不锈钢锅体生产线高温物料传输系统优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物料自动传输技术在冲压生产线等方面有巨大的需求,冲压加工广泛应用于汽车、航空、家电等工业领域,其加工过程就是对原材料进行冲压拉伸、折弯、裁剪制成产品或半成品,其加工方式是冲床驱动模具的凸模对送到凹模的材料进行冲压拉伸或折弯、裁剪加工,主要用于批量生产,如用人工操作加工,就具有劳动强度高和危险性高的特点,也无法充分发挥生产线的效率。铝—不锈钢复合底不锈钢锅是一种节能和提高加热均匀性的厨具新产品,铝—不锈钢复合底不锈钢锅在制造过程中需要将锅体加热并输送到压力机上进行不锈钢锅体、铝导热体以及不锈钢底板的焊接。高温物料的自动传送涉及传输速度与节能问题有其特殊性。
     本文针对铝—不锈钢复合底不锈钢锅体高温物料的自动传输系统,重点进行了不锈钢锅底生产流水线的自动上下料方案设计、生产流水线的PLC控制系统设计、上下料机械手结构及控制程序设计与开发。首先基于高温物料生产线的节能减耗优化设计,根据压力焊机的生产节拍优化设计高温物料生产线的配置,采用传送带快速传送工件到上料机械手附近,用机械手夹持工件快速移动。其次,高温物料的上下料机械手结构和控制过程优化,上料机械手的顺序动作均采用气缸加压力控制阀及行程开关实现,并用定位块配合压力控制阀来完成压焊机的工件定位要求;下料机械手用三轴数控运动实现,伸缩臂动作、升降臂动作、地面移动均使用伺服电机作动力源,转臂动作用旋转气缸加行程开关来实现,夹持工件动作用直线移动气缸加压力控制阀来实现。接着,根据高温物料传输系统所处的高温、高噪声环境进行系统稳定性和绝热性结构和控制方案设计,减少整个系统的控制环节。最后,采用PLC控制系统实现高温物料自动上下料系统的优化控制,提高流水线的柔性生产能力,实现上下料的各种动作,减少高温物料传输过程的热量耗散。
Automatic transmission technology has a huge demand in the press production lines, and stamping is widely used in automotive, aerospace, electronics and other industries. Stamping processing is stretching, bending, cutting or semi-finished products for raw materials, and processing method is tensile or bending, cutting processing for punch driven die, is mainly used for mass production, such as the use of manual processing, which have high labor intensity and high-risk characteristics and can't give full play to the efficiency of production lines. Aluminum-stainless steel clad bottom stainless steel pot is the new kitchen products which save energy and improve the heating uniformity, in the manufacturing process which requires to heat the pot, then to transfer to the press to weld the stainless steel pot, aluminum conductors and stainless steel floor. The automatic transfer of high-temperature materials has its particularity on energy issues and transmission speed.
     In this paper, it focuses on automatic loading and unloading design of a stainless steel pot production lines, PLC control system design of production line, structure of loading and unloading manipulator and control program design. Firstly, based on optimal design on saving energy and reducing consumption of high temperature material production line, it transfers the workpiece to the vicinity of the robouse by using conveyor, according to the configuration of high-temperature materials production line. Secondly, the order of the feeding robot movements is implemented by using pressure control valve and travel switch, and completed the requirements of the workpiece positioning by using the pressure control valve positioning block with pressure welder; Cutting machine hand is completed by using axis NC movement:telescopic movement, lifting arm moves, the ground are using the servo motor for mobile power source, a rotating cylinder arm movements is completed by using additional limit switch, and the workpiece moves is completed by using with a linear increase cylinder pressure control valve. Then, design stability, thermal insulation structure and control according to the high temperature and high noise environment in the material transfer system. Finally, it achieves optimal control of automatic loading and unloading system, improves the lines of flexible production capacity, completes a variety of actions and reduces the heat dissipation of the heat transfer material by using PLC control system.
引文
[1]刘志永.浅析步进电机的PLC控制技术与发展趋势[J].科技咨询,2006(27):24.
    [2]焦连岷.冲床的数控改造及全自动送料装置的研制[D].南京:南京理工大学,2007.
    [3]徐刚,鲁洁,黄才元.金属板材冲压成形技术与装备的现状与发展[J].机电工程技术,2004(4)16-22.
