注采气过程中地下盐岩储气库可用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐岩的低渗透性能保证储库的密闭性;良好的蠕变行为和损伤自我恢复性可保证其力学稳定性,以适应储库压力的变化。因此,盐岩已被公认为储存天然气的理想场所。鉴于我国能源的需求、储备的实际情况和盐矿资源分布情况,储库的建设得到了国家和许多学者越来越多的重视。本文以我国第一个地下盐岩储气库(江苏金坛储气库)为示范工程,系统开展了地下盐岩储气库运营中两个阶段(注气排卤阶段和注采周期阶段)相关力学问题的研究。主要研究内容及研究成果如下:
     1、通过单三轴压缩、直剪、单三轴蠕变实验研究了盐岩的力学特性,得到了蠕变损伤模型在数值计算中所需要的参数。
     2、针对地下储气库中数值计算结果难以验证的问题,利用废弃溶腔建立了观察井来监测溶腔由于蠕变引起的体积收缩,并通过实验和理论推导,验证了该方法在理论和实践上的合理性。利用监测数据,通过优化反演的方法得到了金坛盐岩蠕变损伤本构模型的实际蠕变参数,并应用于以后各章的数值计算中。
     3、针对储气库在注采过程中受周期荷载,将其考虑为蠕变损伤和疲劳损伤的交互作用,用理论推导的方法得到了一个新的蠕变.疲劳交互损伤模型。利用力学实验的方法,研究了盐岩在单、三轴周期荷载作用下的疲劳特性,并利用试验数据回归了蠕变-疲劳交互损伤模型的参数。利用数值软件中对材料本构模型进行二次开发留下的接口,通过VC++对盐岩蠕变-疲劳交互损伤本构模型进行了编程。
     4、针对注气排卤系统中腔内压力变化规律,主要研究了注气排卤中气液界面的确定方法;分析和推导了注气压力、气液面高度、排卤速度等因素的关系式,并利用注气压力理论计算值和实际监测数据相比较,验证了该关系式在实际工程中的可用性.。最后建立了金坛6口溶腔的三维数值模型,运用蠕变损伤本构模型和Cosserat扩展介质本构模型对腔体在注气排卤期间的可用性及细小夹层对可用性的影响进行了研究。
     5、运用蠕变损伤模型和蠕变-损伤交互损伤本构模型考虑了注采运行中恒定内压、采气速率、循环次数三个因素对储气库体积变形规律的影响,获得了一些有益结论,并应用于指导注采气运行方案的制定。
Salt rock with low permeability can ensure the tightness of the storage in salt rock formation and its good creep behavior and ability of self-recovery of damage can lead to stable mechanical behaviors so that it can adapt well to the variation of the pressure of the storage. As a result, salt rock is a well-known ideal medium for the storage of natural gas. In light of our energy demand, the present status of energy storage and the distribution of salt mines, the whole country and many researchers have attached increasing importance to the construction of gas storages. Taking the first underground salt rock gas storage in our country (Jiangsu Jintan gas storage) as an example, the paper gives a systematic analysis of the mechanical problems involved in the two phases of the operation of the underground salt rock gas storage (the phase of gas injection and brine discharge and the periodic phase of gas injection and production). The main research results are as follows:
     1. With the mechanical characteristics of salt rock investigated by uniaxial and triaxial compression test, direct shearing test, and uniaxial and triaxial creep test, the parameters needed in numerical calculations are obtained for the creep damage constitutive model.
     2. In response to the fact that results of numerical calculation are difficult to testify in underground gas storages, the author works out a method that is proved to be reasonable both theoretically and practically by experiment and theory deduction. It is to build an observation well out of an abandoned cavity to monitor the volume contraction caused by creep. Then the monitored data can be used to obtain by optimization and inversion the actual creep parameters of the creep damage constitutive model which can later be applied into numerical calculations in each chapter.
     3. Provided that gas storage is subject to periodic load in the process of gas injection and production and taken into account the interaction between creep damage and fatigue damage, a new creep-fatigue damage constitutive model is produced by the means of theory deduction. The fatigue properties of salt rock under the effect of uniaxial and triaxial periodic load are investigated by making mechanical experiments. At the same time, the parameters of the creep-fatigue damage constitutive model are obtained from the experimented data. By making use of the interface left in the second development process of material constitutive model in numerical software, the creep-fatigue damage constitutive model of salt rock is programmed by VC++.
