二维层状材料的剥离及其复合物制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯(G)与六方氮化硼(h-BN)具备相似的晶体结构,却有着各自独特的物理化学性能。将这两种二维材料进行插层复合,就使六方氮化硼与石墨烯具备互补的物化性质及电学,如半导体性、高温稳定性和高化学稳定性,可以作为碳材料的有效补充。本文利用化学溶剂法成功剥离得到单层、双层及多层六方氮化硼及石墨烯材料,并将六方氮化硼与石墨烯进行层与层交替叠加插层复合,形成类石墨烯半导体材料。此硼碳氮插层混合材料具有可调的能带结构,具备了半导体材料的基本特性,显示了良好的热稳定性同时还兼具石墨烯的坚韧性。另外,为了进一步探索六方氮化硼作为基体与纳米颗粒的掺杂制备生物复合材料。通过化学还原法得到纳米尺寸极小的纳米银颗粒负载于六方氮化硼材料表面,形成了纳米银/六方氮化硼复合物,这种新型复合材料具备优异的抗菌持久性能。
     (1)采用化学溶剂法剥离将氮化硼与石墨粉末进行剥离,得到各自单层、双层及多层的二维超薄层状六方氮化硼及石墨烯材料。实验中根据表面张力在剥离过程中的影响,选择适宜的有机溶剂。通过对比不同有机溶剂下对六方氮化硼及石墨烯的剥离效果,得到剥离六方氮化硼的最佳有机溶剂为:异丙醇(IPA);剥离石墨烯材料的有机溶剂为:二甲基甲酰胺(DMF)。在这两种溶剂中剥离后的六方氮化硼和石墨烯材料为较完整的六方晶体结构,并且通过控制离心速度得到不同层数的六方氮化硼及石墨烯材料。剥离后的六方氮化硼纳米材料直径尺寸约在500~800nm,石墨烯纳米材料约为600~900nm。这种方法优点在于方法简单,成本低,产量高,可实现产业化。
     (2)将所得层状六方氮化硼与石墨烯材料再次溶于有机溶剂DMF中,进行一定强度的超声离心后得到了六方氮化硼/石墨烯插层混合物薄膜材料。由于在有机溶剂及机械超声作用下,破坏了原有材料各原子层间的范德华力,使得层状六方氮化硼与石墨烯各层之间重新插层排列以达到稳定状态,即这种新型复合材料的结构为六方氮化硼与石墨烯层层交替叠加类似“sandwich”的结构形式存在。利用各种不同表征手段证明了这种复合材料不仅具备六方氮化硼与石墨烯各自的物理化学性质,而且还具有其独特的电学性质,通过调整二者的掺入量比例来控制六方氮化硼/石墨烯混合物的光学带隙宽度。经电阻率、磁阻率及霍尔效应测试得出:六方氮化硼/石墨烯插层混合物具有一定的电阻率及霍尔效应现象,但与单纯石墨烯相比,其值并不是特别突出,说明六方氮化硼的引入促使此插层混合物的电学性质发生很大变化。
     (3)通过选用VASP软件,对六方氮化硼/石墨烯插层混合物的插层机理、带隙变化规律的理论计算。石墨烯与六方氮化硼界面“振荡”的产生而导致各自对应电子改变,最后产生偶极现象而促使带隙发生变化。根据混合激子波函数的计算得出:单纯六方氮化硼具有较大带隙表现为绝缘体性质,当掺杂不同比例的石墨烯后使六方氮化硼的激子发生转移而导致其带隙随之分裂,进而在半导体或者半金属性之间变化。
     (4)将剥离后的层状六方氮化硼作为基体,借助于微波辐射条件反应制备了纳米银颗粒,并均匀沉积在六方氮化硼表面形成纳米银/六方氮化硼复合材料。所得纳米银尺寸在5~10nm左右,无团聚现象。通过对此复合材料进行抗菌及杀菌性能测试后得出:纳米银/六方氮化硼复合物具有强烈的抗菌能力,杀菌率在99%以上。由此可以看出,此复合材料可应用于生物医药及防腐蚀防污涂层等领域。
     本文通过化学溶剂法得到六方氮化硼/石墨烯插层混合材料,通过不同表征手段的测试,得到此插层材料具备其独特的物化性能及电学特性,由于六方氮化硼的插入导致石墨烯的带隙被打开,呈现半导体材料的特征,有望代替硅材料应用于微电子工业领域。另外,凭借微波辐射与化学还原反应相结合的方法合成了纳米银/六方氮化硼复合材料,这种新型材料具有良好的抗菌性能,可被用于生物医药、海洋工程防污防腐蚀等领域,由于纳米银插入到六方氮化硼各层之间,改变了原有存在的原子间范德华力,使得六方氮化硼的光学带隙也随之发生改变,从这个特征上出发,有可能实现此混合物在电学领域的应用。
Graphene (G) and hexagonal boron nitride (h-BN) have been received enormousattention due to their outstanding physical and mechanical properties. Owing to theirsimilar structures and distinct electronic properties, h-BN as the isoelectric analog ofgraphene that is considered as good candidate for fabricating h-BN/G composites withstackings structures, which could be a complete new compound and offer newfunctionalities, such as electron field, itinerant ferromagnetism, and half metallicity.So if h-BN hybridizes with graphene, it could be used in microelectronic applications,which may be a post-silicon solution. To further develop the layered h-BN as a carrierto fabricate nanoparticles/h-BN bio-composite material. We prepared the silver nano-particles depositing on the h-BN nanosheets by using chemical reduction method.This novel composite possesses excellent antibacterial effect and durability.
