锰不同浓度及其施用方法对大豆氮代谢及产量和品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2007~2008年在黑龙江八一农垦大学林甸县大豆试验基地进行。土壤类型为草甸黑钙土,试验选用EDTA-Mn浸种与叶面喷施处理相结合,以垦农4号大豆品种为主要研究对象,采用大田小区试验,探讨锰营养不同施用方式,不同施用浓度,对大豆的形态生理、氮素营养、氮代谢相关酶活性,以及对大豆产量和品质的影响。本研究为合理地进行大豆的锰营养调控提供科学依据。主要研究结果如下:
     中浓度的锰浸种与叶面喷施能够提高大豆株高和增加根冠比,有利于促进大豆植株各部分的干物质积累,高浓度锰处理则表现出抑制作用。不同生育时期各处理间的变化规律存在一定差异。大豆在浸种与叶面喷施处理以后的不同时期内,同化物分配中心不同,前期生长中心为叶,中后期转向茎,后期集中于荚。说明锰能够合理地调动干物质的积累与分配,有利于大豆生育后期籽粒的建成。
     中浓度的锰浸种和叶面喷施处理均增加了大豆叶片中可溶性蛋白质、硝态氮及游离氨基酸的含量,到了生育后期浸种效应逐渐减弱,叶面喷施的效果比较显著,且均以中浓度锰处理为最高。中浓度的锰处理对叶片中的全氮含量有增加的趋势,还能够在不同程度上提高大豆根系活力的强度及大豆功能叶片中酰脲含量。
     中浓度的锰浸种与叶面喷施处理能够提高大豆叶片中氮代谢相关酶的活性,其中大豆叶片中硝酸还原酶(NR)及蛋白水解酶活性在各处理间达到最大值,且叶面喷施效果较浸种处理显著。谷氨酰胺合成酶(GS)、谷氨酸脱氢酶(GDH)和谷氨酸合成酶(GOGAT)变化趋势基本类似,中浓度的锰浸种与叶面喷施均在不同程度上提高了大豆功能叶片中以上三种酶的活性,而高浓度锰处理均在一定程度上对大豆的氮代谢指标起到抑制作用。
     在初花期叶面喷施不同浓度的锰后,叶片中锰含量随着锰浓度的增加而增加。大豆收获后,经不同浓度锰浸种与叶面喷施的种子中锰含量调控效应表现不同,当组合为A4B4时,大豆种子中锰含量为最高。
     在田间条件下,无论是锰浸种还是叶面喷施处理,中浓度锰处理均能够改善大豆的产量性状,明显地提高了大豆单株总荚数、单株粒重及百粒重等。锰浸种与叶面喷施对大豆产量的调控表现均以中浓度锰处理为最高,其对产量有促进作用,且与对照达5%显著水平,而高浓度的锰处理则起到抑制作用。在大田条件下浸种与叶面喷施的最优组合为A3B3处理,大豆产量比对照增产达33.32%。
     无论浸种还是叶面喷施锰肥,中浓度锰处理均可降低大豆脂肪含量,增加蛋白质含量。叶面喷施锰肥时,中浓度锰处理的蛋白质与脂肪含量与对照均达5%显著水平。当浸种与叶面喷施组合为A1B3时,大豆的蛋白质含量最高,与对照缺锰处理A1B1达5%显著水平,而脂肪含量最低的处理为A1B3,说明中浓度的锰浸种与叶面喷施组合时可显著的增加大豆蛋白质含量,降低其脂肪含量。
     综合来看,中浓度锰处理在改善大豆形态生理和氮代谢指标方面,有显著作用。特别是中浓度的锰浸种与叶面喷施配合施用对增加大豆产量、提高蛋白质效果最佳。
Between 2007~2008, the research was carried in the study field of Heilongjiang August First Land Reclamation University Soybean Base which lies in Lin Dian County. The soil type is meadow. Taking Kennong 4th soybean variety as the main research material, the effect of different concentrations of EDTA-Mn on soybean growth. The mode of experiment is small region in field and which research the effect of different ways of Manganese, different concentration of Manganese on the formation philology, nitrogen nutrition, key enzymes related to nitrogen metabolism and the yield and quality of soybean. Through this research, it can improve the scientific evidence for the Manganese nutrition adjusting of soybean. The main research results are as follows:
     The middle concentration of Manganese mixed with seed soaking or leaf spraying can improve the height of soybean and the root-shoot ratio, and improve the accumulation of dry matter in every part of the soybean plant. But the high concentration of Manganese appears inhibition. The appearance is different in different development stages. In the different growth stages after the treatments of seed soaking and leaf spraying in soybean, the centre of assimilate contribution were different. The growth centre was leaf in the prophase of soybean plant, midanaphase turned to stem, and anaphase centralized in legume. Its manifest that is the mobilization and a reasonable distribution of dry matter by Manganese, and advantage the building up of soybean seeds in the anaphase of growth stage.
