAA 1999-0247, 1999
    [107] Tao, Y.-X., Xu, G., Mansoor, A. M. et al, Development of ice accretion model using modular approach, AIAA 2001-0682, 2001
    [108] Szilder, K. and Lozowski, E. P., Discrete modeling of ice accretion shape and structure forming on a cylinder under in-flight icing conditions, AIAA 2003-1075, 2003
    [109] Dezitter, F., Chene, G., Viala, S. et al, 3D ice accretion and aerodynamic penalties prediction on aircraft, AIAA 2003-3833, 2003
    [110] Fortin, G., Laforte, J.-L. and Beisswenger, A., Prediction of ice shapes on NACA 0012 airfoil, SAE 2003-01-2154, 2003
    [111] Bourgault, Y. and Habashi, H. G. , Development of a shallow water icing model in FENSAP-ICE, Journal of Aircraft, 2000, 37(4): 640-646
    [112] Beaugendre, H., Morency, F. and Habashi, W. G., FENSAP-ICE: roughness effects on ice shape predictions, AIAA 2003-1222, 2003
    [113] Morency, F., Beaugendre, H. and Habashi, W. G., FENSAP-ICE: a study of the effect of ice shapes on droplet impingement, AIAA 2003-1223, 2003
    [114] Eberhardt, S., Kim, B., Ok, H. et al, BUWICE-an interactive icing program applied to engine inlets, AIAA 1992-3179, 1992
    [115] Lee, S., Loth, E., Broeren, A. et al, Simulation of icing on a cascade of stator blades, AIAA 2006-0208, 2006
    [116] Das, K., Hamed, A. and Basu, D., Ice shape prediction for turbofan rotating blades, AIAA 2006-0209, 2006
    [117] Al-Khalil, K. M., Keith, T. G., Jr. and De Witt, K. J., Development of an anti-icing runback model, AIAA 1990-0759, 1990
    [118] Al-Khalil, K. M., Keith, T. G. Jr. and De Witt, K. J, Further development of an anti-icing runbackmodel, AIAA 1991-0266, 1991
    [119] Al-Khalil, K. M., Keith, T. G. Jr. and De Witt, K. J, Development of an improved model for runback water on aircraft surface, AIAA 1992-0042, 1992
    [120] Al-Khalil, K. M., Horvath, C., Miller, D. R. et al, Validation for NASA thermal ice protection computer codes part3– the validation of ANTICE, AIAA 1997-0051, 1997
    [121] Henry, R., Development of an electrothermal de-icing/anti-icing model, AIAA 1992-0526, 1992
    [122] Croce, G., Habashi, W. G., Guevremont, G. et al, 3D thermal analysis of an anti-icing device using FENSAP-ICE, AIAA 1998-0193, 1998
    [123] Yeoman, K., Efficiency of a bleed air powered inlet icing protective system, AIAA 1994-0717, 1994
    [124]韩风华,张朝民,王跃欣,飞机机翼表面水滴撞击特性计算,北京航空航天大学学报,1995,21(3):16-21
    [125]韩风华,左颜声,李东亮,飞机风挡防冰热载荷计算,航空学报,1995,16(1):33-37
    [126]常士楠,王长和,韩风华,飞机天线罩结冰情况研究,航空学报,1997,18(4):423-426
    [127]裘燮纲,余小章,微引射防冰腔热力计算,航空学报,1994,15(9):1110-1113
    [128]常士楠,韩风华,飞机发动机进气道前缘热气防冰器性能分析,北京航空航天大学学报,1999,25(2):201-203
    [129]杨倩,常士楠,袁修干,水滴撞击特性的数值分析方法研究,航空学报,2002,23(2):173-176
    [130]杨倩,常士楠,袁修干,发动机进气道水滴撞击特性分析,北京航空航天大学学报,2002,28(3):362-365
    [131]张大林,杨曦,昂海松,过冷水滴撞击结冰表面的数值模拟,航空动力学报,2003,18(1):87-91
    [132]易贤,朱国林,王开春,李树民,翼型积冰的数值模拟研究,空气动力学报,2002,20(4):428-433
    [133]蒋胜炬,李凤蔚,基于N-S方程的翼型结冰数值模拟,西北工业大学学报,2004,22(5):559-562
    [134]张大林,陈维健,飞机机翼表面霜状冰结冰过程的数值模拟,航空动力学报,2004,19(1):137-141
    [135] Chen wei-jian, Zhang da-lin, Prediction of Rime Ice Accretion and Resulting Effect on Airfoil Performance, Transactions of Nanjing University of Aeronautics and Astronautics, 2005, 22(1): 9-15
    [136]陈维健,张大林,瘤状冰结冰过程的数值模拟,航空动力学报,2005,20(3):472-476
    [137]陈维健,张大林,飞机机翼结冰过程的数值模拟,航空动力学报,2005,20(6):1010-1017
    [138]陈维健,飞机机翼结冰的数值模拟研究,南京航空航天大学博士学位论文,2007年
    [139]王世忠,航空发动机进口支板的积冰机理和数值模拟研究,南京航空航天大学硕士学位论文,2003年
    [140] Simon, E. G., Development and application of a New Wall Functions for Complex Turbulent Flows[D], Ph.D. Thesis, University of Manchester Institute of Science and Technology, 2002
    [141] Jayatilleke, C.L.V., The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-Layer to Momentum and Heat Transfer, Progress in Heat and Mass Transfer[M], New York: Pergamon Press, 1969, Vol. 1: 193-329
    [142]周力行,湍流气粒两相流动和燃烧的理论与数值模拟,科学出版社,1994年12月
    [143]进气道沿程结冰参数分析技术与发动机进口防冰部件明冰结冰数值模拟研究,内部报告
    [144]陶文铨,数值传热学,西安交通大学出版社,2001年
    [145]伍艳玲,CFM56燃烧室双级旋流器流场计算,南京航空航天大学硕士学位论文,1998年
    [146]帕坦卡,传热与流体流动的数值计算,张政译,北京:科学出版社,1984年
    [147]陶文铨,计算传热学的近代进展,科学出版社,2000年
    [148] Silveira, R. A., da, Maliska, C. R., Estivam, D. A. et al, Evaluation of Collection Efficiency Methods for Icing Analisys, 17th international congress of mechanical engineering November 10-14, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700