     Here we demonstrate this concept for solids consisting of randomly stacked layers ofgraphene and hexagonal boron nitride (h-BN). Exfoliated h-BN and graphene weremixed, in various concentrations, to create artificially stacked h-BN/G solids. Thesevan der Waals stacked hybrid solid materials show interesting electrical, mechanicaland optical properties distinctly different from their starting parent layers. Theapproach could be used to create artificial materials, made from the van der Waalsstacking of robust atomic layers of different layered solids with vastly differentproperties.
     (1) Dispersions of exfoliated h-BN layers and graphene have been prepared by liquidphase exfoliation method. Several organic solvents were selected to exfoliate boronnitride and graphite into2-D layered h-BN and graphene nanosheets. The resultsshow that the surface tension has a significant effect on exfoliation these twomaterials. The optimal solvent for exfoliation on h-BN is isopropanol (IPA) and forgraphene is dimethyl formamide (DMF). The crystal structures of exfoliated h-BNand graphene nanosheets are improved and satisfied. In addition, single-layer, double-layer and multi-layered h-BN and graphene were obtained by controllingcentrifugation speed. The diameter of h-BN nanosheets is about500~800nm, andgraphene nanosheets is around600~900nm. It is easier to be scable and high yield by using liquid phase exfoliation comparing to other methods, such as chemical vapordeposition (CVD).
     (2) Layered hexagonal boron nitride and graphene dissovled in DMF, h-BN/graphenehybrid nanosheets was obtained after sonication and centrifugation. As the surfacetension and mechanical ultrasonication, the atomic van der Waals forces betweenlayered h-BN and graphene re-arranged which fabricate stacking sturctures of h-BNand graphene hybrid layer by layer. The physical, chemical and electrical propertieswere characterized. The resistivity, magnetoresistance and Hall Effect results showthat h-BN/graphene hybrid composites exhibit resistivity and Hall-effect phenomenon.
     (3) The band gaps investigation of h-BN/G hybrid composites was conducted usingVASP (Vienna Ab-initio Simulation Package), a software package which relaxes alattice to its minimum energy configuration by means of density functional theory(DFT). The following two and three layer systems were studied: G/h-BN, G/h-BN/G,h-BN/G/h-BN, h-BN/h-BN/G, and G/G/h-BN. Ultimately, the minimum energystacking arrangements, inter-layer separations, and intra-layer lattice parameters werefound for each system. These maximally stable configurations were then analyzed fortheir structural and electronic properties. For the two-layer system, an AB stackingarrangement with boron, nitride overtop of carbon was found to be the most stable.Similarly, three-layer systems were found to be most stable with boron overtop ofcarbon (h-BN/G/h-BN system). In addition, the results suggest that h-BN layersadjacent to graphene do not significantly increase the band gap of the overall structure;we predict that the further addition of h-BN layers to h-BN/G/h-BN or h-BN/h-BN/G system would not significantly increase the band gaps of either.
     (4) Layered hexagonal boron nitride nanosheets as substrate, the silver nano-particles(SNPs) was synthesized by using chemical reaction with microwave-assisted.From the TEM results show that the uniform silver nano-particles were deposited onthe surface of hexagonal boron nitride nanosheets to fabricate SNPs/h-BN composites.The size of silver nano-particles is about5~10nm, and no agglomeration phenomenon.The antimicrobial and bactericidal properties of SNPs/h-BN composite material wereinvestigated by inhibition zone. The results indicate that the SNPs/h-BN compositesexhibit strong antibacterial fuction, and the sterilization rate up to99%.In this paper, layered h-BN/G hybrid composites were fabricated by liquid phaseexfoliation method. It is expected that the novel material would replace siliconmaterials which is used in microelectronic divices; chemical reduction with microwave-assisted to synthesize nano-silver/h-Bncomposite. It is expected that thiscomposite material would be used for bio-medicine, marine engineering anti-corrosion and anti-fouling coating fields.
引文
[1]A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Mater.2007,6,183-191.
    [2] F. Guinea, María A. H. Vozmediano1, María P. López-Sancho, JoséGonzález. Progress inmodeling graphene: the novel features of this material. Advanced materials2011,23,5324-5326.
    [3]Novoselov K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature2005,438,197-200.
    [4] Matthew J. Allen, Vincent C. Tung, Richard B. Kaner. Honeycomb carbon: a review ofgraphene. Chem. Rev.2009,110,132-145.
    [5] J. W. McClure. Band structure of graphene and de Haas van alphen effect. Phys. Rev.1957,108(3),612-618.
    [6] Semenoff G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett.1984,53,2449-2452.
    [7] DiVincenzo D. P., Mele E. J. Self-consistent effective-mass theory for intralayer screening ingraphite intercalation composites. Phys. Rev. Lett.1984,29,1685-1694.
    [8] M. Eizenberg, J. M Blakely. Carbon monolayer phase condensation on Ni (111). Surface Sci.1979,82,228-236.
    [9] van Bommel A. J., Crombeen J. E., van Tooren A. LEED and Auger electron observations ofthe SiC (0001). Surface Sic.1975,48,463-472.
    [10] Varchon F., Feng R., Hass J., et al. Electronic Structure of epitaxial graphene layers on SiC:Effect of the substrate Phys. Rev. Lett.2007,99,1268051-4.
    [11] Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons.Carbon1994,32,759-769.
