石灰炉热工过程的在线仿真与智能集成控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰炉是目前工业上生产石灰和获得二氧化碳气体的常用设备,但由于石灰烧成的各项工艺参数难以获得,致使生产过程中普遍存在着石灰炉内生产状况难以准确掌握,生产自动控制无法进行等问题。本文在此背景下,针对石灰炉的具体情况,研究了利用热工仿真技术,使用新的智能集成控制的思想,解决石灰炉燃烧控制的难题。
     本文根据炉内热平衡和物料平衡原理,建立了焦炭燃烧和石灰石分解的理论模型;对混合料预热过程及石灰冷却过程进行了研究和理论分析。基于对石灰炉内的燃烧等工艺过程的热工分析,建立了石灰炉内反应与传热的数值仿真模型。并以此为基础,利用现场检测和测定的各种参数,对石灰炉内预热带、煅烧带和冷却带的高度以及烧成状况、分解率等工艺过程进行计算机仿真,研究各参数对石灰石煅烧的影响。
     根据仿真结果,在已有的自动检测系统基础上,通过增加必要的在线检测手段,收集石灰炉生产过程的在线信息,实现了石灰炉的全息检测;综合运用炉窑热工和反应动力学原理,总结现场操作经验和工艺要求,研究石灰炉控制模型,建立了专家知识库,开发了石灰炉炉况在线诊断模型和软件;根据石灰石煅烧分解率、炉内温度分布以及石灰炉运行状况的在线计算和诊断结果,采用模糊控制和专家控制系统相结合,运用模糊智能控制器,集成基于数学模型的控制技术和基于经验知识的控制技术,进行炉况控制决策,从而获得了过去难以达到的控制效果。
     本系统投入生产实践中后,石灰质量、CO_2浓度及产能都有明显提高,石灰炉高效稳定运行,实现了增产降耗的目标。
At present shaft furnace is widely used to product lime and obtain carbon dioxide in
    industry. As it is difficult to determine some importan technical parameters and operating
    condition of lime sintering, production processes can not be understood accurately and
    cofltrOlled automatically. According to the actual condition of lime fumace, in this thesis
    numerical simulation technology and new intelligent integration control idea are used to
    solve the problem of combustion control in lime furnace.
    According to the theory of heat and materials balance, the theoretic model of coke
    combustion and lime decomposition was established. The pre-heating process of mixed feed
    and cooling process of hot lime were investigated and theoretically analyzed. On the basis of
    thermal analysis of the technical processes, a numerical model of reaction and heat transfer
    in lime fumace was developed. Based on various parameters monitored and measured on
    site, compllter simulation is carried ollt to find ollt the height of preheating zone,
    calcinations zone, cooling zone, and calcining status, decomposition ratio .etc. The impact of
    parameters on lime stOne calcining has been studied.
    By adding new instruments and integrating the results of numerical simulation and
    measurements, the online information of production process in lime furnace was sufficiently
    collected. By using thermal and reaction dynamics principles and fully collecting operation
    experience, the control model of lime furnace was studied and expert repository was
    estab1ished. Online diagnosing model and software of operation conditions of lime furnace
    were aIso developed. According to the decomposition rate, temperature distribution, and
    online diagnosing resultS of operating statUs, control strategy of fiJrnace operation was
    decided.
    Based on computer simulation and parameter measurements fuZZy and expert control
    systems were adopted, and funy intelligent controller was developed to integrate
    
    
    mathematical model and experience of operators into control techniques to realize high-level control, which was difficult to attain before.
    After the control system was put into practice, the quality of lime, CO2 concentration and productivity were distinctly increased as a result of effective and steady operation of lime furnace, and thus, the target of increasing production and decreasing expense was realized.
引文
1.杨重愚.氧化铝生产工艺学[M].中南矿业学院,1982.
    2.н.и叶列明编,王延明译.氧化铝生产过程与设备[M].冶金工业出版社,1987.
    3.毕诗文.铝土矿的拜耳法溶出[M].冶金工业出版社,1997.
    4.靳古功.烧结法生产氧化铝生料配置过程的优化控制[M].氧化铝生产文集,1999.
    5.陈金清,等.石灰炉煅烧质量与氧化铝质量的关系,矿冶工程,2000(6)
    6.张如先,等.石灰炉配料控制算法[J].洛阳工学院学报,2000,21(2):70-72.
    7.游自强,等.PLC在大型活性石灰成套设备中的应用[J].冶金自动化,2000(2):49-51.