    [4]南雷英,戚春晓,孙友松.冲压生产自动送料技术的现状与发展概况[J].机电工程技术,2004:7-11.
    [5]孙友松,张宏超.金属板材加工设备发展新动向[J].锻压技术,2004(4):1-4.
    [6]刘振堂.国外数控冲床的现状和发展趋势制造技术与机床[J].数控机床,2004(5):17-19.
    [7]江天华,刘颜辉,周英.多工位压力机电子送料技术锻压机械[J].锻压技术,2002(3):3-5.
    [8]罗云华,张海欧,王桂兰.多工位自动化冲压生产线的设计[J].机械工人(热加工),2002(1):59-60.
    [9]季晓明.快速横杆式(SpeedBAR)自动化输送系统[J].机械工人,2005(4):16-18.
    [10]北京机电研究所.锻压[M].北京:机械工业出版社,2002.
    [11]孙友松,周先辉,黄开胜等.交流伺服电机驱动——成形装备发展的新动向[C].太原:第九届全国塑性工程学术年会论文集,2005(7):1-6.
    [12]孙友松,张宏超.金属板材加工设备发展新动向[J].锻压技术,2004(4):1-4.
    [13]Du M. F. The polishing mechanism of electrochemical mechanical polishing technology [J]. Journal of materials processing Technology,2003:280-286.
    [14]刘川,宋四全,李勇.国内冲压自动化线成套技术及装备供应能力研究[J].机器人技术与应用,2003(3):8-12.
    [15]徐炳辉.气动手册[M].上海科学技术出版社,2005.
    [16]明仁雄等.液压与气压传动[M].国防工业出版社,2003.
    [17]SMC(中国)有限公司.现代实用技术[M].北京:机械工业出版社,1998.
    [18]马振福.液压与气压传动[M].机械工业出版社,2004.
    [19]陈新元,张安龙.装配线机械手电气混合控制[J].液压与气动,2007(3).
    [20]姜继海,宋锦春,高常识.液压与气压传动[M].高等教育出版社,2002.
    [21]陶湘厅,袁锐波.气动机械手的应用现状及发展前景[J].机床与液压,2007:226-228.
    [22]郑洪生.气压传动[M].机械工业出版社,2002.
    [23]李宝仁译.气动技术—低成本综合自动化[M].机械工业出版社,1999.
    [24]机电一体化技术手册编委会.机电一体化技术手册[M].北京:机械工业出版社,1999.
    [25]胡泓.机电一体化原理及应用[M].国防工业出版社,1999.
    [26]杨长能等.可编程序控制器基础及应用[M].重庆大学出版社,1992.
    [27]程周.电气控制与PLC原理及应用[M].北京:电子工业出版社,2003.
    [28]王兆义.小型可编程控制器实用技术[M].北京:机械工业社,2005.
    [29]林明星.电气控制及可编程控制器[M].北京:机械工业出版社,2004.
    [30]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,1998.
    [31]李三.不锈钢制品表面绿色光整加工工艺研究[D].广州:广东工业大学,2009.
    [32]陆国庆.冲压自动化生产线工序间过渡系统优化设计[D].上海:上海交通大学,2008.
    [33]南雷英.电冲压生产自动送料技术的现状与发展概况[M].北京:锻压装备与制造技术,2006.
    [34]冷颖.PLC控制的玻璃生产流水线设计[D].南京:南京理工大学,2008.
    [35]J L Andreasen, L de Chiffre, Automatic Chip-Breaking Dectection in Turing by Frequency Analysis of Cutting Force. Annals of CIRP,1993,42(1):45-48.
    [36]常斗南等.可编程序控制器原理.应用.实验[M].北京:机械工业出版社,2002.
    [37]Yoong-Ho Jung, Jeong-Suk Kim, Sang-Moon Hwang, Chip load prediction in ball-end milling, Journal of Materials Processing Technology 111,2001:250-255.
    [38]FX3U系列微型可编程控制器编程手册,2005.
    [39]陆鑫盛,周洪.气动自动化系统的优化设计[M].上海科学技术文献出版社1999.
    [40]Ismail Lazoglu, Yusuf Altintas, Prediction of tool and chip temperature in continuous and interrupted machining, International Journal of Machine Tools & Manufacture.2002.42:1011-1022.
    [41]Yee K W. Material dependency of chip-form detection using AcousticsEmission, 14Th NAMRC.1986:458-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700