    [12] Lu X. K., Yu M. F., Huang H. et al. Tailoring graphite with the goal of achieving single sheetsNanotechnology1999,10,269-272.
    [13] K. S. Novoselov, A. K. Geim, et al. Electric field effect in atomically thin carbon films.Science2004,306,666-669.
    [14] Berger C., Song Z. M., Li T. B. et al. Ultrathin epitaxial graphite:2D electronic gas propertiesand a route toward graphene-based nano-electronics. J. Phys. Chem. B,2004,108,19912-19916.
    [15] G. Ruan, Z. Sun, Z. Peng, J. M. Tour. Growth of graphene from food, insects, and waste. ACSNano2011,5,7601-7607.
    [16] J. M. Tour, C. Kittrell, V. L. Colvin. Green carbon as a bridge to renewable energy. NatureMater.2010,9,871-874.
    [17] Sun Z.,Yan Z., Yao J., Beitler E., Zhu Y., Tour J. M. Growth of graphene from solid carbonsources. Nature2010,468,549–552.
    [18] Geim A K. Graphene: Status and prospects. Science,2009,324,1530-1534.
    [19] R. Mark Wilson, Jermey N. A. Matthews, et al. Physics Update Phys. Today,2010,63,12-14.
    [20] Geim A K, Kim P. Carbon wonderland. Scientific Amiercan,2008,298,90-97.
    [21] Zhang Y. B., Tan Y. W., Stormer H. L., et al. Experimental observation of the quantum Halleffect and Berry's phase in graphene. Nature,2005,438,201-204.
    [22] Novoselov K. S., Jiang Z., Zhang Y. B., et al. Room-temperature quantum Hall effect inGraphene. Science,2007,315,1379.
    [23] C. R. Dean, A. F. Young, P. Cadden-Zimansky, et al. Multi-component fractional quantumHall effect in graphene. Nature Physics,2011,7,693–696.
    [24] Bolotin K. I., Ghahari F., Schulman M. D., et al. Observation of the fractional quantum Halleffect in graphene. Nature,2009, Vol.462,196-199.
    [25] Klein O., Z. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischenDynamik von Dirac. Physics,1929,53,157.
    [26] Katsnelson M. I., Novoselov, K. S., Geim A. K. Chiral tunnelling and the Klein paradoxin graphene Nature Physics2006,2(9),620-625.
    [27] Pendry J. B. PHYSICS: Negative Refraction for Electrons. Science2007,315(5816),1226-1227.
    [28]Young A. F., Kim P. Quantum interference and Klein tunnelling in graphene heterojunctions.Nature Physics,2009,5,222-226.
    [29] Srivastava S. k., Shukla A. K., Vankar V., et al. Growth, structure and field emissioncharacteristics of petal like carbon nano-structured thin films. Thin Solid Films,2005,492,124-130.
    [30] Srivastava A., Galande C., et al. Novel liquid precursor-based facile synthesis of large-areacontinuous, single, and few-layer graphene films. Chem. Mater.2010,22(11),3457–3461.
    [31] Somani P. R., Somani S. P., Umeno M. Planer nano-graphenes from camphor by CVD. Chem.Phys. Lett.,2006,430,56-59.
    [32] Reina A., Jia X., Ho J., Large area, few-layer graphene films on arbitrary substrates bychemical vapor deposition Nano Lett.,2009,9,30-35.
    [33] Matsuo Y., Sugie Y. Preparation, structure and electrochemical property of pyroliytic carbonfrom graphite oxide. Carbon,1997,11,301-303.
    [34] P. Ramesh, S. Bhagyalakshmi, S. Sampath. Preparation and physicochemical andelectrochemical characterization of exfoliated graphite oxide. J. Clloid Interface Sci.2004,274,95-102.
    [35] Hummers W. S. Preparation of graphite oxide. Am. Chem. Soc.,1958,80,139.
    [36] Stankovich S., Dikin D. A., Dommett G. H. B., et al. Graphene-based composite materials.Nature,2006,442,282-286.
    [37] Yongye Liang, Yanguang Li, HailiangWang, Jigang Zhou, JianWang, Tom Regier, HongjieDai Co3O4nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction naturematerials,2011,10,780-786.
    [38] Liu Q., Liu Z., Zhang X., et al. Organic photovoltaic cells based on an acceptor of solublegraphene. Appl. Phys. Lett.,2008,92,223-303.
    [39] Watcharotone S., Dikin D. A., Stankovich S., et al. Graphene-silica composite thin films astransparent conductors. Nano Lett.,2007,7,1888-1892.
    [40] Wu J., Becerril H. A., Bao Z., et al. Organic solar cells with solution-processed graphenetransparent electrodes. Appl. Phys. Lett.,2008,92,263-302.
    [41] Wang Y., Shi Z., Huang Y., et al. Supercapacitor devices based on graphene materials. J. Phys.Chem. C,2009,113,13103-13107.
    [42] Wang D. W., Li F., Wu Z. S. Electrochemical interfacial capacitance in multilayer graphenesheets: Dependence on number of stacking layers. Electrochem. Commun.,2009,11,1729-1732.
    [43] J. H. Chen, C. Jang, S. D. Xiao, Masa Ishigami, Michael S. Fuhrer. Intrinsic and extrinsicperformance limits of graphene devices on SiO2.Nature Nanotechnology2008,3,206-209.
    [44] Sérgio Azevedo, J R Kaschny et al. A theoretical investigation of defects in a boron nitridemonolayer. Nanotechnology,2007,18,495707.