     4. Based on the law of cavity pressure change in the gas injection and brine discharge system, how to identify the interface between gas and liquid while conducting gas injection and brine discharge is studied. Meanwhile, formulae concerning elements such as pressure of gas injection, height of gas and liquid level and speed of brine discharge are analyzed and established. In addition, the usability of such formulae in real projects is testified by making comparison between the values calculated through the theory of gas injection pressure and the data monitored on real sites. At last with a three-dimensional numerical model of the six cavities in Jintan successfully built, some researches are carried out to study the practicality of creep damage constitutive model and expanding Cosserat medium constitutive model in cavity during the period of gas injection and brine discharge as well as the influences of the tiny interlayer on the usability.
     5. The effects of three factors (constant internal pressure, rate of gas production and circling times) on the deformation law of gas storage volumes during the operation of gas production are considered by using creep damage constitutive model and creep-fatigue damage constitutive model, which leads to some helpful conclusions that can be applied to guide the formulation of a scheme for operating gas injection and production.
引文
[1]周凤起.对中国石油供应安全的再思考.国际石油经济,2005,13(1):34-38
    [2]梁卫国、赵阳升.岩盐力学的特性试验研究.岩石力学与工程学报,2004,23(3):391-394.
    [3]P.Consenza,M.Ghoreychi,et al.In situ rock permeability measurement for long term safety assessment of storage,Int.J.Rock Mech.Min.Sci.1999,(24):509-526.
    [4]P.Consenza,M.Ghoreychi,et al.Effect of added fluids on mechanical behavior of rock salt.Proc.1998 Euroconference on Pore pressure,scale effects and the deformation of rocks.Aussois,France,1998.
    [5]P.A.Fokker.The behavioer of salt and salt caverns.Prodfschrift,technische Universiteit Delft,1995,143.
    [6]杨春和,李银平等.云应盐矿地质可储性关键技术研究报告.2005.
    [7]杨春和,陈锋等.金坛盐矿已有溶腔可用性评估报告.2005.
    [8]王贵军.盐岩层中洞室型天然气地下存储场的岩石力学设计基础.北京:北京科技大学博士后研究工作报告,2003.
    [9]S.Werner.An estimate of the Brittle to ductile transition in salt.The first Conference on the Mechanical Behavior of salt.Trans Tech publications 1981,381-388.
    [10]F.D.Hansen,K.D.Mellegard & P.E.Senseny.Elasticity and strength of the natural rock salt.The Mechanical Behavior of Salt Proc.Ist Conf.Eds.H.R.Hardy,Jr.and M.Langer,Trans Tech Publ.Clausthal-Zellerfeld,1981,71-83.
    [11]F D.Hansen,K.D.Mellegard & P.E.Senseny.Elasticity Behavior of salt.Proc.lst Conf.Eds.H.R.Hardy,Jr.,and M.Langer,Trans Tech Publ.,Clausthal-Zellerfeld,1984,71-83.
    [12]U.Hunsche.Fracture experiments on cubic rock salt samples.The first Conerfence on the Mechanics Behavior of Salt.Trans Tech publications 1984,169-179.
    [13]U.Hunsche.A failure criterion for natural polycrystalline rock salt.Advances in Constitutive Laws for Engineering Material.Proc.ICCLEM.Eds.Fan Jinghong and S.Murakami,International Academic Publ.1989,(2):1043-1046.
    [14]U.Hunsche,H.Albricht.Results of true triaxial strength tests on rock salt Enginnering fracture mechanics.1990,35(4/5):867-877.
    [15]I.W.Farmer & M.J.Gilbert.Dependent strength reduction of rock salt.The first Conference on the Mechanical Behavior of salt.Trans Tech publications 1981,4-18.
    [16]严仁俊,裴小彬,罗鑫,熊玉霞,刘绘新.四川三叠系盐岩蠕变规律实验研究.西部探矿工程,2005,17(4):93-94.
    [17]吴文.岩盐的静、动力学特性实验研究与理论分析.中科院武汉岩土力学研究所,2002.
    [18]杨春和,陈锋等.西气东输工程金坛盐矿储气库研究报告.2004
    [19]杨春和,陈锋,尹雪英等.金坛盐矿已有溶腔可用性评估报告.2005.
    [20]杨春和,李银平,尹雪英等.云应盐矿地质可储性关键技术研究报告.2006.
    [21]陈锋.盐岩力学特性及其在储气库建设中的应用研究.博士学位论文.武汉:中国科学院武汉岩土力学研究所.2006.