     Both the middle concentration of Manganese with seed soaking and leaf spraying can improve the content of soluble protein, nitrate-nitrogen and free amino acids. The controlling of seed soaking is gradually weaken in the anaphase of growth stage, but the effect of middle concentration of leaf spraying is relatively significant. The middle concentration treatment of Manganese can improve the content of total nitrogen, and it also can improve the root activity and content of ureide in the function leaves.
     Both the middle concentration of Manganese with seed soaking and leaf spraying can improve the activities of key enzymes related to nitrogen metabolism in soybean leaves. The activity of NR and proteinase reach the maximum among the treatments, and the effect of leaf spraying is relatively significant. The changing tendency of GS, GDH and GOGAT were roughly similar, the middle concentration of Manganese treatment can improve the activities of enzymes above in different degree, but the higher concentration of Manganese with seed soaking and leaf spraying can be played a certain inhibition to the indicators above.
     After the different concentration of Manganese by leaf spraying, with the raising in concentration of Manganese, with the increasing concentration of Manganese, the content of Manganese in soybean leaves is increasing. After the harvest of soybean, the manifestation of controlling with different concentrations of Manganese by seed soaking and leaf spraying is different in soybean seeds. When the combination of mixed with seed soaking and leaf spraying is A4B4, the content of Manganese in the seeds is the highest.
     Under the condition of field, both the middle concentration of Manganese mixed with seed soaking and leaf spraying can change the yield character of soybean. It can improve obviously the number of total legumes, seed weight of per plant and 100-seed weight of plant. The manifestation of controlling with different concentrations of Manganese by seed soaking and leaf spraying result that the middle concentration of Manganese is the highest, and it has a certain promotion to the yield, it arrives 5% significance levels to its CK, but the higher concentration of Manganese with seed soaking and leaf spraying can be played a certain inhibition to the indicators above. Under the condition of field the optimal combination of seed soaking and leaf spraying is A3B3 and it can improve the yield 33.32% to the contrast.
     Both the middle concentration of Manganese mixed with seed soaking and leaf spraying can decrease the content of adipose, increase the content of protein. The treatment of leaf spraying arrive 5% significance levels to its CK in the content of protein and adipose. When the combination of mixed with seed soaking and leaf spraying is A1B3, the content of protein is the highest and arrive 5% significance levels to the treatments of A1B1. In this condition of A1B3, the content of adipose is the lowest, and it suggests middle concentration of Manganese mixed with seed soaking and leaf spraying can improve the content of protein, and decrease the content of adipose obviously.
     In the general, middle concentration of Manganese treatment has an obvious effect on improving the form physiology and the index which related to nitrogen metabolism of soybean plant. Especially the effect of middle concentration of Manganese mixed with seed soaking and leaf spraying on the content of yield and protein of soybean is the most obvious.
引文
[1] J.Griffee,1998,Industrial crops for food security《Improvement of new and traditional industrial crops by induced mutations and related biotechnology, Report of the Second Research Co-ordination Meeting of FAO/IAEA Co-ordination Research Project, held in Giessen, Germany June 30-July 4,1997,Reproduced by the IAEA Vienna, Austria, P,1~8》.
    [2] Phillip Laney. The trend of world soybean production and market[C], 2002.
    [3]汪立刚,沈阿林,孙克刚.大豆连作障碍及调控技术研究进展[J].土壤肥料,2001,(5):3~8.
    [4]王金龙.大豆重茬减产与土壤环境变化关系的研究进展[J].土壤通报,2000,31(6):270~272.
    [5]李兆林,王建国,许艳丽,等.微量元素肥料组合对不同基因型大豆产量和品质影响[J].农业系统科学与综合研究,2004,20(4):281~284.
    [6]刘铮.土壤与植物中锰的研究进展[J].土壤学进展,1991,(6):1~10.