    [45] Corso M., Auw rter W. et al. Boron Nitride Nanomesh. Science2004,303(5655),217-220.
    [46] Nagashima A., Tejima N., Gamou Y., Kawai T., Oshima C. Electronic structure of monolayerhexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett.1995,75,3918.
    [47] D. Pacilé, J. C. Meyer,.. Girit, A. Zettl.The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes Appl. Phys. Lett.2008,92,133107-133110.
    [48] Nag A., Raidongia K., et al. Graphene Analogues of BN: Novel Synthesis and Properties.ACS Nano.2010,4(3),1539-1544.
    [49] Shuyan XU, Xinxin MA, Mingren SUN. Synthesis of boron carbonitride films by plasma-based ion implantation. Key Engineering Materials2007,353,1850-1853.
    [50] T. Soma, Sawaoka A, Saito S. Characterization of wurtzite type boron nitride synthesized byshock compression. Materials Research Bulletin1974,9(6):755.
    [51] Yi Lin, Tiffany V. Williams et al. Soluble, exfoliated hexagonal boron nitride nanosheets. J.Phys. Chem. Lett.2010,1,277-283.
    [52] Jamie H. Warner, Mark H. R mmeli et al. Atomic resolution imaging and topography ofboron nitride sheets produced by chemical exfoliation. ACS nano,2010,4,1299-1304.
    [53] Yi Lin, Tiffany V. Williams et al. Aqueous dispersions of few-layered and monolayeredhexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J.Phys. Chem. C,2011,115,2679-2685.
    [54] Wei-Qiang Han, Lijun Wu et al. Structure of chemically derived mono-and few atomic-layerboron nitride sheets. Applied Physics Lett.2008,93,223103.
    [55] C. Zhi, Y. Bando, et al. Large-scale fabrication of boron nitride nanosheets and theirutilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater.2009,21,2889-2893.
    [56] M.Topsakal, E. Aktürk and S. Ciraci. First-priclples study of two-and one-dimentionalhoneycomb structures of boron nitride. Phys. Rev. B,2009,79,115442
    [57]K.Watanabe, T.Taniguchi and H.Kanda. Direct-bandgap properties and evidence forultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater.,2004,3,404.
    [58] Y. Miyamoto, A.Rubio, S.G.Louie, M.L.Cohen. Electronic properties of tubule forms ofhexagonal BC3. Phys. Rev. B1994,50,18360.
    [59] Meyer J. C., Chuvilin A. et al. Selective sputtering and atomic resolution imaging ofatomically thin boron nitride membranes. Nano Lett.2009,9,2683-2689.
    [60]张桂玲,韦永德,戴柏青.六方氮化硼与石墨在形成层间化合物上的差异的理论研究.分子科学学报2001,17,(3),182-185.
    [61] Lijie Ci, Li Song et al. Atomic layers of hybridized boron nitride and graphene domains.Nature Mater.2010,9,435-430.
    [62] Li Song, Lijie Ci et al. Large scale growth and characterization of atomic hexagonal boronnitride layers. Nano Lett.2010,10,3209-3215.
    [1] K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K.Mitsuishi, K. Watari.Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem.2010,20,2749-2752.
    [2] Corso M., Auw rter W. et al. Boron nitride nanomesh. Science2004,303(5655),217-220.
    [3] A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima. Electronic structure of monolayerhexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett.1995,75,3918.
    [4] D. Pacilé, J. C. Meyer. The two-dimensional phase of boron nitride: few-atomic-layer sheetsand suspended membranes. Applied Physics Lett.2008,92,133107.
    [5] T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, J. Zhong. Thermal transport in hexagonal boronnitride nanoribbons. Nanotechnology2010,2,1245701-1245706.
    [6] V. O. Rybynok, P. A. Kyriacou. Beer-lambert law along non-linear mean light pathways forthe rational analysis of Photoplethysmography. J. Phys. Conf. Ser.2010,238,012061.
    [7] J. N. Coleman, M. Lotya et al. Two-dimensional nanosheets produced by liquid exfoliation oflayered. Science2011,331,568.
    [8] P. Wang, S. Orimo, T. Matsushima, H. Fujii, G. Majer. Hydrogen in mechanically preparednanostructured h-BN: a critical comparison with that in nanostructured graphite. Appl. Phys. Lett.2002,80,318-321.
    [9] J. Kacher, C. Landon, B. L Adams, D. Fullwood. Bragg's Law diffraction simulations forelectron backscatter diffraction analysis. Ultramicroscopy2009,109,1148-1156.
    [10] Y. H. Wu, T. Yu, Z. X. Shen. Two-dimensional carbon nanostructures: fundamental properties,synthesis, characterization, and potential applications J. Appl. Phys.2010,108,071301-37.
    [11] Nasim Alem, Rolf Erni, et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B2009,80,155425.
    [12] Y. Wang, Z. Shi, J. Fang, H. Xu, X. Ma, J. Yin. Direct exfoliation of graphene inmethanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites.Journal of Materials Chemistry2011,21,505-512.
    [13]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozovt, A. K.Geim. Two-dimensional atomic crystals. Physics2005,102(30),10451-10453.
    [14] Rubén Mas-Ballesté, Cristina Gómez-Navarro, Julio Gómez-Herrero, Félix Zamora.2Dmaterials: to graphene and beyond. Nanoscale2011,3,20.