    [22]刘新荣,鲜学福,马建春.三轴应力状态下盐岩力学性质试验研究,地下空间,2004,24(2):153~165
    [23]李银平,刘江,杨春和.泥岩夹层对盐岩变形和破损特征的影响分析.岩石力学与工程学报,2006,25(12):2461-2466.
    [24]尹雪英.泥岩夹层对层状盐岩构造中油(气)储库稳定性影响研究.博士学位论文.武汉:中国科学院武汉岩土力学研究所.2008.
    [25]Hunsche U.Result and interpretation of creep expriments on rock salt[A].The first conference on the Mechanicals Behave of Salt[C].Trans Tech publication,1984:159-167.
    [26]Cristescu N D.A general constitutive equation for transient and stationary creep of rock salt[J].Int.J.Rock Mech.Sci.&Geomech Abstr.1993(30),2:125-140.
    [27]Cristescu N D.Paraschive I.Creep amd creep damage around large rectangular-like carverns[J].Machanics of Cohesive-Frictional Materials.1996(1):167-197.
    [28]Hampel A,Hunsche U,et al.Description of the creep of rock salt with the composite model-ⅡSteady-State creep[A].The 4th conference on the Mechanicals Behave of Salt[C].Trans Tech publication,1996:287-299.
    [29]Thawatchai Plookphol.Similarity and scaling properties in dislocation microstructures generated during High-Temperature load relaxation and creep of rock salt and san carlos olivine single crystals.[Ph.D.Dissertation].University of Wisconsin-Madison,2001
    [30]V.A.Asanov,I.L.Pan'kov.Deformation of salt rock joints in time[J].Journal of Mining Science.2004(40):154-169.
    [31]邱贤德,姜永东,阎宗岭,庄乾城.岩盐的蠕变损伤破坏分析.重庆大学学报(自然科学版),2003(5):106-109
    [32]杨春和,陈锋,曾义金.盐岩蠕变损伤本构关系研究.岩石力学与工程学报2002(11):1602-1604.
    [33]Yang Chunhe,Daeman JJK,Yin Jianhua.Experimental investigation of creep behavior of salt rock[J].International Journal of Rock Mechanics and Mining Science,2000,36(2):336-341.
    [34]杨春和,殷建华,Daeman JJK.盐岩应力松弛效应的研究.岩石力学与工程学报,1999,18(3):262-265.
    [35]K.H.Lux & S.Heusermann.Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws.Proc.6th Int.Symp on salt.Eds.
    [36]D.Munson & W.Wawersik.Constitutive modeling of salt behavior-state of the technology.Proc 7th Int.Conger.On Rock Mechanics.Ed.W.Wittke.Balkema,Rotterdam,1993(3):1797-1810.
    [37]D.Munson,K.Devries & A.F.Fossum,et al.Extension of the M-D model for treating stress drops in salt.The mechanical Behavior of salt.Proc.3rd Conf.Eds.Hardy&M.Langer,Trans Tech Publ.,Clausthal-Zellerfeld.1996,31-44.
    [38]M.Aubertin.On the physical origin and modeling of kinematic and isotropic hardening of salt.The Mechanical Behavior of salt.Proc.3rd Conf.Eds.M.Ghoreychi,P.Berest,H.R.Hardy,Jr.and M.Langer.Trans Tech Publ.,Clausthal-Zellerfeld.1996:3-17.
    [39]M.Aubertin,D.E.Gill & B.Ladanyi.Constitutive equations with internal state variables for the inelastic behavior of soft rocks.Appl.Mech.Reviews.ASME.1994,47(6-2):97-101.
    [40]U.Hunsche.Result and interpretation of creep experiments on rock salt.The Mechanical Behavior of salt.Proc.1st Conf.Eds.H.R.Hardy,Jr.,and M.Langer,Trans Tech Publ.,Clausthal-Zellerfeld,1981,159-167.
    [41]U.Hunsche.Uniaxial and triaxial creep and failure tests on rock:experimental technique and interpretation.Visco-Plastic Behavior of Geomaterials.Eds.N.D.Cristescu,and G.Gioda,Springer-verlag,Wien-New York,1994,1-53.
    [42]E.K.S.Passaris.The rheological behavior of rock salt as determined in an in situ pressured test cavity.International society for rock mechanics.5th congress 1,1979,257-264.
    [43]J.Musso & G..Vouille.A comparative study of creep,relaxation,cycle loading tests to determine the rheological model of marl and salt.International society for rock mechanics,3rd congress ⅡA,.1974,348-353.
