东濮凹陷刘庄地区ES_2~下段层序地层及相控储层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东濮凹陷刘庄地区为典型的陆相盆地破碎断块区,具有断层分布密集、杂乱,断块小而不规则的构造特征,并且储集层具有砂体类型多、单层厚度薄、横向连续性差等特点,储层预测难度较大。进行提高储层预测精度、克服储层地震预测多解性的研究对本区油气勘探开发具有重要意义。
     论文针对刘庄地区地质与地震反射特征,综合利用钻井、测井、地震等资料进行了层序地层学、沉积学与储层地质学等方面的研究,并在此基础上结合地球物理方法进行了储层的预测,提出了预测思路:高分辨率层序地层地质分析方法和相干体技术相结合,帮助建立高精度的地层约束模型,提高储层预测精度;综合考虑物源、沉积相等地质条件于测井数据归一化过程,增强测井约束条件的有效性;运用沉积相地质分析结果在反演中作为约束条件,和反演结果相互印证,限制其任意性,增强其合理性,以提高预测结果的有效性。
     针对研究工区取得了以下地质认识:
     1.区内构造为多期断层发育叠加结果,主要断层始形成于沙三段沉积后期,沙二段沉积期构造发育相对稳定。东营组沉积后期受下部地层上隆抬升作用,构造活动较为强烈,形成两组北东-南西走向、对掉断层,对原构造进一步切割、改造,形成了“凹中有隆,隆中有洼”的复杂断块构造特征。
     2.沙一段和沙二段组成一个三级层序,沙三段属于另一个三级层序;沙二下段大致可以划分7-8个中期基准面旋回,沙二上段可以划分为1-3个中期基准面旋回。沙一段大致可以划分出3-6个中期基准面旋回。
     3.沙二下沉积期,水流方向多变,物源具有明显的方向性。主要有南部、东部和北部三个物源方向,其中以南部物源为主。沉积环境以滨浅湖和漫溢浅滩频繁交替为主;主要发育洪水水道、水道侧缘溢岸沉积、水道间漫溢沉积、泥质浅滩、砂质浅滩、浅滩砂坝等六种沉积微相。
     4.沙二下亚段储集砂体主要为洪水水道砂、砂质浅滩受波浪改造的滩砂,其次为水道侧缘溢岸砂。在纵向上呈现砂体多而薄的特征,第III、IV、V基准面旋回含砂率高,物性较好,储集性能相对较好。平面上砂体展布具有明显的方向性,连续性较差,主要发育南北方向的砂体,主要集中在南部刘16-刘5井区和北部刘20-刘37井区。
     5.砂岩的物性较细,处于晚成岩作用A-B阶段。浅灰色粉砂岩、细砂岩为主要储层。砂岩孔隙度绝大部分在5%-20%,集中在8%左右;渗透率绝大部分在0.2-10毫达西,属于中孔低渗、低孔低渗砂岩。砂岩所处的沉积微相和后期成岩过程中的碳酸质胶结是影响其储层物性的两个主要因素。
     6.测井曲线中与岩性相关最好的自然伽玛,其次为声波时差、自然电位、视电阻率、深感应。沙三上段、沙二下段灰质含量对砂泥岩分辨影响相对较小,沙一段灰质对储层预测影响较大。
     7.自然伽玛反演相对波阻抗反演和井相关程度更高;沙三上段在工区西部斜坡区地层较为连续,倾角较小,反演效果较好、可信度高;沙二下段在断块区断块小而破碎、断层间距小、地层倾角变化大、地震反射同相轴紊乱,反演结果受初始模型影响较大,连续性较差。
     8.综合考虑构造解释、沉积相分析、储层反演、物性分析及含油气性分析等结果,沙二下段在刘2井南局部构造、刘16井北区域为相对较好滚动勘探目标,主要目的层段为沙二下II-VI砂组;沙三上段刘28井北部地区为有利滚动勘探目标,主要目的层段为和刘28井4400-4600m层段相对应的层段。
Liuzhuang area is located in the central part of the central uplift, Dongpu depression. It is typically characterized by a broken fault-block zone in which the faults are densely developed with chaotic, irregular distribution features. The reservoirs in this area consist of a lot of different types of sand body, with thin individual intervals and poor lateral continuity so that the reservoir is difficult to evaluate. Thus, improving the accuracy of reservoir prediction and overcoming the multiple solutions of the seismic interpretation is vital important to the exploration and production in this area.