    [15] J. Xue, J. Sanchez-Yamagishi et al. Scanning tunnelling microscopy and spectroscopy ofultraflat graphene on hexagonal boron nitride. Nat. Mater.2011,10(4),282-285.
    [16] R. W. Carpick, M. Salmeron, Scratching the surface: fundamental investigations of tribologywith atomic force microscopy. Chemical Reviews1997,97,1163-1194.
    [17]Y. Lin, T. V. Williams et al. Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys.Chem. Lett.2010,1,277-283.
    [18] C. Zhi, Y. Bando et al. Large-scale fabrication of boron nitride nanosheets and their utilizationin polymeric composites with improved thermal and mechanical properties. Adv. Mater.2009,21,2889-2893.
    [19] R. W. Collins, C. Y. Huang. Optical properties of amorphous multilayer structures. Phys. Rev.B1986,34,2910–2913.
    [20] P. R.Wallace. The band theory of graphite. Phys. Rev.1947,71,622-634.
    [21] K. Watanabe, T. Taniguchi, H. Kanda. Direct-bandgap properties and evidence for ultravioletlasing of hexagonal boron nitride single crystal. Nature mater.2004,3,404-409.
    [22]Y. Lin, T. V. Williams et al. Aqueous dispersions of few-layered and monolayered hexagonalboron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J. Phys. Chem.C2011,115,2679-2685.
    [23] C. R. Dean, A. F. Young et al. Boron nitride substrates for high-quality graphene electronics.Nature nanotechnology2010,5,722-726.
    [24] J. C. Meyer, A. Chuvilin, et al. Selective sputtering and atomic resolution imaging ofatomically thin boron nitride membranes. Nano Lett.2009,9,2683-2689.
    [25]N. Alem, R. Erni et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolutiontransmission electron microscopy. Physical Review B2009,80155425.
    [26]R. Arenal, M. Kociak N. J. Zaluzec. High-angular-resolution electron energy lossspectroscopy of hexagonal boron nitride. Applied Physics Lett.2007,90,204105.
    [27] A. C. Ferrari, J. C. Meyer et al. Raman spectrum of graphene and graphene layers. PhysicalReview Lett.2006,97,187401.
    [28]Wei-Qiang Han, Lijun Wu et al. Structure of chemically derived mono-and few atomic-layerboron nitride sheets. Applied Physics Lett.2008,93,223103.
    [29] J. H. Chen, C. Jang, S.D. Xiao, Masa Ishigami, Michael S. Fuhrer. Intrinsic and extrinsicperformance limits of graphene devices on SiO2. Nature Nanotechnology2008,3,206-209.
    [30]J. Kotakoski, C. H. Jin, et al. Electron knock-on damage in hexagonal boron nitride monolayer.Physical Review B2010,82,113404.
    [31] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J. M. Tour. Growth of graphene from solid carbonsources. Nature2010,468,549-552.
    [32]T. N. Narayanan, D. Sakthi Kumar, et al. Strain induced anomalous red shift in mesoscopiciron oxide prepared by a novel technique Bull. Mater. Sci.2008,31,759-766.
    [1] Matthew J. Allen, Vincent C. Tung, Richard B. Kaner. Honeycomb carbon: a review ofgraphene. Chem. Rev.2009,110,132-145.
    [2] L. Jiao, X. Wang, G. Diankov, H.Wang, H. J. Dai. Facile synthesis of high-quality graphenenanoribbons. Nature Nanotechnology2010,5,321-325.
    [3] S. Park, R. S. Ruoff. Chemical methods for the production of graphenes. NatureNanotechnology2009,4,217-224.
    [4] L. Song, L. Ci, et al. Large scale growth and characterization of atomic hexagonal boronnitride layers. Nano Lett.2010,10,3209-3215.
    [5] L. Ci, L. Song, et al. Atomic layers of hybridized boron nitride and graphene domains. NatureMater.2010,9,435-430.
    [6] K. Watanabe, T. Taniguchi, H. Kanda. Direct-bandgap properties and evidence for ultravioletlasing of hexagonal boron nitride single crystal. Nature mater.2004,3,404-409.
    [7] R. Arenal, M. Kociak, N. J. Zaluzec. High-angular-resolution electron energy lossspectroscopy of hexagonal boron nitride. Applied Physics Lett.2007,90,204105.
    [8] K. P. Loh, Q. Bao, P. Kailian Ang, J. Yang. The chemistry of graphene. J. Mater. Chem.2010,20,2277-2289.
    [9] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and grapheneoxide: synthesis, properties, and applications. Adv. Mater.2010,22,3906-3924.
    [10] Y. Miyamoto, A. Rubio, S. G.Louie, M. L. Cohen. Electronic properties of tubule forms ofhexagonal BC3. Phys. Rev. B1994,50,18360.
    [11] Wada, Y. K. Yap, M. Yoshimura, Y. Mori, T. Sasaki. The control of B-N and B-C bonds inBCN films synthesized using pulsed laser deposition. Diamondand Related materials2010,9,620-624.
    [12] I. Caretti, I. Jiménez, J. M. Albella. BCN films with controlled composition obtained by theinteraction between molecular beams of B and C with nitrogen ion beams. Diamond and RelatedMaterials2003,12,1079-1083.
    [13] R. Al-Jishi, G. Dresselhaus. Lattice-dynamical model for graphite. Phys. Rev. B1982,26(8),4514.
    [14] N. Behabtu, J. R. Lomeda, M. J. Green. Spontaneous high-concentration dispersions andliquid crystals of graphene. Nature nanotechnology2010,5,406-411.
