金属氧化物催化臭氧氧化酸性红B和酸性大红GR
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料因其应用的广泛性、降解产物的致癌性和较低的生物降解性,对人类健康和生态系统造成巨大威胁。本文以偶氮染料酸性红B和酸性大红GR为研究对象,考察了催化剂制备条件、反应条件对催化臭氧氧化的影响,探索了催化臭氧氧化染料废水的作用机理,得出以下结论:
     采用自蔓延法制备一系列金属氧化物催化剂,其中铁氧化物和铁铜复合氧化物对臭氧氧化具有较好的催化效果。与单独臭氧氧化相比,加入铁氧化物反应20min时酸性红B的去除率提高7%,而相同条件下加入铁铜氧化物去除率提高24%。60min时单独臭氧氧化COD去除率为48%,而加入铁氧化物和铁铜氧化物的去除率分别提高至60%和70%。由EDS和催化剂的重复性实验可知,催化剂具有良好的稳定性。由一系列实验结果可推测出铁铜复合氧化物催化臭氧氧化酸性红B的机理为:溶解性臭氧在催化剂表面羟基的催化下分解产生羟基自由基,羟基自由基和溶解性臭氧一起氧化溶液中和化学吸附在催化剂表面的酸性红B。主要降解中间产物为乙酸,由降解中间产物推导出酸性红B的降解途径,建立了酸性红B和COD的降解动力学模型,三个体系下酸性红B和COD的降解都符合拟一级动力学方程。
     采用浸渍法制备一系列氧化铝催化剂,其中Co/Al_2O_3和Ni-Co/Al_2O_3催化剂催化效果最好,催化剂的最佳制备条件为:Co负载量2%,搅拌时间4h,煅烧时间2h,煅烧温度500℃,Ni负载量2%。单独臭氧反应10min,酸性大红GR的去除率为54%,分别加入Co/Al_2O_3和Ni-Co/Al_2O_3后,去除率依次提高到69%和80%。单独臭氧氧化45min,COD去除率为28.6%,分别加入Co/Al_2O_3和Ni-Co/Al_2O_3后,COD去除率依次提高到59.4%和78.6%。由SEM、比表面积、EDS表征结果和催化剂的重复使用可知,催化剂具有良好的稳定性。由一系列实验结果可推测出Ni-Co/Al_2O_3催化臭氧氧化酸性大红GR的机理为:溶解性臭氧在表面羟基的催化下分解产生羟基自由基,羟基自由基和溶解性臭氧一起氧化溶液中和物理吸附在催化剂表面的酸性大红GR。推导出了酸性大红GR的降解途径,并建立酸性大红GR和COD的降解动力学模型,三个体系下酸性大红GR和COD的降解都符合拟一级动力学方程。
Dyes induce a significant threat to human health and ecological systems due to their widespread use, carcinogenic characteristic of degradation byproducts and low biodegradability. This study used azo dyes Acid Red B and Acid scarlet GR as the research objects, investigated the influence of preparation and reaction conditions on catalytic ozonation of Acid Red B and Acid scarlet GR, and explored the catalyzing mechanism. The main results are as follows:
     A series of metal oxide catalysts were prepared by nitrate-citrate combustion route, the iron and Fe-Cu oxide had better catalytic effect on ozone oxidation. When adding iron and Fe-Cu oxide for 20 min, the removal rate of acid red B increased by 7% and 24%, which compared with ozone alone. After 60 min reation, the COD removal rate of adding iron and Fe-Cu oxide were 60% and 70%, while ozone alone was 48%. The results of EDS and catalyst repeated experiment showed that the catalyst had good stability. It is suggested that the catalyzing mechanism of catalytic ozonation of Acid Red B by Fe-Cu mixed oxide were: dissolved ozone were decomposed to hydroxyl radicals by the catalyst surface hydroxyl groups, and then hydroxyl radicals and dissolved ozone oxidated Acid Red B which in solution or chemical adsorption on the catalyst surface. The main degradation intermediate product of Acid Red B was acetic acid. The degradation pathway of acid red B was deduced, and the kinetics model of acid red B and COD degradation were established. In three systems, the degradation of acid red B and COD met pseudo first-order kinetics equation.