     This paper presents an integrated approach of reservoir interpretation according to the research of the characteristics in terms of geological setting and seismic reflection of Liuzhuang area. Detailed sequence stratigraphy analysis, sedimentology interpretation and reservoir geology researches are conducted by using core analysis data, log data, and seismic data, combined with the application of geophysical techniques, an integrated reservoir interpretation method is developed. The practice of this method is given by following steps: using high-resolution sequence stratigraphy geological analysis, associated with coherence technique, a highly precise constraint model of the strata is generated, which improves the reservoir prediction accuracy. Considering the provenance of sedimentary and sedimentary facies into log data normalization process, the availability of log constraint inversion is much enhanced. Using the results of sedimentary facies analysis as constraint factors in the inversion, the results between the inversion and the sedimentary facies are crossly verified in order to restrict the randomicity and enhance its rationality of the inversion. The effectiveness of the prediction results are also improved.
     Updated geological understanding of this area is obtained from the multidisciplinary study, which can be summarized as:
     1. The structure in this area is characterized by multi-phase faults development and stack. Most of the major faults are formed during the late period of Sha-3 member deposition, and tectonic activity is relatively stable during the Sha-2 member deposition. Influenced by the lower strata uplifting during the later Dongying formation deposition, the tectonic activity seems relatively strong, and two groups of normal faults dipped down closely from each other in NE-SW strike are formed, which resulted in a further cutting and reconstructing to the original structure. Thus, a complex feature in this areaoccurred in terms of“uplift occurring in depression and depression occurring in uplift”.
     2. Sha-1 and Sha-2 member are identified as a third-order sequence, but Sha-3 belongs to another third-order sequence. The lower sub-member of Sha-2 can be subdivided into 7-8 middle-term base-level cycles and, the upper sub-member of Sha-2 can be subdivided into 1-3 middle-term base-level cycles. The Sha-1 can be roughly subdivided into 3-6 middle-term base-level cycles.
     3. Due to the direction of water inflow changing dramatically during the lower sub-member of Sha-2 deposition, the original sources of this area are obviously direction oriented, and it mainly comes from the south, east and north of the basin respectively, with the south as the dominated direction. The sedimentary environments in this area are characterized basically by coastal shallow lake and overflow shoal changing frequently. Six types of sedimentary microfacies can be identified in this area, they are flood channel deposit, channel edge overbank deposit, interchannel overflow deposit, muddy shallow flat, sandy shoal and shoal sandy bar.
     4. The sandstones reservoirs of lower the sub-member of Sha-2 comprised mainly of flood channel sands, beach sands from sandy shoal reworked by waving, and channel edge overbank sands. Vertically, it shows the characteristics of much sand with thin thickness. The intervals deposited during the III, IV and V base-level cycles have a high level of sandstone contents with good petrophysical properties. Horizontal sandstone distribution exhibits an obvious direction but in a poor lateral continuity. The sand body is mainly developed in a north-south trend, mostly concentrated in the Well Liu-16-15 block on the southern part, and Well Liu 20-37 block on the northern part of the Liuzhuang area..
     5. The sandstone is in the stage A-B of late diagenesis. The main reservoir in the area consists of the light gray siltstone and fine sandstone, the range of porosity is from 5% to 20%, mainly at 8%. Permeability ranges from 0.2 to 10 milldarcy. The reservoir sandstone is categorized as medium porosity with low permeability or low porosity with low permeability. Two main factors that affect the quality of the reservoirs are sedimentary microfacies and carbonate cementation during the late diagenesis stage.
     6. Natural gamma-ray log has the best correlation between the lithology and electric property; it is then followed by acoustic, spontaneous potential, apparent resistivity, and deep induction resistivity logs. The content of marl in the upper sub-member of Sha-3 and the lower sub-member of sha-2 have less influence on distinguishing sand from mudin logging data, in contrast, it exhibits a greater impact on reservoir prediction in the Sha-1 member.
     7. Natural gamma ray inversion result exhibits a relatively higher correlation with well rather than acoustic impedance inversion. The upper sub-member of Sha-3 exhibits a better continuity with lower formation dipping angle in the western slope area, and the inversion result of this sub-member has a higher reliability. In contrast, the lower sub-member of Sha-2 in the broken fault block area is characterized by great strata dip changing and disordered phase axis of seismic reflection, thus the inversion result exhibits poor continuity which in turn was largely influenced by the initial model
     8. Based on integration to the structural interpretation, sedimentary facies analysis, reservoir inversion, petrophysics analysis and oil and gas bearing analysis, the good targets for progressive exploration and development of the lower sub-member of Sha-2 are considered to be in the south local structure of Well Liu-2 and to the northern area of Well Liu-16, with target intervals being ofⅡ-Ⅳsand group within the lower sub-member of Sha-2. Meanwhile, the target area of the upper sub-member of Sha-3 is located in the northern area of Well Liu-28, with target interval corresponding to the interval with the depth ranging from 4400 to 4600m in Well Liu-28.