    [15] C. Li, Y. Bando, C. Zhi, Y. Huang, D. Golberg. Thickness-dependent bending modulus ofhexagonal boron nitride nanosheets. Nanotechnology2009,20,385707-385713.
    [16] A. Lherbier, X. Blase, Y. M. Niquet, et al. Charge transport in chemically doped2D graphene.Phys Rev Lett.2008,101:036808.
    [17] D. C. Wei, Y. Q. Liu, Y. Wang, et al. Synthesis of N-doped graphene by chemical vapordeposition and its electrical properties. Nano Lett.2009,9,1752-1758.
    [18] X. R. Wang, X. L. Li, L. Zhang, et al. N-doping of graphene through electrothermal reactionswith ammonia. Science2009,324,768-771.
    [19] K. S. Novoselov, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature2005,438,197-200.
    [20] Y. Zhang, Y. Tan, H. L. Stormer, P. Kim Experimental observation of the quantum Hall effectand Berry’s phase in graphene. Nature2005,438,201-204.
    [21] K. S. Novoselov, Z. Jiang, Y. B. Zhang, et al. Room-temperature quantum Hall effect ingraphene. Science2007,315,1379.
    [1] A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Materials2007,6,183-191.
    [2] M. I. Katsnelson. Graphene: carbon in two dimensions. Mat Today2007,10,20-27.
    [3] K. S. Novoselov, A. K.Geim, S. V. Morozov, et al. Two-dimensional gas of massless Diracfermions in graphene. Nature,2005,438,197-200.
    [4] Y. B. Zhang, Y. W. Tan, H. L.Stormer, et al. Experimental observation of the quantum Halleffect and Berry’s phase in graphene. Nature2005,438,201-204.
    [5] K. S. Novoselov, Z. Jiang, Y. Zhang, et al. Room-temperature quantum hall effect in graphene.Science2007,315,1379.
    [6] C. Berger, Z. M. Song, X. B. Li, et al. Electronic confinement and coherence in patternedepitaxial graphene. Science2006,312,1191-1196.
    [7]谢希德,陆栋.固体能带理论,1998,复旦大学出版社,上海.
    [8] P. Hohenberg, W. Kohn. Phys. Rev.1964, B13,864.
    [9] W. Kohn, L. J. Sham. Phys. Rev.1965, A140,1133.
    [10] J. Callaway, N. H. March. Solid State Phys.1984, B8,135.
    [11]黄昆,韩汝琦.固体物理学,1997,高等教育出版社,北京.
    [12]方俊鑫,陆栋.固体物理学,1984,上海科学技术出版社,上海.
    [13] T. H. Ficher, J. Almlof. General methods for geometry and wave function optimization. J.phys. Chem.1992,96,9768-9774.
    [14] L. Wirtz, A. Marini, A. Rubio. Excitons in boron nitride nanotubes: dimensionality effects.Phys. Rev. Lett.2006,96,126104.
    [15] G. B. Bachelet, D. R. Hamann, M. Schlüter. Phys. Rev.1982, B26,4199.
    [16] V. Milman, B. Winkler, J. A. White, et al. Int. J. Quantum Chem.2000,77,895.
    [17] M. T. Yin, M. L. Cohen. Phys. Rev.1982, B26,5668.
    [18] G. Kresse, J. Hafner. Ab-initio molecular dynamics for liquid metals. J. phys. Rev. B1993,47,558.
    [19] C. H. Lui, Z. Li, K. F. Mak, E. Cappellutti, T. F. Heinz. Observation of an electrically tunableband gap in trilayer graphene. Nature Physics2011,7,944–947.
    [20] P. Trevisanutto, M. Holzmann, M. Cote, V. Olevano. Ab initio high-energy excitonic effectsin graphite and graphene. Phys. Rev. B2010,81,121405.
    [21] S. Baroni, S. de Gironcoli, A. dal Corso, P. Giannozzi. Rev. Mod. Phys.2001,73,515.
    [22] S. Grimme. Semiempirical GGA-type density functional constructed with a long-rangedispersion correction. Journal of Computational Chemistry2006,27(15),1787-1798.
    [23] B. Sellner, M. Ruckenbauer, I. Stamboli, M. Barbatti, A. J. A. Aquino, H. Lischka. Thephotodynamics of azomethane-a nonadiabatic surface-hopping study. J. Phys. Chem. A2010,114,8778.
    [24] V. V. Mazurenko, S. N. Iskakov, A. N. Rudenko, V. I. Anisimov, A. I. Lichtenstein.Renormalized spectral function for Co adatom on the Pt (111) surface. Phys. Rev. B2010,82(1),93403.
    [25] J. Xue, J. S. Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P.Jarillo-Herrero, B. J. LeRoy. Scanning tunnelling microscopy and spectroscopy of ultra-flatgraphene on hexagonal boron nitride. Nat. Mater.2011,10,282.
    [26] R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Tsai, Q. Wu, W. Gannett, A. Zettl, M. F.Crommie. Local electronic properties of graphene on a BN substrate via scanning tunnelingmicroscopy. Nano Lett.2011,11,2291.
    [27] C. R. Dean, A. F. Young, I. Meric, C. L. Lee, S. Wang, K. Sorgenfrei, T. W. Taniguchi, P.Kim, K. L.Shepard, J. Hone. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech.2010,5,722.