    [7]邓英,谢振翅.农作物微量元素应用研究进展.湖北农业科学,1999,2:26~28
    [8]叶喜文,吕绪东,曲恩革等.黑龙江垦区三种主要土壤的微量元素状况[J].黑龙江八一农垦大学学报,1997,9(3):24~30.
    [9]吴名宇,李顺义,张杨珠.土壤锰研究进展与展望[J].作物研究,2005,19(2): 137~142.
    [10]姜玉久.大豆种子萌发受锰的影响初探[J].农业与技术,2004,(1):31.
    [11]刘晓冰,金剑,张秋英,等.不同大豆基因型氮素积累运转研究简报[J].大豆科学, 2001, 20(4):298~301.
    [12]邱忠祥,刘永菁,谭成君,等.锰肥对大豆氮代谢的影响[J].沈阳农业大学学报,1990,21(2):105~109.
    [13] Larry C, Purcell, et al. Soybean Cultivar Difference in Ureides and the Relationship to Drought Tolerant Nitrogen and Manganese Nutrition [J]. Crop Sci, 2000,40:1062~1070.
    [14]张瑞朋,谢甫绨,张玉先.大豆锰营养研究进展[J].中国土壤与肥料,2006,(6):13~15.
    [15]刘鹏,徐根娣,倪建英,等.锰浸种对大豆种子萌发和幼苗生理特性的影响[J].中国油料作物学报,2002,24(4):24~28.
    [16]李豪喆.大豆叶片硝酸还原酶活力的研究[J].植物生理学通讯,1986,(4):30~32.
    [17] Steinberg R A. Matatolism of inorganic nitrogen by plants[M]. Johns Hopkings Univ. press, 1956:153~158.
    [18]匡廷云.中国科学院微量元素学术交流会汇刊[M].北京:科学出版社,1980:73~74.
    [19]吴明才,陈吾新,肖昌珍.大豆锰素营养研究[J].中国油料,1991,(4):39~42.
    [20]吴明才.微量元素对大豆氮代谢的影响[J].大豆科学,1983,2(4):305~309.
    [21] Vincent Vadez and Thomas R. Sinclair., 1999. Manganese Aplication Delays the Drought-induced Decline of Nitrogen Fixation. WSRCⅥ. Chicago, USA.
    [22] Purcell L C. Soybean cultivar difference in ureides and the relationship to drought tolerant nitrogen fixation and manganese nutrition [J]. Crop Science,2000,40(4):1062~1070.
    [23]史瑞和.植物营养原理[M].江苏:江苏科学技术出版社,1989:398~403.
    [24] Hasegawa K, Kusunoki M, Inoue Y, et al. Simulation of S2-state multilane EPR signal in oriented photosystemⅡmembranes:Structural implications for the manganese cluster is an oxygen evolving complex [J].Biochem,1998,37(26):9457~9465.
    [25] Yachandra V K, Sauer K, Klein M P. Manganese cluster in photosynthesis:Where plants oxidize water to dioxygen [J].Chem Rev,1996,96(7):2927~2950.
    [26] K.Ohki. Manganese Deficiency and Toxicity Levels for‘Bragg’Soybeans. Agron.J. 1976,68:861~864.
    [27]曾昭华.作物产量与土壤环境的关系[J].湖南地质,2000,19(1):25~29.
    [28] Mitra N.G.et al.锰对大豆某些大量营养元素和蛋白质含量的影响[J].国外农业-大豆,1987,(1):27~28.
    [29]周化斌,姜丹,金卫挺,徐根娣,刘鹏.锰对大豆种子萌发的影响[J].种子,2003,(4):22~23.
    [30] Marschner H.高等植物的矿质营养(曹一平,陆景陵等译)[M].北京:北京农业大学出版社,1991:170.
    [31] D.O.Wilson et al. Changes in Soybean Seed Oil and Protein as Influenced by Manganese Nutrition [J]. Crop Sci,1982, 22:948~952.
    [32] Burnell J.N. The Biochemistry of manganese in Plants[M].Manganese in Soils and Plants. Kluwer Academic Publishers, Derdrecht-Boston-London,1988:125~137.
    [33]曾广文.植物生理学[M].成都:成都科技大学出版社,1998:40.
    [34]潘瑞炽.植物生理学[M].北京:高等教育出版社,1995:34.
    [35]饶立华.植物矿质营养及其诊断[M].北京:农业出版社,1993:30~35.