    [44]Bergeron W.J.The finite analysis of salt pillar model.Ph.D.thesis,Luisiana state university,Baton Rouge,1968,165
    [45]P.Cundall.Explicit finite difference method in geomechanics.Numerical methods in geomichanics,edited by Desai,C.,1978,132-150.
    [46]A.Hample,U.Hunsche,P.Weidinger & W.Blum.Description of the creep of rock salt with the composite model-Ⅱ.Steady-state creep.Mechanical Behavior of salt.Proc.4th Conf.Eds.Hardy and M.Langer.Trans Tech Publ.Clausthal-Zellerfeld.287-299.1996.
    [47]S.Vogler & W.Blum.Micromechanical modeling of creep in term of the composite model.Proc,4th Int.Conf.on Creep and Fracture of Engineering Materials and Structures.Eds.B.Wilshire and R.W.Evans.The Institute of Materials.London,67-69.
    [48]N.L.Carter,S.T.Horseman,J.E.Russell & J.Handin.Rheology of rocksalt.Journal of Structural Geology,Volume 15,Issues 9-10,September-October 1993,Pages 1257-1271.
    [49]W.Wawersik.Determaination of steady state creep rates and activation parameters for rock salt.Measurement of Rock Properties at Elevated Pressure and Temperatures.ASTM STP 869.Eds.H.J.Pincus and E.R.Hoskin..ASTM,Philadephina,1985,72-92.
    [50]W.R.Wawersik & D.H Zeuch..Modeling and mechanicstic interpretation of creep of rock salt below 200℃.Tectonophysics 121,125-152.1988.
    [51]D.E.Munson,J.R.Weatherby and K.L.Devries.Two-and three-dimensional calculations of scaled in situ tests using the M-D model of salt creep.International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,Volume 30,Issue 7,December 1993,Pages 1345-1350
    [52]K.S.Chan,S.R.Bodner,A.F.Fossum and D.E.Munson.A constitutive model for inelastic flow and damage evolution in solids under triaxial compression.Mechanics of Materials,Volume 14,Issue 1,November 1992,Pages 1-14
    [53]K..S.Chan,N.S.Brodsky,A.F.Fossum,S.R.Bodner and D.E.Munson.Damage-induced nonassociated inelastic flow in rock salt.International Journal of Plasticity,Volume 10,Issue 6,1994,Pages 623-642.
    [54]U.E.Hunsche.Failure behaviour of rock salt around underground cavities.7th International Symposium on Salt,Kyoto,Japan,1992.
    [55]C.J.Spiers,C.J.Peach & R.H.Brzesowsky,et al.Long-term rheological and transport properties of dry and wet salt rocks.EUR 11848,prepared for commission of the European Communities,by University of Utrecht,Utrecht,The Netherlands,1988.
    [56]J.L.Ratigan,L.L.V Sambeek & K.L.DeVries,et al.The influence of seal design on the developmnet of the disturbed rock zone in the WIPP alcove seal tests.Topical Report RSI-0400,prepared by Parsons Brinckerhoff,San Francisco,CA,and RE/SPEC Inc.,Rapid City,SD,for Sandia National Laboratoris,Albuquerque,NM,1991.
    [57]A.F.Fossum,et al.Constitutive basis of the MDCF model for rock salt.The mechanical behavior of salt Proc.4th Conf.Eds.Michel Aubertin &Hardy,Trans Tech Publ.,Clausthal-Zellerfeld 1996,235-248.
    [58]Chan K..S,Bodner S.R,Fossum A.F,et al.A damage mechanics treatment of creep failure in rock salt.International Journal of Damage Mechanics,1997,6(1):121-152.
    [59]Chan K S.and S.R.Bodner.Application of isochronous healing curves in predicting damage evolution in a salt structure.International journal of damage mechanics,2000,(9):130-153.
    [60]Chan K S.Permeability of Wipp salt during damage evolution and healing.International journal of damage mechanics,2001,(10):347-375.
    [61]N.D.Cristescu & U.Hunsche.Time effects in rock mechanics.Proc.6th Int.Symp on salt.Eds.B.C.Schreiber and H.L.Harner.The salt Institute,Alexandria,USA.(2):315-323.
    [62]N.D.Cristescu.A general constitutive equation for transient and stationary creep of rock salt.Int.J.Rock Mech.Min.Sci&Geomech Abstr.1993,30(2):125-140.
    [63]N.D.Cristrscu & I.Parachiv.Creep and Creep damage around large rectangular-like caverns.Mechanics of Cohesive-Frictional Material.1996(1):165-197.