    [28] M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly. Electrostatic doping ofgraphene through ultrathin hexagonal boron nitride films. Nano Lett.2011,11(11),4631–4635.
    [1]董维国,陈岁元,张继良.微细银粉的制备与应用.材料与冶金学报,2002,1(3),171-205.
    [2] R. R. Naik, S. J. Stringer, G. Agarwal, et al. Biomimetic synthesis and patterning of silvernanoparticles. Nature Materials2002,1(3),169-172.
    [3] A. Kameo, T. Yoshimura, K. Esumi. Preparation of noble metal nanoparticles in supercriticalcarbon dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects2003,215,181-189.
    [4]于美,刘鹏瑞,孙玉静,刘建华,安军伟,李松梅.石墨烯银纳米粒子复合材料的制备及表征.无机材料学报,2012,27(1).
    [5] K. S. Subrahmanyam, A. K. Manna, S. K. Pati, C. N. R. Rao. Astudy of graphene decoratedwith metal nanoparticles. Chemical Physics Letters2010,497,70-75.
    [6] S. Liu, L. Wang, J. Tian, Y. Luo, X. Zhang, X. Sun. Aniline as a dispersing and stabilizingagent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles forenzymeless hydrogen peroxide detection. Journal of Colloid and Interface Science2011,363,615-619.
    [7] J. X. Wang, L. X. Wen, Z. H. Wang, J. F. Chen. Immobilization of silver on hollow silicananospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics2006,96,90-97.
    [8] S. Liu, J. Tian, L.Wang, X. Sun. Microwave-assisted rapid synthesis of Agnanoparticles/graphene nanosheet composites and their application for hydrogen peroxidedetection. J Nanopart Res.2011,13(10),4539-4548.
    [9] S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, H. M. Neoh, N. M. Huang.Silver nanoparticles-graphene oxide nanocomposite for antibacterial purpose advanced MaterialsResearch2012,364,439-443.
    [10] Q. Bao, D. Zhang, P. Qi. Synthesis and characterization of silver nanoparticle and grapheneoxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid andInterface Science2011,360,463-470.
    [11]李凤生,杨毅,马振叶,等.纳米功能复合材料及应用[M].北京,国防工业出版社,2003,26.
    [12]刘福春,韩恩厚,柯伟.纳米复合涂料的研究进展[J].材料保护,2001,34(2),1-5.
    [13]肖清华,李博文.载银无机抗菌剂的研究现状和发展趋势.中国非金属矿导报,1999,6,5-7.
    [14] A. Henglein. Small-particle pesearch-physicochemical properties of extremely small colloidalmetal and demiconductor particles. Chemical Reviews1989,89(8),1861-1873.
    [15] F. Charles, J. Heinig. O3or O2and Ag-new catalyst technology for aqueous phasesanitation.in: Ozone science and engineering.USA: International Ozone Society1993,533-546.
    [16]顾大明,高农,等.次磷酸盐液相还原法快速制备纳米粉.精细化工,2002,19(11),634-635.
    [17]王银海,牟季美,等.交流电在Al2O3模板中沉积金属机理探.物理化学学报,2001,17(2),116-118.
    [18] F. Anton, H. Arnim. Laser Ablation of films and suspended particles in a solvent: formation ofcluster and colloid solutions. Ber Bunsen-Ges Phem Chem1993,97(2),252-254.
    [19]黄磊,凌国平,郦剑.纳米银-A12O3复合粉末的制备[J].浙江大学学报(工学版),2003,37(1),65-69.
    [20] C. Yu-hung, Y. Chen-sheng. Laser ablation method: use of surfactants to form the dispersedAg nanoparticles. Colloids Surf A2002,197,133-139.
    [21] T. Takeshi, I. Kenzo, W. Norihisa, et al. Preparation of silver nanoparticles by laser ablationin solution: influence of laser wavelength on particle size. Appl Surf. Sci.2002,202,80-85.
    [22] P. K. Khanna, N. Singh, S. Charan, A. K. Viswanath. Synthesis of Ag/polyanilinenanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics2005,92,214-219.
    [24]周全法,徐正,包建春,等.还原-保护法制备的纳米级银粉的研究.精细化工,2001,18(1),39-42.
    [23] L. Claudio de Santa Maria, A. L.C. Santos, et al. Synthesis and characterization of silvernanoparticles impregnated into bacterial cellulose. Materials Letters2009,63,797-799.
    [25]廖学红,李鑫.电化学制备纳米银.黄冈师范学院学报,2001,21(5),58-59.
    [26]廖学红,朱俊杰,赵小宁等.纳米银的电化学合成.高等学校化学学报,2000,12(21),1837-1839.
    [27]杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体及其特征研究.光电子·激光,2003,14(4),383-386.
    [28] H. X. Li, M. Z. Lin, J. G. Hou. Electrophoretic deposition of ligand-stabilized silvernanoparticles synthesized by the process of photochemical reduction. Journal of Crystal Growth2000,212,222-226.
    [29]梁海春,容敏智,章明秋,等.微乳液法制备纳米银粒子的结构及其荧光现象研究.物理学报,2002,51(1),49-54.
    [30] A. Kameo, T. Yoshimura, K. Esumi. Preparation of noble metal nanoparticles in supercriticalcarbon dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects2003,215,181-189.
    [31] M. Moreno-Ma as, R. Pleixats. Formation of carbon carbon bonds under catalysis bytransition-metal nanoparticles. Acc. Chem. Res.2003,36(8),638-643.