     A series of alumina catalysts were prepared by impregnating method, the Co/Al_2O_3 and Ni-Co/Al_2O_3 had better catalytic effect. The best preparation conditions of catalysts were: 2% of Co loading, Stirring for 4h, calcination for 2h, calcination temperature was 500℃, 2% of Ni loading. After 10 min reation, the Acid Scarlet GR removal rate of adding Co/Al_2O_3 and Ni-Co/Al_2O_3 were 69% and 80%, while ozone alone was 54%. After 45 min reation, the COD removal rate of adding Co/Al_2O_3 and Ni-Co/Al_2O_3 were 59.4% and 78.6%, while ozone alone was 28.6%. The results of EDS, surface area, SEM and catalyst repeated experiment showed that the catalyst had good stability. It is deduced that the catalyzing mechanism of catalytic ozonation of Acid Scarlet GR with Ni-Co/Al_2O_3 were: dissolved ozone were decomposed to hydroxyl radicals by the catalyst surface hydroxyl groups, and then hydroxyl radicals and dissolved ozone oxidated Acid Scarlet GR which in solution and physical adsorption on the catalyst surface. The degradation pathway of Acid Scarlet GR was deduced, and the kinetics model of Acid Scarlet GR and COD degradation were established. In three systems, the degradation of Acid Scarlet GR and COD met pseudo first-order kinetics equation.
引文
[1] S. M. Avramescu, N. Mihalache, C. Bradu, et al. Catalytic ozonation of acid red 88 from aqueous solutions[J]. Catalysis Letters, 2009,129(3-4):273-280
    [2]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:中国纺织出版社,2004:2-28
    [3]刘厚田.藻菌系统降解偶氮染料[J].环境科学学报,1993,3(10):332-333
    [4]王峥.复合光催化剂的制备及其降解水中染料的应用研究[D].上海:同济大学,2007
    [5]王军芳.非均相催化臭氧氧化活性染料废水的研究[D].上海:上海交通大学,2008
    [6]张小漩,叶李艺,沙勇等.活性炭吸附法处理染料废水[J].厦门大学学报, 2005,44(4):542-545
    [7] O. J. Hao, H. Jim and P. C Chiang. Decolorization of wastewaster[J].Environmental Science and Technology,2000,30(4):449-505
    [8] D. E. Katsoulis, M. T. Pope. New chemistry of hetemopolyanions in anhydrous no-polar Solvents coordinative unsaturation of surface atoms polyanion oxygen carried [J]. Journal of the American Chemical Society, 1984,106:2737~2738
    [9] C. P. Huang, C. Dong, Z. Tang. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993, 13(5-7):361-377
    [10] V. Camel, A. Bermond. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research, 1998, 32(11): 3208-3222
    [11] B.Langlais, D.A.Rechkhow, D.R.Brink. Ozone in water treatment: application and engineering[J], Lewis Publishers,Chelsea,MI,1991:20-34
    [12]孙贤波,赵庆祥,曹国民,周军.高级氧化法的特性及应用[M].中国给水排水,2002,18(5):33-35
    [13] J.Hoigné, H.Bader. Rate constants of reaction of ozone with organci andInorganic compounds in water part I:non-dissociating organic compounds[J].Water Reseach,1983,17(2):173-185
    [14] C.P. Huang, C. Dong, Z. Tang. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment [J]. Waste Management, 1993, 13(5-7): 361-377
    [15] R. Andreozzi, V. Caprio, A. Insola, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1): 51-59
    [16] P.M. Alvarez, F.J. Beltran, F.J. Masa, et al. A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment[J]. Applied Catalysis B: Environmental, 2009, 92 (2009):393–400
    [17] L. Zhao, Z. Sun, J. Ma. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution[J]. Environment Science and Technology, 2009, 43 (2009):4157-4163
    [18] Z.Q. Liu, J. Ma, Y.H. Cui, et al.Factors affecting the catalytic activity of multi-walled carbon nanotube for ozonation of oxalic acid[J].Separation and Purification Technology,2011,78(2):147-153