    [36]张明才,李召虎,田晓莉,等.植物生长调节剂SHK-6对大豆叶片氮素代谢的调控效应[J].大豆科学,2004,23(1):15~20.
    [37]温尚斌,石连旋,王丹生,等.大豆叶片光合与呼吸、硝酸还原酶活性及可溶性蛋白含量相互关系的探讨[J].东北师大学报(自然科学版),1999,3(1):67~70.
    [38] Eichel K D, Berger, R J, Lambert F. Divergent phenotypic recurrent selection for nitrate leductase activity in maizeⅡEfficient use of fertilizer nitrogen. Crop Sci., 1989, 29(6):1398~1402.
    [39]李雪梅,朱长甫,苗以农,等.大豆植株发育过程中不同部位的硝态氮含量和硝酸还原酶活力的变化[J].植物生理学通讯,1993,29(4):263~265.
    [40]师素云,薛启汉,练兴明,等.玉米与大豆氮代谢关键酶活性比较[J].江苏农业学报,2000,16(3):191~192.
    [41]徐根娣,孙和和,刘鹏,等.锰对大豆POD和EST同工酶谱的影响[J].河南农业科学, 2006,4:46~50.
    [42]孙庆余,刘永菁,邱忠祥,等.锰在褐土中行为初探[J].土壤肥料,1997,(1):44~45.
    [43]曹恭,梁鸣早.锰-平衡栽培体系中植物必需的微量元素[J].土壤肥料,2004,1:加2~加3.
    [44]杨建堂,王文亮,潭金芳,等.河南省锰肥施用效果及施用技术的研究[J].土壤肥料,1997,(2): 23~26.
    [45]曹艳山,郑国学,郝士远,等.玉米大豆锰肥肥效及最佳施用浓度的研究[J].黑龙江农业科学,1990,1:17~21.
    [46]李兆林,王建国,许艳丽,等.微量元素肥料组合对不同基因型大豆产量和品质影响[J].农业系统科学与综合研究,2004,20(4):281~284.
    [47]唐雪群.锰肥肥效及施用技术[J].辽宁农业科学,1984,6:39~43.
    [48]吴明才.大豆缺素症诊断研究[J].湖北农业科学,1990,7:13~16.
    [49] F.C. Boswell. Methods and Rates of Applied Manganese for soybeans[J]. Agron. J.1981, 73(6):909~912.
    [50]刘元英,罗盛国,刘淑娟.连作胁迫下大豆对营养元素的吸收[J].东北农业大学学报,1997, 23(3):209~215.
    [51]郭庆元,李志玉,涂学文.大豆高产优质施肥研究与应用[J].中国农学通报,2003,19(3): 89~96.
    [52]张玉先.锰元素对不同基因型大豆产量的影响[J].土壤肥料科学,2005,(7):245~285.
    [53]张玉先,谢甫绨.锰元素对不同基因型大豆脂肪和蛋白质含量影响研究[J].黑龙江八一农垦大学学报,2005,17(2):5~8.
    [54]李合生.植物生理生化实验原理和技术[M].高等教育出版社,2000:182~193.
    [55]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995,5(2000,3重印).
    [56]张宪政.作物生理研究法[M].北京:农业出版社,1992:153~155.
    [57]张宪政.植物生理学实验技术[M].辽宁:科学技术出版社,1989:71~75.
    [58]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003:169~170.
    [59]邹琦.植物生理实验指导[M].北京:中国农业出版社,2000:27~29.
    [60]中国科学院上海植物生理研究所.现代植物生理学实验指南[M],北京:科学出版社,1999.
    [61]耿浩林,王玉辉,王风玉,等.恢复状态下羊草(Leymus chinensis)草原植被根冠比动态及影响因子[J].生态学报,2008,28(10):4629~4634.
    [62]满为群,杜维广,张桂茹等.大豆超高产潜力的探讨[J].大豆科学,2001,20(2):94~97.
    [63] YY莱谢姆.植物衰老过程及调控[M].沈阳:辽宁科学技术出版社,1986.
    [64]宋海星,王学立,王开运.不同节位玉米叶片硝态氮含量及硝酸还原酶活性[J].陕西农业科学,2005,(3):72~74.
    [65] Di Tomas M. Membrane-Mediated putrescine transport and its role in stress-induced phytooxicity[J].Plant Physiology,1989,86:338~340.