引文
[1] C.K.威尔格斯著,徐怀大等译,层序地层学原理(海平面变化综合分析),北京:石油工业出版社,1993.
    [2] 蔡希源,李思田等著,陆相盆地高精度层序地层学-隐蔽油气藏勘探基础、方法与实践, 北京:地质出版社,2003.
    [3] 曹颖辉,池英柳,薛良清,沉积基准面在层序划分及油气藏预测中的应用,石油与天然气地质,2002,23(2):154-158
    [4] 陈冬霞,庞雄奇,姜振学,张俊,中国东部陆相盆地隐蔽油气藏成藏机理与模式[J].石油勘探与开发,2006,33(2):178-183
    [5] 陈发亮,朱晖,李绪涛等。东濮凹陷下第三系沙河街组层序地层划分及盐岩成因探讨[J].沉积学报,2000,18(3):384-394
    [6] 陈昊,张洪波,曹学良等。东濮凹陷文东地区沙三中亚段沉积相及砂体类型分析[J].石油勘探与开发,2006,33(1):32-35
    [7] 陈佳梁,苏北盆地下第三系隐蔽油气藏预测与评价,中国地质大学(北京)博士论文,2005 年 11 月
    [8] 陈文学,姜在兴,鲜本忠等,层序地层学与隐蔽圈闭预测—以河南泌阳坳陷为例,北京:石油工业出版社
    [9] 程晓玲,周小进,郭建华,渤海湾盆地东濮凹陷 T-R 旋回层序地层学与隐蔽油藏研究[J].石油实验地质,2003,25(增刊):548-556
    [10] 池秋鄂,龚福华,层序地层学基础与应用,北京:石油工业出版社,2001
    [11] 池英柳,张万选,张厚福等,陆相断陷盆地层序成因初探[J],勘探家,1996,17(3):19-25
    [12] Daniel J. Miller and Kenneth A. Eriksson, February 2000, Sequence Stratigraphy of upper Mississipian Strata in the central Appalachians: A record of glacioeustatasy and tectonoeustasy in a forland basin setting. AAPG Bulletin, Vol. 84, No. 2, P. 210-233
    [13] 邓宏文,美国层序地层研究中的新学派—高分辨率层序地层学.石油天然气地质,1995,16(2):90-97.
    [14] 邓宏文,王洪亮,李熙韶,层序地层基准面的识别、对比技术及应用 石油与天然气地质,1996,17(3):177-184.
    [15] 邓宏文,王洪亮,翟爱军,徐长贵,中国陆源碎屑盆地层序地层与储层展布,石油与天然气地质,1999,02
    [16] 邓宏文,王洪亮,钟宁宁,沉积物体积分配原理—高分辨率层序地层学理论基础[J]。地学前缘,2000,7(4)305-313
    [17] 东濮凹陷下第三系沙河街组碎屑岩储层特征与评价 1990.9,内部资料.
    [18] 樊太亮,沉积基准面变化分析技术及应用,石油与天然气地质,1997,18(2):120-127。
    [19] 樊太亮,郭齐军,吴贤顺,鄂尔多斯盆地北部上古生界层序地层特征与储层发育规律,现代地质,1999,01
    [20] 樊太亮,李庆谋,沉积基准面变化分析技术及应用,石油天然气地质,1997,18(2):108-113
    [21] 樊太亮,朱玲,吉尔嘎朗图凹陷沉积层序几何构型,石油与天然气地质,1998,02
    [22] 方少仙,侯方浩编著,石油天然气储层地质学,石油大学出版社,1998
    [23] 冯有良,李思田,东营凹陷沙河街组三段层序低位域砂体特征,地质评论, 2001,47(3):279-286
    [24] 冯有良,李思田,解习农,陆相断陷盆地层序形成动力学及层序地层模式,地学前缘,2000,7(3):119-132
    [25] Galloway, W. E., 1998, Siliciclastic slope and base-of-slope depositional systems: Component facies, stratigraphic architecture, and classification: AAPG Bulletin, v. 82, no. 4, p. 569-595.
    [26] 顾家裕,邓宏文等,层序地层学及其在油气勘探开发中的应用论文集,北京,石油工业出版社,1997
    [27] 郭彦如,于均民,樊太亮,查干凹陷下白垩统层序地层格架与演化,石油与天然气地质,2002,23(2):166-169
    [28] 韩保清,曾红兵,张洪安等。东濮凹陷坡折带特征与砂体分布[J].江汉石油学院学报,2003,25(2):25-27
    [29] 河岸—刘庄地区精细勘探研究,1992.10,内部资料.