    [64]J.H.Jin and N.D.Cristescu.An elastic/viscoplastic model for transient creep of rock salt.International Journal of Plasticity,Volume 14,Issues 1-3,1998,Pages 85-107.
    [65]U.Hunsche & O.Schulze.Das Kriechverhalten von Steinsalz.Kali und Steinsalz,Band 11,Heft 8/9,1994,238-255.
    [66]K.H.Lux & Z.M.Hou.New developments in mechanical safety analysis of repositories in rock salt.In:Proc.Int.Conf.On radioactive waste disposal,disposal technologies & concepts.Berlin:Springer Verlag,2000:281-286.
    [67]王贵君.一种盐岩流变损伤模型.岩土力学.2003,24(增):81-84.
    [68]陈锋,杨春和,白世伟.盐岩储气库蠕变损伤分析.岩土力学,2006(6)
    [69]H.A.W.Cornelissen.Fatigue failure of concrete in tension[J].Herson,1984,29(4):68.
    [70]林燕清.混凝土疲劳累积损伤力学性能劣化研究[博士学位论文][D].哈尔滨建筑大学.1998.
    [71]林燕清,欧进萍.混凝土疲劳剩余寿命预测的变形演变决定法[J].工业建筑,1999,29(9):46-52.
    [72]林燕清,欧进萍.混凝土多级等副疲劳的变形发展规律试验研究[J].哈尔滨建筑大学学报,1999,32(1):11-17.
    [73]刘雄.岩石流变学[M].北京:地质出版社,1994.
    [74]Memery,Holcomb D J.Relaxation and microfracturing in dilatant rock[J].Journal of Geophysical Research,1981,86(B7):6235-6248.
    [75]Koichi Akai.Plate loading tests on multi-played sedimentary rocks[C].The 5th National Rock Mechanics conference.Australia,1983,1:121-124.
    [76]Tutuncu A N,Podio A L,Sharma M N.Nonlinear viscoelastic behavior of sedimentary rocks,Part Ⅱ:Hysteresis effect and influence of type of fluid on elastic moduli[J].Geophysics,1998,63(1):184-190.
    [77]Tutuncu A N,Podio A L,Sharma M N.Nonlinear viscoelastic behavior of sedimentary rocks,PartⅠ:effect of frequency and strain amplitued[J].Geophysics,1998,63(1):195-203.
    [78]Ray S K,Sarkar M,Singh T.N.Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(4):543-549.
    [79]Yoshinaka R,Tran T V,Osada M.Non-linear stress and strain dependent behavior of soft rocks undercyclic triaxial conditions[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(7):941-955.
    [80]Gatelier N,Pellet F,Loret B.Mechanical damage of an anisotropic porous rock in cyclic triaxial tests[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(3):335-354.
    [81]Akesson,Urban(Swedish Natl.Testing/Res.Inst.);Hansson,Jan;Stigh,Characterisation of microcracks in the Bohus granite,western Sweden,caused by uniaxia cyclic loading[J].Engineering Geology,2004,72(1-2):131-142.
    [82]Bagde M N,Petros V.Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):237-250.
    [83]许江,鲜学福,王鸿.循环载荷作用下周期充水岩石变形规律的研究[J].地下空间与工程学报,2006(2):556-560.
    [84]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [85]葛修润,蒋宇等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
    [86]许江,王维忠,杨秀贵.细粒砂岩在循环加、卸载条件下变形特性的实验研究[J].重庆大学学报(自然科学版).2004,27(12):60-63.
    [87]许江,冯涛,鲜学福.低应力水平下循环载荷对岩石杨氏模量影响的研究(EI收录)[J].湘潭矿业学院学报.2001,16(1):14-16.
    [88]许江,大久保诚介,鲜学福.循环载荷对三城目安山岩变形特性的影响[J].重庆大学学报(自然科学版).2000,23(6):38-41.
    [89]许江,鲜学福,王维忠.三峡库区地质灾害防治工作中的几个关键问题[J].重庆大学学报(自然科学版).2004,27(10):121-124.
    [90]许江,鲜学福,唐建新.论三峡库区地质灾害的非线性科学理论与控制[J].重庆大学学报(自然科学版).2002,25(5):119-123.
    [91]席道瑛,王春雷,田象燕.滞回曲线对应力振幅和频率的响应[J].物探化探计算技术.2001,23(2):121-124.