    8.苑莉,现代石灰竖窑与PLC自动控制[J].河北冶金,1998(1):53-55.
    9.阮学彬,等.三明钢铁厂气烧石灰窑计算机控制系统[J].冶金自动化,2000(4):63-64.
    10.肖师荣,等.自校正控制在石灰竖窑控制系统中的应用[J].福州大学学报,1999,27(4):62-64.
    11.周孑民,等.石灰窑窑内热工分析与操作优化[J].工业加热,2000(4).
    12.孙剑峰.石灰炉烧白煤操作探讨[J].科技与管理,1999增刊.
    13.c 苑安民.石灰窑各区高度优化研究.上海冶金高等专科学校学报[J],1999,20(1):24-29.
    14.(?)义胜,等.竖炉石灰窑气体流动数学模型研究.包头钢铁学院学报[J],1997,16(2):110-115.
    15.陈英,张宇.用风口燃烧温度判断高炉热状态的可行性研究[J].鞍钢技术,2000(11):6-8.
    16.麦雪凤.柳钢2#高炉大修工程仪控系统配置及特点[J].冶金自动化[J],2000(6):62-63.
    17.吴胜利,等.基于模糊数学的高炉炉况预测模型[J].钢铁,2001,36(3):12-14.
    18.包宏,杨章远.高炉人工智能炉况监控系统的研制及应用.中国有色金属学报,1997(7).
    19.苑安民.石灰窑各区高度优化研究,上海冶金高等专科学校学报,1999,20(1):24-29。
    20.周乃君,易正明等.石灰炉煅烧分解率在线监测模型研究.化工学报,2001.;52(7):612-615.
    21.周乃君,易正明等.石灰炉炉内过程数值仿真.中南工业大学学报,2000:31(5).
    22.[苏]н.п.塔邦希科夫编,甄文彬译.石灰的生产[M].中国建筑工业出版社,1982.
    23.[日]鞭岩,森山昭编,蔡志鹏译.冶金反应工程学[M].科学出版社,1981.
    24.中国纯碱工业协会.纯碱工学[M].化学工业出版社,1990.
    25.关宸祥.石灰窑[M].中国建筑工业出版社,1986.
    26.马智明.石灰技术[M].中国科学技术出版社,1994.
    27.[法]洛杰.路瓦松编,王福成译.焦炭[M].冶金工业出版社,1981.
    28. RICHARDS G A, MORRIS G A, et al. Thermal Pulse Combustion[M]. Combustion Science and Technology, 1993.
    
    
    29. Velitskus DL. Effect of petroleum coke calcination temperature. Light Metals, 1992.
    30.傅世敏.高炉过程气体动力学[M].冶金工业出版社,1990.
    31.陆钟武.火焰炉[M].冶金工业出版社,1994.
    32.[苏]M.A.格林科夫编,倪学梓译.炉子一般理论基础[M].中国工业出版社,1975.
    33.沈峰满,施月循等.高炉内气—固反应动力学[M].冶金工业出版社,1996.
    34. K. Shibagaki and S.motojima. Surface properties of carbon mocro-coils oxidized by a low concentration of oxygen gas[J]. Carbon, 2000;38(15).
    35.Patankar S V.Transl,ZHANG Zheng(张政).Numerical Heat Transfer and Fluid Flow(传热与流体流动的数值计算)[M].Beijing:Science Technology press,1984.
    36.中国冶金百科全书·炼焦化工[M].冶金工业出版社,1998.
    37.李诗九.工程流体力学[M].机械工业出版社,1989.
    38.童景山.流体热物性数据手册[M].清华大学出版社,1984.
    39.梅炽.有色冶金炉[M].中南工业大学出版社,1992.
    40.毕学工.高炉过程数学模型及计算机控制[M].冶金工业出版社.1996.
    41.田代清.Computer Analysis of Heat Transfer in Coke Oven [J].富士制铁技报,1969(8).
    42.李欣峰,梅炽等.阳极焙烧炉结构仿真与优化[J].中国有色金属学报,2000;10(2).
    43. Furman A. A mathematical model simulation at anode baking furnace [J]. Light Metals, 1980.
    44.韩昭沧.燃料及燃烧[M].冶金工业出版社,1994.
    45. Klaus A Hand Steve T C. Computational Fluid Dynamics for Engineers[M]. Volume Ⅰ/Ⅱ, A publication of Engineering Education System, Kansas, USA.
    46.MEI chi(梅炽),WANG Qian-pu(王前普).有色冶金炉窑的仿真与优化[J].The Chinese Journal of Nonferrous Metals,(中国有色金属学报),1996.