    [30] 胡宗全,王传刚,张玉兰等。渤海湾盆地东濮凹陷上古生界潜山油气成藏条件评价[J].石油实验地质,2004,26(6):553-561
    [31] 纪友亮,冯建辉,东濮凹陷古近系的低位三角洲沉积[J].石油勘探与开发,2003,30(1):112-114
    [32] 纪友亮,冯建辉,王声朗等。东濮凹陷古近系沙河街组沙三段沉积期湖岸线的变化及岩相古地理特征,古地理学报,2005,7(2):145-156
    [33] 纪友亮,冯建辉,王声朗等。东濮凹陷沙三段高频湖平面变化及低位砂体预测[J].高校地质学报,2003,3(1):99-110
    [34] 纪友亮,张世奇等,层序地层学原理及层序成因机制模式。北京,石油工业出版社,1996
    [35] 季玉新,陈娟,谢熊举,测井曲线精细处理解释技术在复杂储层预测中的应用[J],石油物探,2004,43(2):139-144
    [36] 姜秀芳,宗国洪,郭玉新等,断裂坡折带低位扇成因及成藏特征,石油与天然气地质,2002,23(2):143-144
    [37] 姜在兴等,层序地层学原理及应用。北京,石油工业出版社,1996
    [38] 解习农,程守田, 陆相盆地幕式构造旋回与层序构成[J],地球科学,1996,21(1):27-33
    [39] Liangmiao (scott) Ye and Dennis Kerr, August 2000, Sequence Stratigraphy of the Middle Pennsylvanian Bartlesville sandstone, Northeastern Oklahoman: A case of an underfilled incised valley: AAPG Bulletin, V. 84, No. 8, P. 1185-1204
    [40] 李炎,吕新华等.东濮凹陷西斜坡复杂断块带油气成藏条件与勘探潜力分析[J].石油天然气学报(江汉石油学院学报),2005,27(2):166-170
    [41] 廖远涛,王华,王家豪等。东濮凹陷文东-前梨园地区沙三段、沙四段沉积特征和有利储集体预测[J].石油勘探与开发,2004,31(3):75-78
    [42] 廖远涛,张世民,夏鹏远等。东濮凹陷文东地区沙三段层序地层学特征[J].地球科学-中国地质大学学报,2005,30(2):133-139
    [43] 刘百红 李建华,测井和地震资料宽带约束反演的应用[J],石油物探,2004.1,43(1):76-79
    [44] 刘书会,滩坝砂岩储层预测技术研究—以梁 108 地区沙四段为例,中国地质大学(北京)博士论文,2004 年 11 月
    [45] 刘锡团,肖玲,周杰等。储层预测技术在东濮凹陷前 8 地区的应用[J].石油物探,2005,44(1):29-32
    [46] 刘泽容等,断块群油气藏形成机制和构造模式北京:石油工业出版社 1998.
    [47] 刘庄地区天然气资源评价,1997.12,内部资料.
    [48] Mulholland, J.W., January, 1998, Sequence stratigraphy: Basic elements, concepts, and terminology: The Leading Edge,P. 767
    [49] Nadon, G. C., J. A. (Toni) Simo, R. H., Dott, Jr., and C. W. Byers, July 2000, High-Resolution sequence stratigraphic analysis of the St. Peter sandstone and Glenwood formation (Middle Ordivocian), Michigan basin, U.S.A: AAPG Bulletin, V. 84, No. 7, P. 975-996
    [50] 漆家福,王德仁,陈书评等.兰聊断层的几何学、运动学特征对东濮凹陷构造样式的影响[J].石油与天然气地质,2006,27(4):451-459
    [51] Roksandic, M. M., February, 1994, The role of seismic stratigraphys in interpretation: The Leading Edge, P. 118
    [52] 苏惠,朱述坤,张金川等。东濮凹陷晚期洼陷成藏系统的油气勘探[J].断块油气田,2005,12(5):13-16
    [53] Vail P. R. Sequence Stratigraphy Interpretation using Sequence Stratigraphy: AAPG, 1987, 27/1-10
    [54] Vail, P. R. and W. W. Wornardt, 1991, An integrated approach to exploration and development in the 90 sequence: well log-seismic sequence stratigraphy analysis: Gulf Coast Association of Geological Societies Transactions, v. 41, p. 630-650.