    [92]席道瑛,刘斌,田象燕.饱和砂岩的各向异性及非线性粘弹性响应[J].地球物理学报,2002,45(1):104-118.
    [93]席道瑛,王少刚,刘小燕等.岩石的非线性弹塑性响应[J].岩石力学与工程学报,2002,21(6):772-777.
    [94]席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术.2004,26(3):193-198.
    [95]陈运平,席道瑛,薛彦伟.循环载荷下饱和岩石的应力—应变动态响应[J].石油地球物理勘探,2003,38(4):409-413.
    [96]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报.2004,47(4):672-679.
    [97]刘云平,席道瑛,张程远等.循环应力作用下大理岩砂岩的动态响应[J].岩石力学与工程学报,2001,20(2):216-219.
    [98]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [99]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [100]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [101]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991.
    [102]沈为,彭立华.损伤力学[M].武汉:华中理工大学出版社,1995.
    [103]Chbaoche J.L.Continuum damage mechanics,PartⅠand PartⅡ[J].ASME J.APPI.Mech.,1988(55):59-72.
    [104]Kachanov L.M.Introduction to continue damage machanics[M].Dordrecht:Martinus Nijhoff Publishers,1986.
    [105]Chbaoche J.L.Continuum damage mechanics,A tool to describe phenomena before crack initiation[J].Nucl.Eng.Des,1981,64:233-247.
    [106]Robotnov Yu N.On the equations of state for creep.Progress in Appplied Mechanics,1963,307-315.
    [107]Janson J,Hult J.Fracture mechanics and damage mechanics,a combined approach.J,de Mech.Appl.,1977,1(1):59-64.
    [108]Lemaitre J.A course on damage mechanics.Spring-Ver-lag,1992.
    [109]Lemaitre J,Chbaoche J.L.Mecanique des materriaux solides,Chap 7,Endommagement,Dunond,1985.
    [110]Krajcinovic D,Lemaitre J.Continuum damage machanics,Theory and Applications.Spring-Verlag,1987.
    [111]Krajcinovic D,Fonseka G U.The continue damage theory of brittle materias,Part Ⅰ,Ⅱ.J Applied Mechanica Trans.of ASME,1981,48:809-824.
    [112]D.Krajcinovie.Continuum damage mechanies,theory and application.SpringerVerlag,1987.
    [113]Chaboche J,Lemaitre J.IUAM Symp.“Mechanics of viscoelastic media&bodies”,ed.by Hult J,1974,201.
    [114]Marigo JJ.Modelling of brittle and fatigue damage for elastic materials by growth of microvoids.Eng.Fracture Mechanics,1985,21(4):861-874.
    [115]Chudnovsky A L.In workshop on a continuum mech.Approach to damage&life prediction,ed.by Krempl E,Butler and Park K Y,1980,79-81.
    [116]李浩,郭应桐.岩石在复杂荷载下的细观损伤模型[J].岩土力学.2001,22(2):159-162.
    [117]王德玲,沈疆海,葛修润.岩石疲劳扰动模型的研究[J].水利与建筑工程学报,2006,4(2):32-33+58.
    [118]周尚志,党发宁,陈厚群,等.岩石类材料疲劳破坏裂纹扩展分析的数值方法[J].岩土力学,2008,29(3):769-774.
    [119]樊秀峰,简文彬.砂岩疲劳特性的超声波速法试验研究[J].岩石力学与工程学报,2008,27(3):557-563
    [120]K.H.Lux.Gebismechanischer entwurf und felderfahrungen im Salzkavernenbau.Stuttgart:Ferdinand Enke Verlag,1984.
    [121]Barron T F.Regulatory technical pressures prompt more US salt-cavern gas storage[J].Petroleum society of CIM,1995(2):55-67.
    [122]W.Menzel & W.Schreiner.Geomechanical aspects for the establishment and the operation of gas cavern stores in salt formations of the GDR.In:Proc.Int.Conf.On Storage of gases in rock caverns.Trondheim,Norway,1989,115-120.
    [123]Schnidt T H.Fracture tests for determining primary stress conditions in salt deposits provide clues to the rock mechanics of salt cavernsfA].In:Proc.7th Symp.On salt[C],Elesevier,vol 1,135-140,1993.
    [124]Durup J G.Long term tests for tightness evaluations with brine and gas in salt[A].in:Proc.SMRI Fall Meeting[C].Hannover,1994.
    [125]Rummel F,Benke K,Denzau H.Hydraulic fracture stress measurements in the Krummhorn gas storage field,northwestern Germany[A].In:Proc.SMRI Spring Meeting[C],Houston,1996.