    [19] C.A. Orge, J.J.M. Orfao, M.F.R. Pereira. Catalytic ozonation of organic pollutants in the presence of cerium oxide-carbon composites[J]. Applied Catalysis B: Environmental,2011, 102(3-4):539-546
    [20] N. Pugazhenthiran, P. Sathishkumar, S. Murugesan, et al. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles[J]. Chemical Engineering Journal, 2011,3(168): 1227-1233
    [21] S.P. Tong, R. Shi, H. Zhang, et al. Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2,4-dichlorophenoxy)propionic acid, nitrobenzene and oxalic acid in water[J]. Journal of Environmental Sciences, 2010,10(22): 1623-1628
    [22] H. Valdes, C. A. Zaror. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by acitived carbon: kinetic approach[J]. Chemosphere,2006,65(7):1131-1136
    [23] L.C. Lei, L. Gu, X.W. Zhang, et al. Catalytic oxidation of highly concentrated real industrial wastewaterby integrated ozone and activated carbon[J].Applied Catalysis A: General , 2007,327 (2007): 287–294
    [24] S. Pirgal?oglu, T. A. Ozbelge. Comparison of non-catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst[J].Applied Catalysis A: General, 2009,363 (2009):157–163
    [25] J.E. Lee, B.S. Jin, S.H. Cho, et al. Catalytic ozonation of humic acid with Fe/MgO[J]. Reaction Kinetics and Catalysis Letters,2005,85(1):65-71
    [26] S.P. Tong, W.P. Liu, W.H. Leng, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere.2003,50(10):1359-1364
    [27]张彭义,祝万鹏,吕斌. Ni、Fe氧化物对吐氏酸废水催化臭氧化研究[J].上海环境科学, 1996, 15(10):25-27
    [28] M. Ernst, F. Lurot, J.C. Schrotter. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide[J]. Applied Catalysis B:Environmental,2004,47(1):15-25
    [29]李欣,边疆,朱学多,等. CuO-MnO2/Al2O3催化臭氧化催化剂的制备、结构表征及性能[J].高等学校化学学报,2007,28(6):1155-1159
    [30]万山红,李欣,覃吴,等. NiO-MnO2/Al2O3催化臭氧化催化剂的制备及性能[J].材料科学与工艺,2008,16(3):415-418
    [31] W. Qin, X. Li, J.Y. Qi. Experimental and theoretical investigation of the catalytic ozonation on the surface of NiO-CuO nanoparticles[J]. Langmuir,2009,25(14):8001-8011
    [32] B. Legube, N. K. V. Leitner. Catalytic ozonation: a promising advanced oxidation technology for water treatment[J]. Catalysis Today, 1999, 53(1):61-72
    [33] E. Piera, J.C. Calpe, E. Brillas, et al. 2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems[J]. Applied Catalysis B: Environmental, 2000, 27(3) :169-177
    [34] H.B. Kasprzyk, M. Ziólek, J. Nawrocki. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied CatalysisB:Environmental,2003,46(4):639-669
    [35] F. J. Beltrán, F. J. Rivas, R. M. Espinosa. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor[J]. Applied Catalysis B: Environmental, 2002, 39(3):221-231
    [36] R.C. Martins, R. M. Quinta-Ferreira. Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst[J], Applied Catalysis B: Environmental, 90 (2009):268–277
    [37] Y. Li, C. Hu , Y. Nie, et al. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide[J]. Environment Science and Technology. 2009, 43, 2525–2529
    [38] Y. F. Rao, H. J. Luo, C. H. Wei, et al. Catalytic ozonation of phenol and oxalic acid with copper-loaded activated carbon[J]. Journal of central south university of technology,2010,17(2):300-306
    [39]毛传峰.臭氧及催化臭氧化降解对氯苯酚和磺基水杨酸[D].浙江大学硕士论文,2003
    [40] A. Saberi, F. Golestani-Fard, H. Sarpoolaky, et al. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route[J]. Journal of Alloys and Compounds,2008, 462(1-2):142-146
    [41]杨晶.改进溶胶凝胶法制备氧化锆及氧化钛纳米材料[D].长春:吉林大学,2006
    [42] J. Yang, J. Lian, Q. Dong, et al. Synthesis of YSZ nanocrystalline particles via the nitrate–citrate combustion route using diester phosphate (PE) as dispersant[J]. Materials Letters, 2003, 57 (2003) :2792–2797
