基于近似模型的车辆悬架参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在兼顾操纵稳定性的基础上,为了提高某款轿车的平顺性,对车辆的悬架系统进行了多目标优化,以期使整车在保证操稳性的条件下平顺性得到改善;同时通过本课题的一系列研究方法与手段,为悬架的优化设计提供一种新的思路,为完善本领域的研究提供一种有益参考。本文的具体研究方法和内容包括:
     首先,根据现有的国际和国内标准以及前人的研究成果,对操稳性和平顺性的试验方法以及评价指标作了总结,综合权衡这些试验方法和评价指标,提出一套合适的评价指标。
     其次,根据相关整车数据,在ADAMS/CAR多体动力学仿真软件中建立了精确的整车刚柔耦合虚拟样机模型。为了评价振动对人体舒适和健康的影响,特别建立了驾驶员及座椅模型。
     然后根据本文的评价方法,对整车进行了关于操稳性的双移线仿真试验和关于平顺性的随机输入行驶仿真试验以及脉冲输入行驶仿真试验,重点对整车的平顺性进行了全面评价。
     以悬架系统的特性参数(悬架弹簧刚度和减震器阻尼)为试验因子,以操稳性和平顺性评价指标为输出响应,分别利用最优拉丁超立方设计、随机拉丁超立方设计、正交数组、中心复合设计和BOX-Behnken设计对系统输入输出进行了试验设计,对比了这五种试验设计方法,验证了最优拉丁超立方设计的优越性。
     在试验设计的基础上,分别利用响应面法、径向基神经网络法和克里格法对系统输入输出进行了近似建模。通过建模误差分析,得出克里格法的建模精度最高,因此以克里格法作为本研究的近似建模方法。
     基于克里格法建立的近似模型,为了提高整车平顺性,同时兼顾操纵稳定性,利用多目标粒子群优化算法,以不舒适性参数和悬架前、后动挠度为优化目标,以悬架弹簧刚度和减震器阻尼为设计变量,对悬架系统进行了多目标优化。
     最后,通过优化前和优化后的仿真对比,结果表明:在保证车辆操稳性的同时,表征平顺性指标之一的不舒适性参数在各车速下平均下降了9%,得到了较大改善,而悬架的动挠度也优化到了一个合理的范围内,证明了优化的有效性。
On the basis of considering the handling stability, in order to improve the ride comfort of the car, the vehicle's suspension system was optimized by the multi-objective optimization method, then make the vehicle's ride comfort improved under the condition of guaranteeing the handling stability. At the same time, through a series of research methods and means, providing a new train of thought of suspension optimum design, providing a beneficial reference of the research in this field. The concrete research methods and content of this article includes:
     Firstly, according to the current international and domestic standards and research achievements of predecessors, a summary about the testing methods and evaluation indicators of handling stability and ride comfort were made. Weighing the test methods and evaluation indicators, a set of suitable evaluation indicators were put forward.
     Secondly, according to the relevant data of the vehicle, by using multi-body dynamics software ADAMS/CAR, a accurate vehicle rigid-flexible coupled model was established. Specially, in order to evaluate the vibration effects on human comfort and health, driver and seat model were established.
     Then, according to the evaluation method in this paper, for handling stability, a double lane change test was made, for ride comfort, random input simulation and pulse input test were carried out. In particular, the comprehensive evaluation about ride comfort was carried out.
     Using the characteristic parameters of suspension system (suspension spring stiffness and shock absorber damping) as the experimental factor, the handling stability and ride comfort evaluation indicators as the output response. The design of experiment of system's input and output were carried out by using Opt LHD, LHD, Orthogonal Arrays, CCD, Box-Behnken respectively. The five kinds of experimental design methods were compared, the Opt LHD's design superiority was proved.
     On the basis of experimental design, the input and output's approximate model of the system were built by using RSM, RBF neural netword and Kriging separately. Through the modeling error analysis, proving that the Kring model's modeling accuracy was the best one. So in this article, using Kring method as the approximate modeling method.
     Based on the Kring model, in order to improve the vehicle's ride comfort, handing stability was considered simultaneously, using multi-objective particle swarm optimization algorithm, using r.m.s. value of weighted body acceleration, the suspension dynamic deflection and dynamic tyre load as optimization objectives, suspension spring stiffness and shock absorber damping as the design variables, the suspension system was optimized.
     Finally, through comparison of optimized and un-optimized, the results show that: while ensured the handling stability, one of the ride comfort indicators, r.m.s. value of weighted body acceleration dropped9%on average at different speeds, were significantly improved. At the same time, the suspension dynamic deflection was optimized to a reasonable range. These verified the effectiveness of the suspension optimization.