    [126]Rokahr R B,Hauck R,et al.The result of the pressures build-up test in the brine filled carvern Etzel K 102[A].In:Proc.SMRI Fall Meeting,San Antorio,2000:89-103.
    [127]S.Horseman and E.Passaris.Creep tests for storage cavity closure prediction.The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981,119-157.
    [128]S.Gerhard & M.W.Schmidt.Field investigation of the long term deformational behavior of a 10,000m~3 cavity at the asse salt mine.The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981,511-525.
    [129]U.Schmidt & K.Staudtmeister.Determining minimum permissible operating pressure for a gas cavern using the finite element method.In:Proceedings of International Conference on Storage of Gases in Rock Caverns,Trondheim,1989:103-115.
    [130]Philippe Boucly.In situ experience and mathematical representation of the behavior of rock salt used in storage of gas.The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981,453-471.
    [131]D.S.Preece.Calculation of Creep Induced Volume Reduction of the Weeks Island SPR Facility Using 3D Finite Element Methods.SAND87-1694,Sandia National Laboratories,Albuquerque,NM,1987.
    [132]K.H.Lux & R.Reinhard.Laboratory investigations and theoretical statements as a basis for the design of caverns in rock salt formations.The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981,275-310.
    [133]U.A.Mirza.Prediction of creep deformations in rock salt pillars.The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981,311-325.
    [134]E.L.Hoffman.Effects of cavern spacing on the performance and stability of gas-filled storage caverns.SAND92-2545,Sandia National Laboratories,Albuquerque,NM,1992.
    [135]E.L.Hoffman.Effects of cavern depth on surface subsidence and storage loss of oil-filled caverns.SAND92-0053,Sandia National Laboratories,Albuquerque,NM,1992.
    [136]S.Heusermann,O.Rolfs & U.Schmidt.Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model.Computers & Structures.2003,(81):629-638.
    [137]H.Bruno.Mechanical behavior of salt cavities in-situ tests model for calculating the cavity volume evolution.The mechanical behavior of salt proceedings of the second coference.1984,291-310.
    [138]K.Staudtmeister & R.B.Rokahr.Rock mechanical design of storage caverns for natural gas in rock salt mass.Int.J.rock Mech.Min Sci.1997,34(3):646.
    [139]P.Berest & D.N.Minh.Deep underground storage cavities in rock salt:interpretation of in situ data from French and foreign sites.The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981:555-571.
    [140]余海龙,谭学术,鲜学福,姜德义.岩盐溶腔稳定性模拟试验研究.矿山压力与顶板管理,1995,(3-4):156-159.
    [141]谭羽飞,廉乐明,严铭卿.国外地下储气库的技术与发展.油气储运.1997,16(12):17-19.
    [142]谭羽飞,廉乐明,严铭卿.天然气枯竭气藏地下储气库注采动态数值模拟.煤气与热力.1999,19(3):18-22.
    [143]谭羽飞,廉乐明,严铭卿,余其铮.盐穴储气库动态注采过程的数学模型及应用.煤气与热力.2000,20(2):91-94.
    [144]谭羽飞,陈家新.天然气地下储气库最优设计方案的确定.哈尔滨工业大学学报.2002,34(2):207-210.
    [145]Z.M.Hou,W.Wu.Improvement of design of storage cavity in rock salt by using the Hou/Lux constitutive model with consideration of creep rupture criterion and damage.Chinese Journal of Geotechnical Engineeing.2003,25(1):105-108.
    [146]吴文,候正猛,杨春和.盐岩中能源(石油和天然气)地下储存库稳定性评价标准研究.岩石力学与工程学报.2005,24(14):2497-2505.
    [147]姜德义.岩盐溶腔稳定性及失稳控制研究.重庆大学博士论文.重庆,2003.
    [148]梁卫国,赵阳升,李志萍.盐类矿床群井控制水溶开采溶腔变形数值模拟.化工矿物与加工,2003(3):105-109.
    [149]王贵君.盐岩层中天然气存储洞室围岩长期变形特征.岩土工程学报,2003,25(4):431-435.
    [150]王贵君.天然气盐岩洞室群长期存储能力.岩土工程学报.2004,26(1):62-66.
    [151]赵志成,朱维耀,单文文,万玉金.盐穴储气库水溶建腔机理研究.石油勘探与开发,2003,30(5):107-109.
    [152]何爱国.盐穴储气库建库技术.天然气工业,2004,24(9):122-125.