    [55] Vail, P.R., et al., 1977. Seismic stratigraphy and global changes of sea-level, Part 3 Relative changes of sea-level from coastal onlap. In, Payton, C.E. (ed.), Seismic stratigraphy, Applications to hydrocarbon exploration. AAPG. Memoir, 26, 63-81.
    [56] 王东坡,薛林福等,沉积盆地的地球动力学。石油与天然气地质,1998,19(3):181-185
    [57] 王家毫,王华,周海民等,断陷湖盆基底非线性沉降与Ⅱ型层序的形成—以冀东油田南堡凹陷为例,石油与天然气地质,2001,22(3):203-206
    [58] 王立志,东濮凹陷西部地区油藏地球化学与成藏演化史研究,中国地质大学(北京)博士论文,2003.10
    [59] 王生朗,东濮凹陷下第三系成盐机理及与油气成藏的关系,中国地质大学(北京)博士论文,2003.11
    [60] 王嗣敏,刘招君, 陆相盆地层序地层形成机制分析—以松辽盆地为例[J],长春科技大学学报,2000,30(2):137-142
    [61] 王西文,精细储层预测技术在油田开发中的应用[J],石油地球物理勘探,2005.4,40(2):209-218.
    [62] 王西文,刘全新等,储集层预测技术在岩性油气藏勘探开发中的应用[J],石油勘探与开发,2006.4,33(2):189-197
    [63] 王西文,苏明军,王大兴,相控等时小层对比方法及应用[J],石油勘探与开发,2003.12, 30(6):78-80
    [64] 吴因业,邵文斌,含油气盆地层序解释技术与应用,北京:石油工业出版社,2000
    [65] 吴因业等,陆相层序地层学分析的方法与实践,石油勘探与开发,1995,24(5)
    [66] 夏文臣,张 宁等,柴达木侏罗系的构造层序及前陆盆地演化。石油与天然气地质,1998,19(3),173-180
    [67] 谢锐杰,东濮凹陷胡 7 南断块的地质模型及储层模拟研究,石油大学博士论文,2004.4。
    [68] 谢英刚,郭建华,夏保华等。东濮凹陷马厂地区沙二下亚段 T-R 旋回层序与沉积相模式[J].断块油气田,2004,11(1):23-25
    [69] 熊继辉,贾承造,王毅等,层序地层学及其在塔里木盆地石炭系研究中的应用,北京:石油工业出版社,1996,
    [70] 熊运斌,文南油田文 135 复杂断块油藏精细描述及剩余油挖潜研究,中国地质大学(北京)博士论文,2003.11
    [71] 徐怀大、樊太亮、韩革华等,新疆塔里木盆地层序地层特征,北京:地质出版社,1997
    [72] 徐怀大等,从地震地层学到层序地层学—油气盆地的定性化与定量化描述,北京,石 油工业出版社,1997
    [73] 薛良清,层序地层学在湖相盆地中的应用探讨[J],石油勘探与开发,1990,17(6):29-34
    [74] 薛良清,成因层序地层学的回顾与展望,沉积学报,2000,18(03)
    [75] 薛良清,陆相盆地中的层序、体系域与隐蔽油气藏,石油与天然气地质,2002,23(2):115-117
    [76] 杨桥,漆家福,程秀申等。河南东濮凹陷古近系各组段的原始地层厚度分布及其构造古地理意义[J].古地理学报,2006,8(3):407-413
    [77] 于建国,路慎强,王金铎等,测井约束反演技术在史南浊积砂体描述中的应用[J],石油物探,2001.6,40(2):103-107
    [78] 余守德,张晓峰,钱鑫芳等,复杂小断块油田滚动勘探开发储层预测[M],石油工业出版社,2001.9,P1-3
    [79] 张洪安,东濮凹陷生长断裂的控藏作用研究,中国地质大学(北京)博士论文,2003.10
    [80] 张忠民,龙胜祥,许化政,中国石化东部探区古生界原生油气藏勘探前景[J].石油勘探与开发,2006,33(4):420-425
    [81] 赵澄林,刘孟慧,纪有亮 东濮凹陷下第三系碎屑岩沉积体系与成岩作用,北京:石油工业出版社,1992
    [82] 赵文智,何登发登著,石油地质综合研究导论,北京.石油工业出版社,1999
    [83] 赵政璋,赵贤正,王英民,储层地震预测理论与实践[M],科学出版社,2005.5,P27-28
    [84] 中国石油地质志 卷七 中原油田 北京:石油工业出版社 1993。
    [85] 朱筱敏,层序地层学原理及应用,北京,石油工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700