    47.梅炽.冶金过程传递原理[M].中南工业大学出版社,1987.
    48. Thibault MA. Simulation the dynamics of the anode baking ring furnace [J]. Light Metals, 1985.
    49. Bourgeois T. Computer simulation of a vertical ring furnace [J]. Light Metals, 1990.
    50. Schwarz M P. Low simulation in mineral engineering [J]. Minerals Engineering, 1991.
    51.马玉祥,武波.专家系统[M].电子科技大学出版社,1994.
    52.吴信东,专家系统设计[M].中国科技大学出版社,1990.
    53. Miyayama, Toshio. A combustion control support expert system for a coal-fired boiler[J]. ECON Proceedings (Industrial Electronics Conference) v 2 Oct 28-Nov 1 1991 1991 Sponsored by: IEEE Industrial Electronics Soc; Soc of Instrument & Control Engineers of Japan Publ by IEEE p 1513-1516
    54.吴红艳.基于知识的专家控制系统平台的建立[J].湛江师范学院学报(自然科学版),1999:20(1):38-41
    55.Wu Min(吴敏),Shen Deyao(沈德耀).Expert Control Based on Neural Networks and Mathematical Models for the Coal Blending Process [J]. Control Theory and Applications, 2000: 17(6): 869-872
    
    
    56.邵鹏鸣,等.基于对象模型的自适应模糊专家控制系统[J].自动化仪表,2000:15(2):18-21
    57. Gordon Dellegrinetti, Joseph Bentsman. Nonlinear Control Oriented Boiler Modeling-A Benchmark Problem for Controller Design. IEEE Trans. Control Ststem Technology, 1996,4(1):57-64
    58. Zheng, Dezhong. Computer control system based on fuzzy control for boilers, Proceedings of SPIE - The International Society for Optical Engineering 4222 Nov 8-Nov 10 2000 2000 Sponsored by: COEMA; CPS; SPIE Society of Photo-Optical Instrumentation Engineers p 161-165
    59. Li Wei. Application of hybrid fuzzy logic proportional plus conventional integral-derivative controller to combustion control of stoker-fired boilers [J]. Fuzzy Sets and Systems 2000.111(2):267-284
    60. Keigo Watanabe. A Fuzzy-Gaussian Neural Network and Its Application to Mobile Robot Control. IEEE Trans. Control System Technology, 1996,4(2):193-199
    61.林小峰,等.隶属函数对模糊控制性能的作用与影响[J].电机与控制学报,1998,2(4):197-200
    62. Zadeh.L.A.. Fuzzy Sets. Information and Control. 1965,(12):94
    63.迟钦河,徐文正.把模糊控制与PID算法相结合的控制系统[J].现代电子技术,1998,(09):19-21
    64.谢慕君,等.一种改进的模糊控制系统[J].自动化与仪器仪表,1998,(5):32-34
    65.原桂生,王寿和.石灰炉生产过程自动控制[J].石油化工自动化,1999,(4):42-43
    66.李元峰,李德坤.炭素阳极配料过程计算机监控系统[J].轻金属,2000,(6):48-50
    67. Mamdani. E.H. Application of fuzzy algorithms for simple dynamic plant [J].Proc. of IEEE, 1974,(121): 1585-1588
    68. Ostergarad. J.J, Fuzzy logic control of a heat exchange process in fuzzy automation and decision process. Amsterdam:Gupta MM. et.eds. North-Holland, 1977
    69. Zadeh. L.A.A rationale for fuzzy control.Trans. ASME,J.Dynam. Syst. Meas. Control, 1972,94(1):3-4
    70. Takagi T, Sugeno M. Fuzzy indentification of system and its application to modeling and control [J]. IEEE Trans. On SMC, 1985,15(1)
    71. Kosko B. Fuzzy systems as universal approximators [J].IEEE Trans, on Computers, 1994, 43(11):1329-1333
    72. Ostergarad. J.J, Fuzzy logic control of a heat exchange process in fuzzy automation and decision process. Amsterdam:Gupta MM. et.eds.North-Holland, 1977
    73.李元峰,周孑民.基于MELSEC的大型能源管理系统[J].有色冶金节能,2002,(5)
    74.河南省科学技术厅.石灰炉仿真技术研究开发与应用鉴定材料.豫科鉴委[2001]第342号
    75.中国长城铝业公司.石灰炉仿真技术研究开发与应用经济效益报告,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700