“穿地龙”机器人检测及控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“穿地龙”机器人是一种可在土中自行行走的装置。它由计算机控制,在地表的一端进入土中,按预定设计的轨迹前进,行进中可以随时改变方向绕过障碍物或修正偏差,最后,从地表的另一端指定位置穿出。它主要能够实现PE或PVC管、电缆、光缆等管线的地下铺设。“穿地龙”机器人属特种作业机器人,在利用非开挖技术进行地下管线铺设方面具有广阔的应用前景。
     本文的研究工作是结合黑龙江省科学技术计划(攻关)项目“穿地龙”机器人样机研制开展的。针对机器人土中作业环境的特点,主要进行了机器人总体结构、检测及控制系统、位姿检测系统、误差分析及误差的补偿等相关问题的研究工作。
     论文介绍了国内外气动冲击矛技术和钻孔导向仪的发展现状,并分析了轨迹可控的气动冲击矛的检测装置的发展现状。
     通过对当今国内外小直径地下管线典型施工钻孔方案的分析,得出将转向力矩的产生移至土中机器人本体上的“穿地龙”机器人总体方案。
     通过对“穿地龙”机器人检测及控制系统的结构的分析研究,得出了检测与控制系统建立过程中的几个关键问题,提出了采用多传感器检测机器人在土中位置与姿态的方法,同时设计了光电检测装置硬件电路,取得了较好的效果,为进一步进行“穿地龙”机器人研究工作提供了新的条件。
     讨论了“穿地龙”机器人位姿检测系统的误差的种类及来源,并对其进行详尽仔细的分析研究。
     以“穿地龙”机器人检测系统的各种误差为根据,进行有效的误差补偿,从而保证了机器人具有良好的姿态调节能力。通过试验结果表明,可以保证机器人在土中按照预定的轨迹行走,完成穿孔作业任务。
     论文最后进行了“穿地龙”机器人样机的实验研究。通过对“穿地龙”,机器人直线与曲线样机的陆上空载、测力与土中钻孔实验,可以得出:直线钻孔样机达到了国内外同类同规格产品的技术性能指标,可以推向工程化使用;曲线钻孔样机实现了一定曲率轨迹的钻孔作业,如再进行下一步的工程化设计,能够推出超过现有产品技术水平的轨迹可控的机器人产品。
"Dragon of puncturing mud" robot is a kind of device that can walk by itself in the mud. It is controlled by the computer following the scheduled track to enter into the mud, changes the direction to avoid the obstacles, corrects the errors and comes out of the mud from the destined spot finally. So under the mud it can mainly used to pave PE or PVC pipe, cable and optical fiber cable, etc. As one of special type work robots, "dragon of puncturing mud" robot has a great future in the aspects of paving underground pipe adopting the no-drill technology.
    The research works are supported by "dragon of puncturing mud" robot sample making of The Heilongjiang Science Technology Project in this paper. According to the particular case of mud environment, the paper studies the related key technologies, including the collectivity structure, the detecting and controlling system, the location-pose detecting system, the error analysis and compensation, etc.
    The author introduces the domestic and foreign developing situation of gasses impact moles and drilling bore radio-detection, analyses the detecting device's developing situation of the gasses impact moles whose trace can be controlled.
    "Dragon of puncturing mud" robot collectivity project that turning moment is brought at robot reality is devised after analyzing the model construction project of small diameter underground pipe construction at home and abroad.
    By the analysis and research of detecting and controlling structure for "Dragon of puncturing mud" robot, the several key problems in the course of connection established between detecting and controlling system has been solved, contemporaneously the method of adopting multi-sensor to detect robot' location and pose under the mud has been brought forward. The hardware circuit of photoelectric detecting device also has been designed which has the perfect result and provides new condition for the farther research of "Dragon of puncturing mud" robot.