    [43] B. Kasprzyk-Hordern, M. Zió?ek, J. Nawrocki. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental,2003,46(4):639-669
    [44] B. Legube, N. K. V. Leitner. Catalytic ozonation: a promising advanced oxidation technology for water treatment[J]. Catalysis Today,1999,53(1):61-72
    [45] M. Sui, L. Sheng, K. Liu, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B: Environmental,2010,96(1-2):94-100
    [46] T. Zhang, C.J. Li, J. Ma, et al. Surface hydroxyl groups of synthetic a-FeOOH in promoting ?OH generation from aqueous ozone: Property and activity relationship[J]. Applied Catalysis B: Environmental, 2008,82(1-2):131-137
    [47] G. Moussavi, M. mahmoudi. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals[J]. Chemical Engineering Journal,2009,152(1):1-7
    [48] C.H. Wu, C.Y. Kuo, C.L. Chang. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor[J]. Journal of Hazardous Materials,2008,154(1-3):748-755
    [49] F. Erol, T.A. ?zbelge. Catalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactor[J]. Chemical Engineering Journal,2008,139(2):272-283
    [50] F.J. Beltrán, F.J. Rivas, R. Montero-de-Espinosa. A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water[J]. Applied Catalysis B: Environmental,2004,47(2):101-109
    [51] J. Ma, M.H. Sui, T. Zhang, et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene[J]. Water Research,2005,39(5):779-786
    [52]石锐,张华,童少平,等.臭氧及催化臭氧化降解2,4-滴丙酸动力学研究[J].环境科学学报,2009,29 (8):1701-1706
    [53]沈希裴.高铁酸钾与臭氧联用处理印染废水的试验研究[D].杭州:浙江工业大学,2009
    [54]孙志忠,赵雷,马军.水中本底成分对催化臭氧化分解微量硝基苯的影响[J].环境科学, 2006, 27(2):285-289
    [55]赵宜江,张艳.印染废水吸附脱色技术的研究进展[J].水处理技术,2000.26(6):315-320
    [56]储金宇,吴春笃,陈万金等.臭氧技术与应用[M].化学工业出版社.2002: 24
    [57] N. Fiol, I. Villaescusa. Determination of sorbent point zero charge: usefulnessin sorption studies[J]. Environment Chemical Letter, 2009, 7 (2009):79–84
    [58] S. Mustafa , B. Dilara, K. Nargis, et al. Surface properties of the mixed oxides of iron and silica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 205(2002) :273–282
    [59]隋铭皓,马军.臭氧/活性炭对硝基苯去除效果的研究[J].中国给水排水. 2001,17(10): 70一74
    [60] H. Tamura, A. Tanaka, K. Mita, et al. Surface hydroxy site densities on metal oxides as a measure for the ion-exchange capacity[J]. Journal of Colloid and Interface Science, 1999, 209: 225-231
    [61] B. Dhandapani, S.T. Oyama. Kinetics and mechanism of ozone decomposition on a manganese oxide catalyst[J]. Chemical Letters,1955, 6:413一414
    [62] H. S. Kim, T. W. Kim, H. L. Koh, et al.Complete benzene oxidation over Pt-Pd bimetal catalyst supported on Al2O3:influence of Pt-Pd ration on the catalytic activity[J]. Applied Catalysis A: General, 2005, 280:125-131
    [63]李小梅,邓谦,肖菡曦.负载型Au/Al2O3系列催化剂的研究[J].吉首大学学报(自然科学版),2006,27(2):104-109
    [64]雷乐成,汪大翠编著.水处理高级氧化技术[M].北京:化学工业出版社,2001:202-208
    [65]张晓慧.催化臭氧氧化法处理有机废水的研究[D].天津大学硕士论文,2006
    [66] R.Andreozzi. The kinetics of Mn(II)-catylysed ozonation of oxalic acid in aqueous solution [J]. Water Research, 1992, 26(7): 917-921
    [67]王静,吴银索,黄邵勇,马子川,贺泓.γ-Al2O3负载的Pt,Pd催化剂上邻二甲苯的深度催化氧化[J].河南示范大学学报(自然科学版),2008,32(1):73-76
    [68] T. Tabakova. Au/α-Fe2O3 catalyst for water gas shift reaction prepared by deposition precipitation[J]. Applied Catalysis A: General, 1998,169:9-14
    [69] R. Gracia, J.L. Aragues, J.L. Ovelleivo. Mn-catalysted ozonation of raw Ebro rive water and its ozonation by-products [J]. Reation Research, 1998, 32(1): 57-62
    [70]叶超莲.芬顿试剂催化氧化酸性大红GR染料废水的研究[J].江西化工,2003,32(1)55-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700