    [32] R. R. Naik, S. J. Stringer, G. Agarwal, et al. Biomimetic synthesis and patterning of silvernanoparticles. Nature Materials,2002,1(3),169-172.
    [33]任祥忠,刘剑洪,张黔玲,等.以纳米银与接枝酪蛋白为复合载体的葡萄糖氧化酶电极的研究.分析测试学报2005,24(2),322-341.
    [34] T. R. Jensen, D. Malinsky, C. L. Haynes, et al. Nanoshere lithography: tunable localizedsurface plasmon resonance spectra of silver nanoparticles. Journal of physical chemistry B2000,104,105492-105561.
    [35] J. Wang, R. Polsky, D. Xu. Silver enhanced colloidal gold electrochemical stripping detectionof DNA hybridization. Langmuir2001,17(19),57392-57411.
    [36] N. Jain, A. Bhargava, S. Majumdar, J. C. Tarafdar, J. Panwar. Extracellular biosynthesis andcharacterization of silver nanoparticles using aspergillus flavus NJP08: a mechanism perspective.Nanoscale2011,3,635-641.
    [1] Z. Shi, K. G. Neoh, E. T. Kang. Surface-grafted viologen for precipitation of silvernanoparticles and their combined bactericidal activities. Langmuir2004,20,6847-6852.
    [2] M. Marini, S. De Niederhausern, R. Iseppi, et al. Antibacterial activity of plastics coated withsilver-Doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules2007,8,1246-1254.
    [3] W. Yuan, G. Jiang, J. Che, et al. Deposition of silver nanoparticles on multiwalled carbonnanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J. Phys.Chem. C2008,112,18754-18759.
    [4] C. K. Hope, M. Wilson. Biofilm structure and cell vitality in a laboratory model of subgingivalplaque. J. Microbiol. Methods2006,66,390-398.
    [5] Q. L. Feng, J. Wu, G. Q. Chen, et al. A mechanistic study of the antibacterial effect of silverions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res.2000,52,662-668.
    [6] I. Ahmed, D. Ready, M. Wilson, J. C. Knowles. Antimicrobial effect of silver-dopedphosphate-based glasses. J. Biomed. Mater. Res. A.2006,79,618-626.
    [7] A. M. Mulligan, M. Wilson, J. C. Knowles. Effect of increasing silver content in phosphate-based glasses on biofilms of Streptococcus sanguis. J. Biomed. Mater. Res. A.2003,67,401-412.
    [8] J. M. Schierholz, L. J. Lucas, A. Rump, G. Pulverer. Efficacy of silver-coated medical devices.J. Hosp. Infect.1998,40,257-262.
    [9] B. Chudasama, A. K. Vala, N. Andhariya, R. V. Mehta, R. V. Upadhyay. Highly bacterialresistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res.2010,12,1677-1685.
    [10] D. Raghunandan, B. D. Mahesh, S. Basavaraja, S. D. Balaji, S. Y. Manjunath, A.Venkataraman. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silvernanoparticles from guava (Psidium guajava) leaf extract. J Nanopart Res.2010,13(5),2021-2028.
    [11] Ivan Sondi, Branka Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case studyon E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science2004,275,177-182.
    [12] Larissa V. Stebounova, Ethan Guio, Vicki H. Grassian. Silver nanoparticles in simulatedbiological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res.2010,13(1),233-244.
    [13] A. Kumar, P. K. Vemula, P. M. Ajayan, G. John. Silver-nanoparticle-embedded antimicrobialpaints based on vegetable oil. Nature material2008,7,236-241.
    [14] G. A. Martínez-Casta ón, N. Ni o-Martínez, F.Martínez-Gutierrez, et al. Synthesis andantibacterial activity of silver nanoparticles with different sizes. J Nanopart Res.2008,10,1343-1348.
    [15] D. V. Phu, V. T. K.Lang, N. T. K. Lan,et al. Synthesis and antimicrobial effects of colloidalsilver nanoparticles in chitosan by γ-irradiation. Journal of Experimental Nanoscience2010,5(2),169-179.
    [16] D. J. Guo, H. L. Li. Highly dispersed Ag nanoparticles on functional MWNT surfaces formethanol oxidation in alkaline solution. Carbon,2005,43,1259-1264.
    [17] S. Chongdar, G. Gunasekaran, P. Kumar. Corrosion inhibition of mild steel by aerobicbiofilm. Electrochimica Acta2005,50,4655-4665.
    [18]王绍树.食品微生物实验[B],天津,天津大学出版社出版,1996.
    [19] A. Iranbakhsh, M. Ebadi, M. Bayat. The inhibitory effects of plant methanolic extract ofdatura stramonium L. and leaf explant callus against bacteria and fungi. Global Veterinaria2010,4(2),149-155.
    [20]周德庆.微生物学教程.北京,高等教育出版社,1993.
    [21]马迪根,马丁克.微生物生物学.北京,科学出版社,2001,767-763.
    [22] J. A. Coyer, A. Cabello-Pasini, H. Swifi, R. S. Alberte. N2fixation in marine heterotrophicbacteria: dynamics of environmental and molecular regulation [J]. Proc. Natl. Acad. Sci.1996,93,3575-3580.
    [23] P. Baumann, R. H. W. Schubert. Family II Vibrionaceae Veron1965,5245AL In: N. R.Krieg, J. G. Holt (Eds), Bergey’s Manual of Systematic Bacteriology [B]. Ba ltimore: W illiamsand W Ilkins,1984,516-517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700