    The error's sort and source of "Dragon of puncturing mud" robot's location-pose detecting system have been discussed, analyzed and researched at
引文
[1] 日本机器人学会.机器人技术手册.科学出版社,1996:346-353页
    [2] Schempf H, et al. A robot pipe-asbestos insulation removal system. Industrial Robot, 1998, 25(3): 196-204P
    [3] 王殿君.“穿地龙”机器人运动学、动力学及控制系统的研究 哈尔滨工程大学博士论文,2003,6
    [4] 吴广玉,姜复兴.机器人工程导论.哈尔滨工业大学出版社,9-17页
    [5] 周清远.智能机器人系统.清华大学出版社,1989:1-3页
    [6] M.J.Csruso,Application of Magnetoresistive Sensors in Navigation Systems,Sensors and Actuators 1997,Feb 1997,5-21
    [7] 范印越.机器人技术.电子工业出版社,1988:2-7页
    [8] 吴林.世界机器人技术发展的新方向一特种机器人.中国宇航学会机器人学术年会.1990:1-3页
    [9] 耿瑞伦.当今非开挖铺设管线技术的新进展.探矿工程.2000(7):54-56页
    [10] Paul Hayward. Trenchless Evolution Continues. No Dig International,2001(7): 15-19P
    [11] 杨明友,陆万雨.非开挖施工技术在二十一世纪中国管道建设中的地位和作用.非开挖技术.2002(2-3):14-17页
    [12] 张福学.机器人技术及其应用.电子工业出版社,2000:633-635页
    [13] Iwao H, Nobuyuki I,Kohichi M. An in-pipe operation microrobot driven based on screw[A] . IEEE, 1997 International Symposium on Micromachine and Human Science[C]. Piscataway: IEEE, 1997: 125-129P[14] Guo S, FUKUDA T, KATO, et al. Development of underwater microrobot using ICPF actuator[A].Proc, of the 1998 IEEE int. Conf. on Robotics & Automation[C]. Piscataway: IEEE, 1998: 1829-1834P
    [15] Yoshida M, Suzuki N, Hagio A , et al. Development of pipeline inspection Pig. Nippon Kokan Technical Report, 1988, 121: 37-43P
    [16] Randall J. Copper,. Eng., Raymond Hutchinson, P. E., Integrating fiber optics with no-dig tech-a win-win option, NASTT Newsletter, 2001
    [17] V. E. Bruce. Trenchless Construction for Utilities. Institution of Public Health Engineers Grosvenor Gardens. London. 1985:99-147P
    [18] Richard Yach. Trenchless Installations Grow in Asia. Trenchless Technology. 2002(2): 19-21P
    [19] Ian Clarke. The Advancement of Directional Drilling rig and Accessories. No Dig Internationl, 2001(1): 55-56P
    [20] 徐宝富,陆敏恂,张炳安.DH穿孔机工作在我国的应用前景.液压气动与密封.2000,82(4):29-31页
    [21] 宋翔雁.国外导/定向钻进管线工程技术及设备的进展与趋势.地质装备.2000(2):3-9页
    [22] J. Griffin. Modern tools ofunderground damage prevention. Underground Construction, 2001(4): 26-28P
    [23] Rudiger Kogler. Primary risk factors in horizontal directional drilling from an assessors point of view. No Dig International, 2001(9): 48-56P
    [24] Maretta Tubb. HSC pipeline work pushes HDD envelope. Underground Construction, 2001(6): 80-82P[25] A.D. Lewis, J.P. Ostrowski, R.M. Murray. Nonholonomic mechanics and locomotion: the Snakeboard Example. In Proc. IEEE Int. Conf Robotics and Automation, San DIEGO, CA. 1994: 2391-2397P
    [26] Howard N. Canoon. Extended earthmoving with autonomous excavator. Carnegie Mellow University, Doctoral Diseertation. 1999:40-45P
    [27] H. Kanigaichi. Development of self-propelled pipeline inspection system. Robot, Japan. 1986(51): 91-97P