    [66]杉原进.国外农学——大豆(孟庆喜译)[M].农业科学, 1982,(12):1~4.
    [67]苗以农,姜艳秋,朱长甫,等.大豆不同节位叶片全氮含量的变异性[J].大豆科学, 1988,7(2):113~118.
    [68]张红缨,王书锦,张宪武.大豆植株木质部汁液中氮素运输特征的研究[J].大豆科学, 1988,7(1):19~24.
    [69] Shubert K, Annu. Rev. Plant Physiol[M].1986, 37:539~574.
    [70] Winkler R O. TIBS[C].1988, 13: 97~100.
    [71]孙广玉,张荣华,黄忠文.大豆根系在土层中分布特点的研究[J].中国油料作物学报,2002, 24(1): 45~48.
    [72]杨守萍,陈加敏,何小红,等.大豆苗期耐旱性与部分根系性状的遗传[J].大豆科学, 2005,24(4): 275~280.
    [73]孙奂明.生命必需微量元素锰、铁和对芦荟体内芦荟苷、芦荟大黄素含量的影响[D].河北保定:河北农业大学,2003.
    [74] Heber U, Tyankova L, Santarius K A. Effects of freezing on biological memberanes in vivo and in vitro[J]. Biochem Biophys Acta,1973,9:21~23.
    [75] Thomas W Becker, Elisa Carrayol, Bertrand Hirel. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: Localization, relative proportion and their role in ammoniumassimilation or nitrogen transport[J]. Planta,2000,211:800~806.
    [76] Campbell L C, DP Heenan. Transport and distribution of manganese in two cultivars of soybean (Glycine max (L.) Merr.) [J]. Australian Journal of Agricultural Research, 1986, 31(5):943~949.
    [77]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:42~68.
    [78]张瑞朋,杨德忠,傅连舜,等.氮素对不同来源大豆氮代谢相关指标的影响[J].大豆科学, 2007,26(5):718~722.
    [79] Israel D W. World Soybean Research Conference II[C].1980:111~127.
    [80] J.S. McHargue. The role of manganese in plants [J]. Amer. Chem. Soc, 1992, 44:1592.
    [81] Fang Z, Zhang Y G, Zhang F S, et al. Mechanisms of difference in Mn efficiency between wheat and oilseed rape[J]. Pedosphere, 2000, 10(3):213~220.
    [82]袁立海,张晓,舒权,等.大豆氮肥增产效应的研究[J].大豆科学,1984,(3):243~250.
    [83] Schrader L.E., G.L.Ritenour, G.L.Eilrich, et al. Some characteristics of nitrate reductase from higher plants[J].Plant Physiol, 1968,(43):930~940.
    [84] Alling M J, Boland G, Willson J H. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat[J].Plant Physiol,1976,3:721~730.
    [85] Miflin B J, Lea P J. Ammonia assimilation [A].In:Miflin B J ed. The Biochemistry of Plants.Vol.5.Amino Acids and Their Derivatives[M].New York: Academic Press,1980:169~202.
    [86] Verma D P S. Control of plant Gene expression [J].Boca Raton. CRC Press, 1993:443~458.
    [87]王月福,于振文,李尚霞,等.氮素营养水平对冬小麦氮代谢关键酶活性变化和子粒蛋白质含量的影响[J].作物学报,2002,28(6):743~748.
    [88] Lea P J, Blackwell R D, Joy K W. Ammonia assimilation in higher plants[A]. In: Meng K and Pilbeam D J (eds.), Nitrogen Melabotism of Plant[C]. Oxford University Press, NewYork, 1992:153~186.
    [89] Melo-oliveira R, Oliveira I C, Coruzzi G M.Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation[J]. Proc. Natl. Acad. Sci. USA, 1996, 93:4718~4723.
    [90]方昭希,王明录,彭代平,等.硝酸还原酶活性与氮素营养的关系[J].植物生理学报, 1979,5(2):123~129.
    [91] Tischner R. Nitrate uptake and reduction in higher and lower plants[J]. Plant Cell Environ,2000, 23:1015~1024.
    [92] Singletary G W, Doehlert D C, Wilson C M. Response of enzymes and storage proteins of maize endosperm to nitrogen supply[J]. Plant Physiol, 1990, 94: 858~864.
    [93] Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport[J]. Planta, 2000, 211:800~806.
    [94]龚振平.春大豆氮代谢机制及相关酶活性的研究[D].东北农业大学,2004.