    [153]陈卫忠,伍国军,戴永浩等.废弃盐穴地下储气库稳定性研究.岩石力学与工程学报.2006,25(4):848-854.
    [154]杨春和,陈锋,赵克烈等.注采气过程中金坛地下储库稳定性跟踪评估总报告.2008.
    [155]中华人民共和国行业标准编写组.SL264-2001水利水电工程岩石试验规程.北京,中国标准出版社,2001.
    [156]I.W.Farmer and M.J.Gilbert.Dependent strength reduction of rock salt.The first Conference on the Mechanical Behavior of salt.Trans Tech publications 1981 P.4-18.
    [157]刘新荣,姜德义,余海龙.盐岩变形特性的试验研究.矿冶工程,1999,19(4):12-15.
    [158]Francis D,Hansen et.al.Elasticity and strength of ten natural rock salts.[A].Langer,The mechanical behavior of salt proceedings of the first conference.Clausthal,trans tech publications.1981:71-83.
    [159]DURUP G GAZ de France,XU J Sofregaz.Comparative study of certain constitutive laws used to describe the rheological deformation of salts.The mechanical behavior of salt proceedings of the third conference.1993,75-83.
    [160]蔡美峰.岩石力学与工程.北京:科学出版社,2002.
    [161]杨春和,梁卫国,魏东吼,等.中国盐岩能源地下储存可行性研究[J].岩石力学与工程学报,2005,24(24):4409-4417.
    [162]梁卫国,赵阳升,徐素国,等.盐岩矿床内油气储备和核废料处置[J].太原理工大学学报,2005,36(4):440-443.
    [163]Cristescu N D.Time-effects on the uniaxial compaction of powers[A].In:Proc 6th Int.Symp.on Plasticity and Its Current Application[C].Alaska:Neat Press Fulton,1997.303-304.
    [164]戴玮,赵学民,马书炳.液体体变弹性模量测量实验及研究[J].物理实验,2001,21(4):14-15.
    [165]Itasca Consulting Group Inc.FLAC3D(Version 2.1) users manual[R].USA:Itasca Consulting Group Inc.,2002.
    [166]陈锋,杨春和,白世伟.盐岩储气库最佳采气速率数值模拟研究[J].岩土力学,2007,28(1):57-62.
    [167]刘江,杨春和,吴文,等.盐岩蠕变特性和本构关系研究[J].岩土力学 2006,27(8):1267-1271.
    [168]梁卫国,徐素国,赵阳升,等.盐岩蠕变特性的实验研究[J].岩石力学与工程学报,2006,25(7):1386-1390.
    [169]Hunsche,U.Result and interpretation of creep experiments on rock salt.The Mechanical Behavior of salt.Proc.1st Conf.Eds.H.R.Hardy,Jr.,and M.Langer,Trans Tech Publ.,Clausthal-Zellerfeld,1981:159-167.
    [170]Mark A.Frayne.Four case studies in saltrock.The 3rd Conference on the Mechanical Behavior of salt.Trans Tech publications 1996:472-482.
    [171]杨春和,李银平,杨花,等.金坛盐盆岩盐溶腔资源综合开发利用压气蓄能电站可行性研究(地质)报告,2009.
    [172]吴献强,丁德馨.周期荷载作用下岩石疲劳性能的分析研究[J].国外建材科技,2006,27(7):42-45.
    [173]Krampl E,Stouffer D C.Workshop on a Continuum Mechanics approach to damage& life Prediction.Cincinnati OH,Univ.of Cincinnati,AMR-82-2405.
    [174]Kachanov,Mark L.Microcrack model for rock inelasticity.Thesis of ph.D.of Rutgers University,Piscataway,USA,1980.
    [175]KaчaHов,дM.ИэB AH Cccp.OTP,1958,8:26-31.
    [176]Lemaitre J.Evaluation of dissipation and damage in metals submitted to dynamic loading.In:Proceedings of ICMI,Kyoto,1971.
    [177]吴文.盐岩的静、动力学特性实验研究与理论分析(博士学位论文).武汉:中国科学院武汉岩土力学研究所,2003.
    [178]陈凌,蒋家羚.一种新的低周疲劳损伤模型及实验验证[J].金属学报,2005,41(2):157-160.
    [179]王惠民.流体力学基础(第二版).北京:清华大学出版社,2005.
    [180]李银平,杨春和.层状盐岩体的三维Cossert介质扩展本构模型[J].岩土力学,2006,27(4):509-513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700