    [28] Lobontiu Nicolae, Goldfarb Michael, Garcia Ephrahim. Elasto-dynamic analysis and design of an inchworm robotic insect. Proceedings of the 1999 Smart Structures and Materials-Smart Structures and Integrated Systems. Newport Beach, CA, USA, 1999. SPIA. 1999: 724-735P
    [29] Perry Slingsby. Advances in undersea cable burial technology for the twenty-first century. Technical Report. 2000: 1-6P
    [30] Miroslaw J., Skibniewski. Robotics in civil engineering. Computational Mechanics Publications Van Nostrand Reinhold. 1998: 1-13P
    [31] 张伟,王鹏.现代非开挖地下管线施工技术简介(1).工程勘探与施工信息.1995(8):18-20页
    [32] http://www.ditchwith.com
    [33] http://www.casece.com/products/products.asp?RL=APM&id=20
    [34] http://www.vermeer.com/equipment/vacuum/
    [35] 徐宝富,陆敏恂,张炳安.DH穿孔机工作在我国的应用前景.液压气动与密封.2000,82(4):29-31页
    [36] 徐宝富.轨迹可控气动穿孔机理论研究.建筑工程.2001,213(3):47-51页
    [37] 张益忠,殷琨.非开挖可控冲击矛轨迹变化的实验研究.长春科技大学学报.1999,29(4):404-407页
    [38] 熊青山,殷琨,许厚材.可控冲击矛模拟实验.探矿工程,2001(1):42-44页[39] http://www, radiodetection, co. uk/products/html/rd385.cfm
    [40] 王茁,“穿地龙”机器人关键技术及样机的研制,哈尔滨工程大学博士论文,2003,6
    [41] http://www.vermeer.com/equipment/electronics/ATLAS_BORE_PLANNER/
    [42] http://www.radiodetection.com.cn
    [43] http://www.sullair-asia.com
    [44] 黄晓明.可控向气动冲击式地下穿孔机结构设计和运行机理的初步分析与研究.同济大学硕士学位论文.1999
    [45] 李宁.DHD—350气动冲击器参数化CAD及仿真系统研究.北京科技大学1997:39-62
    [46] 魏洪兴.拱泥机器人基础技术研究及原理样机研制.哈尔滨工程大学博士学位论文.2001
    [47] 孟庆鑫,魏洪兴,王立权,杨青梅,王岚.基于蠕动原理拱泥机器人方案研究.中国造船,2001(3):64-68页
    [48] 张云生.实时控制系统软件设计原理及应用.北京:国防工业出版社,1998:1-85页
    [49] 何立民.MCS-51单片机应用系统设计.北京航空航天大学出版社,1992:1-114页
    [50] 孙迪生,王炎编著.机器人控制技术.机械工业出版社,1997:22-65页
    [51] 王晓明编著.电动机的单片机控制.北京航空航天大学出版社,2002:101-124页
    [52] 张红胜,杨进堂.光学码盘的检验.计量技术.1999(10):25-27页
    [53] 高晓辉,蔡鹤皋.光电码盘细分计数及接口设计.传感器技术.1997(16):37-39页
    [54] Beck Zaratian. Visual C++6.0 Programmer's Guide.北京希望电脑公司,1999:11~82页[55] 陈佳海.Visual C++程序开发指南.科学出版社,1995:55~103页
    [56] 姚远,木水.高级C语言程序设计技巧与实例.机械工业出版社,1995:3~67页
    [57] 燕奎臣,周纯祥,刘爱民.磁通门罗盘方位测角系统设计与实现.机器人,1999(3):191-197页
    [58] 王文彬,程彦秋.磁通门罗盘的原理.海洋技术,1992,11(6):21-27页
    [59] TCM2 Electronic Compass Module User' s Manual. Revision 1.04, September 1,1997. Precision Navigation, Inc
    [60] 奚普周,汪珍熙,汪叔华磁方向测量的一种实用系统,数据采集与处理,1995,10(3)
    [61] A.Alsred, 《Magnetic Compasses and Magnetometers》,Adam Hilger LTD London, 1968
    [62] M.J.Csruso,Application of Magnetoresistive Sensors in Navigation Systems,Sensors and Actuators 1997,Feb 1997,5-21
    [63] A.W. Fitzgibbon、M. pilu, R.B. Fisher, Direct Ieast-Square, ring of ellipses, In 13th International, Conference on pattem Recognition, Washington, Brussels,Tokyo,June 1996 IAPR, IEEE Computer, Society, press, Proceedings of the 13th, ICPR, Conference, Vienna, Austria, August 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700