    [95]王立克,洪法水.钼浸种处理对苜蓿各生育期硝酸还原酶活性及营养成分的影响[J].草业科学,1996,13(5):48~49.
    [96]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社,2001.
    [97] Uhart S A, Andrade F H. Nitrogen deficiency in maize:Ⅰ.Effect on crop growth, development, dry matter partitioning and kernel set[J]. Crop Sci, 1995, 35:1376~1383.
    [98] Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. Exp. Bot, 2002, 53:979~987.
    [99]赵俊晔,于振文.施氮量对小麦强势和弱势籽粒氮素代谢及蛋白质合成的影响[J].中国农业科学,2005,38(8):1547~1554.
    [100]刘开昌,胡昌浩,董树亭,等.高油、高淀粉玉米籽粒主要品质成分积累及其生理生化特性[J].作物学报,2002,28(4):492~498.
    [101]刘淑云,董树亭,赵秉强,等.长期施肥对夏玉米叶片氮代谢关键酶活性的影响[J].作物学报,2007, 33(2):278~283.
    [102] Gonzalea M B, Mena P A, Lacuesta M. Glutamine synthetase from mesophyll and bundle sheath maize cells: isoenzyme complements and different sensitivities to phosphinothricin. Plant Cell Reports, 2000, 19(11):1127~1134.
    [103]王旭东,于振文,石玉,等.磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响[J].作物学报,2006,32(3):339~344.
    [104] Lamattina L, Lezica R P, Conde R D. Protein metabolism insenescing wheat leaves, Determination of synthesis and degradation rates and effects on protein loss[J]. Plant Physiol, 1985, 77:587~590.
    [105]高玲,叶茂炳,张荣铣,等.小麦旗叶老化期间的内肽酶[J].植物生理学报,1998,24(2):183~188.
    [106] Peterson L W, Huffaker R C. Loss of ribulose-1.5-diphosphare carboxylase and increase in proteolytic activity during senescence of detached primary barley leaves [J].Plant Physiol, 1975, 55:1009~1015.
    [107]叶兴国,王连铮,刘国强.黄淮海地区大豆品种遗传改进[J].大豆科学,1996,1:1~10.
    [108]李玉颖.钾对大豆产量和品质影响[J].土壤肥料,1993,(2):24~26.
    [109]王艳,孙杰,吴俊兰.、锰、钼微量元素营养对大豆产量品质的影响[J].山西农业大学学报. 1997,17(2):116~119.
    [110]李远明,刘晓洁,贾德华.不同基因型大豆品种干物质积累与产量关系[C].第六届全国大豆学术讨论会论文,1997.
    [111]那桂秋,董钻.大豆若干株型性状与产量的关系[J].辽宁农业科学,1993,(5):13~15.
    [112]孙贵荒,刘晓丽,董丽杰,等.高产大豆干物质积累与产量关系的研究[J].大豆科学, 2002,21(3):199~202.
    [113]门中华,李生秀.钼对冬小麦硝态氮代谢的影响[J].植物营养与肥料学报, 2005,11(2):205~210.
    [114]王芳,刘鹏,朱靖文.镁对大豆根系活力叶绿素含量和膜透性的影响[J].农业环境科学学报,2004,23(2):235~239.
    [115]唐巧玉,吴永尧,周大寨,等.硒对大豆根系活力的影响[J].河南农业科学,2005,7:42~44.
    [116]郑淑琴.钾对大豆生理效应及产量和品质的影响[J].黑龙江农业科学,2001,4:1~4.
    [117]柴小清,印莉萍,刘祥林,等.不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响[J].植物学报, 1996, 38(10):803~808.
    [118]董守坤.春大豆氮素积累与氮营养动态的研究[C].东北农业大学硕士论文,2005.
    [119]朱长甫,苗以农,梁秀英.大豆不同品种的酰脲和酰脲相对丰度研究[J].大豆科学, 1990,9(4):309~316.
    [120]董钻.大豆产量生理[M].北京:中国农业出版社,2000:11.
    [121]王晓光,何萍,卜志英,等.不同菜用大豆品种生育特性及品质的比较[J].沈阳农业大学报, 2006,37(1):13~16.
    [122]陈丽华,李杰,刘丽君,等.大豆蛋白质的积累动态及其与产质量形成的关系[J].东北农业大学学报,2002,33(2):116~124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700