引文
[1]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006
    [2]王望予.汽车设计(第四版)[M].北京:机械工业出版社,2004
    [3]Crolla D.A, Vehicle Dynamics-Theory into practice.Proc Instn Mech Engrs part[J].1996,210 (4):83-94
    [4]H-P威鲁麦特.车辆动力学:模拟及其方法[M].北京理工大学出版社,1998
    [5]M.GOBBI, G.MASTINU. Analytical description and optimization of the dynamic behavior of passively suspended road vehicles[J].Journal of Sound and Vibration,2001,245(3):457-481
    [6]雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997
    [7]A.F.Naude, J.A.Snyman, Optimization of road vehicle passive suspension systems[J]. Applied Mathematical Modelling,2003, (27):249-261
    [8]Mert Aydin·Y.Samim Unlusoy, Optimization of suspension parameters to improve impact harshness of road vehicles[J].International Journal of Advanced Manufacturing Technology,2012, 60 (5-8):743-754
    [9]Eun-Ho Choi, Jae-Bong Ryoo and Jin-Rae Cho, et al, Optimum suspension unit design for enhancing the mobility of wheeled armored vehicles[J].Journal of Mechanical Science and Technolo-gy,2010, (24):323-330
    [10]Yung-Chang Cheng, Cheng-Kang Lee, Robust design of suspension parameters for high speed railway vehicle based on uniform design and kriging interpolation[J].International Journal of Adva-nced Mechatronic Systems,2011,3 (4):268-278
    [11]Song.Xue Guan, Lee.Kwon Hee, Park.Han Seok, et al, Application of response surface model and kriging model to ADI lower control arm optimization[C]. IEEE Conference Publications:Internatio-nal Joint Conference on Computational Sciences and Optimization, Vol 2, Proceedings,2009: 1013-1016
    [12]Kim.Min-Soo, Choi.Jinhwan, Lee.Soon-Geul, Robust design optimization of a tracked vehicle system[C]. Proceedings of the ASME International Design Engineering Technical Con-ferences and Computers and Information in Engineering Conference 2007, Vol 5, PTS A-C,2008:559-563
    [13]Tey Jing Yuen, Ramli.R, Comparison of computational efficiency of MOEA\D and NSGA-II for passive vehicle suspension optimization[C]. Proceedings 24th European Conference on Modelling and Simulation, ECMS 2010,2010:219-225
    [14]Shariyat.M, Djamshidi.P, Minimizing the engine-induced harshness based on the DOE method and Sensitivity analysis of the full vehicle NVH model[J]. International Journal of Automotive Techno-logy,2009,10 (6):687-696
    [15]郭孔辉.汽车振动与载荷的统计分析及悬挂系统参数的选择[J].汽车技术,1976,(4),3-17
    [16]王光潮,管欣,胡子正.大客车悬架系统参数的优化分析[J].吉林工业大学学报,1986,26(6):13-20
    [17]张国玉.BJ-212汽车采用扭杆前悬架的优化设计[J].四川工业学院学报,1989,8(4):283-286
    [18]张越今.多体动力学仿真软件ADAMS理论及应用研讨[J].机械科学与技术,1997.5
    [19]雷雨成,陈昌明.汽车平顺性与操纵稳定性优化的对策论方法[J].同济大学学报,1997,25(4):434-439
    [20]张春花.基于车辆平顺性的悬架参数优化[J].科学技术与工程,2010,10(10):2375-2379
    [21]田玲玲,谷正气,李伟平等.非线性油气悬架系统平顺性仿真与参数优化设计[J].中南大学学报(自然科学版),2011,42(12):3715-3721
    [22]张弓.基于预决策粒子群算法的悬架仿真优化[D].浙江大学硕士学位论文.2011
    [23]陈龙,周立开,江浩斌等.车辆悬架阻尼的神经网络优化设计与试验研究[J].中国机械工程,2005,16(18):1666-1669
    [24]刘伟,史文库,桂龙明等.基于平顺性与操纵稳定性的悬架系统多目标优化[J].吉林大学学报(工学版),2011,41(5):1199-1204
    [25]邸长俊.基于虚拟样机的双横臂悬架设计与整车平顺性仿真[D].南京航空航天大学学位论文.2010
    [26]贺庆.基于虚拟样机技术的轻客前悬架仿真与优化[D].南京理工大学学位论文.2006
    [27]赵巍.汽车悬架系统建模与仿真研究[D].河北工业大学学位论文.2007
    [28]张富伟.汽车悬架转向系统仿真优化与集成设计[D].浙江大学学位论文.2010
    [29]任凯.微型客车多体动力学仿真分析及优化[D].上海交通大学学位论文.2010
    [30]闫雪.纯电动汽车的操纵稳定性和平顺性研究[D].南昌大学学位论文.2012
    [31]董俊红,成艾国.基于试验设计的某微型客车悬架参数匹配优化[J].科技导报,2010,28(14):75-79
    [32]陈泽.轿车刚弹耦合建模及行驶平顺性分析[D].吉林大学学位论文.2009
    [33]陈绍维.微型客车平顺性建模、仿真及参数匹配研究[D].吉林大学学位论文.2011
    [34]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D].吉林大学学位论文.2008
    [35]骆涛.轿车悬架运动学及整车平顺性仿真[D].合肥工业大学学位论文.2008
    [36]徐陈夏.汽车平顺性仿真分析与悬架参数优化[D].合肥工业大学学位论文.2009
    [37]谢骋,王蠡,任凯.一种面向整车性能分解技术的多目标系统优化设计方法[J].设计·计算·研 究,2012,(8):24-28
    [38]陈宏.基于试验设计的麦克弗逊悬架参数灵敏度分析及调校[D].华中科技大学学位论文.2005
    [39]冯樱,郭一鸣,周红妮.基于响应面法的麦弗逊悬架优化设计[J].研究与开发,2010,(2):61-63,67
    [40]刘士士,谷正气,伍文广等.基于响应面方法的车辆多目标协同优化[J].中南大学学报(自然科学版),2012,43(7):2586-2592
    [41]程贤福,袁峻萍,吴志强等.基于双响应面法和BBD的车辆悬架系统稳健设计[J].华东交通大学学报,2012,29(5):1-6
    [42]乔明侠.基于多体动力学的汽车平顺性仿真分析[D].合肥工业大学学位论文.2005
    [43]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究[D].湖南大学学位论文.2007
    [44]陈凯.菱形车通用底盘悬架系统的分析及优化设计[D].湖南大学学位论文.2012
    [45]任远,白广忱.汽车悬架优化设计中的近似模型方法及应用[J].设计*计算*研究,2009,(3):35-38,60
    [46]何森东,丁渭平,王昊涵等.基于响应面法的汽车转向车轮定位参数优化设计[J].汽车技术,2007,(8):42-44
    [47]王延克,丁渭平,杜飞龙等.基于响应面法的悬架结构改进及优化设计[J].机械科学与技术,2009,28(1):10-14
    [48]候剑波.空气悬架导向机构的性能分析与优化[D].江苏大学学位论文.2009
    [49]景立新.基于操纵稳定性的汽车悬架稳健性设计研究[D].吉林大学学位论文.2011
    [50]郑军,钟志华.非线性汽车行驶平顺性模型的神经网络优化[J].汽车工程,2001,23(3):159,172-176
    [51]陈昆山,李敬东,王国林.基于神经网络的车辆空气悬架系统阻尼优化[J].机械设计与制造,2007,(9):24-26
    [52]杨启耀,周孔亢,李敬东.基于神经网络的空气悬架系统匹配优化[J].农业机械学报,2009,40(4):18-22,26
    [53]李伟平,张宝珍,王磊等.基于Kriging近似模型的某轿车前悬架不确定性优化[J].农业机械学报,2009,40(4):18-22,26
    [54]徐文涛,秦臻,张亚辉.随机激励下基于Kriging模型的车辆悬架多目标优化[J].机械强度,2011,33(4):511-517
    [55]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991,8-24
    [56]Jane way, Human vibration tolerance criteria and application to ride evolution. SAE750075
    [57]Richard A Lee, Fred Pradlo, Analytical analysis of human vibration[R]. SAE Paper 680091
    [58]International Standards Organization, Guide for the evaluation of human exposure to whole body vibration, ISO2631,1974
    [59]郭孔辉,金凌鸽,曹宇等.车辆操纵稳定性客观评价指标的降维处理[J].设计·计算·研究,2010,(2):1-4
    [60]孙丽.基于操纵稳定性的混合动力客车平顺性评价与优化[D].江苏大学博士学位论文.2012
    [61]杨荣山,袁仲荣,黄向东等.车辆操纵稳定性及平顺性的协同优化研究[J].汽车工程,2009,31(11):1053-1059
    [62]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [63]廖芳,王承.横向稳定杆建模方法研究[J].设计·计算·研究,2006(7):5-8.
    [64]李莉.基于ADAMS/CAR的某轿车平顺性仿真分析与改进[D].吉林大学硕士论文,2007
    [65]隋允康,宇慧平.响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,2010
    [66]张建国,苏多,刘英卫.机械产品可靠性分析与优化[M].北京:电子工业出版社,2008
    [67]岳珠峰,李立州,虞跨海等.航空发动机涡轮叶片多学科设计优化[M].北京:科学出版社,2007
    [68]赖宇阳.Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社,2012
    [69]Romero V,Burkardt J,Gunzburger M,et al.Initial Application and Evaluation of a Promising New Sa-mpling Method for Response Surface Generation:Centroidal Voronoi tessellation.AIAA Paper 2003-2008,2003
    [70]杨荣山,袁仲荣,黄向东等.基于近似模型的车辆操纵稳定性及平顺性的优化研究[J].设计·计算·研究,2009(7):18-22
    [71]周长城.汽车平顺性与悬架系统设计[M].北京:机械工业出版社,2011
    [72]Kennedy J, Eberhart R. C. Particle Swarm Optimizaton[C]. In:Proc. IEEE Int'l. Conf. on Neural Networks, IV. Piscataway, NJ:IEEE Service Center,1995,1942-1948
    [73]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700