Pleurocidin及其优化多肽抑制常见致龋菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管人们已经做了许多努力来控制和预防龋病,但是其依然是影响人类生活、学习、工作的三大流行传染病之一。龋病的主要病原体目前被确定为变异链球菌和远缘链球菌,并且粘性放线菌和链球菌戈登是牙齿表面的早期定殖菌[1]。但是杀灭这些细菌是非常困难的,因为口腔微生物能够形成牙菌斑生物膜。这种生物膜能够为细菌提供一定的保护能力,可以增加细菌对抗菌药物的抵抗能力[2]。机械去除(刷牙、龈上下洁治术)菌斑依旧是首先选择的治疗方法,但是其也并不能完全去除菌斑,因此目前的研究主要集中于如何在机械去除菌斑的基础上使用抗菌剂抑制、杀灭细菌。为此本实验对天然多肽pleurocidin的抗菌能力进行了研究,并在此基础上改造、修饰优化多肽,使其能够更好的发挥抗菌的能力。
     1、Pleurocidin对口腔常见致龋菌抑菌作用研究
     Pleurocidin是从Pleuronectes americanus的表皮中分离出来的天然多肽。其具有较为广谱的抗菌活性,能够抵抗多种细菌和真菌。此外,与其他天然多肽相比,在体外毒性研究中pleurocidin表现出较低的溶血性,具有潜在的治疗价值。
     在第一部分实验,我们对pleurocidin能否作为一种有效的抗菌多肽运用于龋病的治疗进行了检测。多肽对常见致龋微生物的抗菌机理也进行了研究。我们检测了pleurocidin的最小抑菌浓度(MIC),最小杀菌浓度(MBC)和杀菌动力学的特性,并进行了唾液影响pleurocidin抑菌效果的抑菌环实验。BioFlux系统用于生成可控剪切力下细菌生物膜的形成及pleurocidin对生物膜的抑制作用研究。荧光显微镜和共聚焦激光扫描显微镜(CLSM)用来分析和观察生物膜,扫描电子显微镜用于观察细菌细胞膜。
     MIC和MBC结果表明,pleurocidin对不同的口腔细菌有不同的抗菌活性。虽然唾液中的成分可能会影响抗菌活性,溶解于唾液中的pleurocidin仍然具有对口腔微生物的抗菌作用。此外体外模拟实验显示,pleurocidin对于变异链球菌生物膜具有一定的抗生物膜能力。我们的研究结果表明,pleurocidin具有杀死口腔生物膜,防止龋齿的运用潜力。
     2、基于Pleurocidin的新型抗菌多肽的优化设计
     鱼类具有强有力的天然免疫系统,从而能够应对大量的病原微生物。我们在之前已经证明α螺旋线性阳离子多肽Pleurocidin具有抗致龋菌、真菌的能力,并对变异链球菌生物膜有一定的抑制作用。但是pleurocidin的长度为25个氨基酸,过长的氨基酸提高了成本和降低了其对细菌生物膜的渗透能力,因此开发出新的具有高抗菌活性的短肽就更为必要。
     本研究在确定pleurocidin活性中心的基础上(GW18),新设计十几种多肽。经过我们的检测发现,GW18来源的pc1、pc8、pc9、pc11、pc12这几种对于口腔的几种常见致病菌有较强的抗菌能力。其中pc9是抗菌效果最好的多肽,pc12是具有抗菌能力里面最短的多肽。我们通过对多肽物理性质的分析,确定疏水性和多肽长度对抗菌能力最为重要。最后通过检测多肽的杀菌动力学特性,发现该类型多肽属于快速杀菌多肽的类型。
     3、新型多肽Pc9、Pc12的抗菌原理及细胞毒性研究
     很多多肽都有一定细胞毒性,甚至有很强的溶血作用。理想中的多肽是在具有抗菌能力的前提下,对细胞、宿主没有任何毒副作用,不会引起机体的过敏反应。实验的第二部分确定了pc9、pc12的抗菌能力,为此我们通过电镜、细胞实验更进一步探讨研究这一新型多肽的抗菌机理和细胞毒性。
     扫描电镜显示用多肽Pc9、Pc12处理过后,变异链球菌和血链球菌的细胞膜受到多肽的影响。抗菌多肽使细菌表面失去原有性状,变得粗糙甚至有出现孔隙。该孔隙直径大约为10nm左右,说明该多肽是通过在细菌表面形成离子通道,引起细菌内容物的流出,从而导致细菌的死亡。这种机理与原来设计多肽的时候设计是相一致的。细胞毒性显示当使用8×MIC的浓度的pc9和pc12处理HGFs,共培养2小时后,均显示对细胞有一定的影响。但是短时间处理时(5分钟、1小时),没有统计学上的差异。说明多肽的细胞毒性还是时间依赖型的。并且由于pc12在处理变异链球菌1小时以后,细菌均已经死亡。说明该多肽在杀菌时间内对细胞的影响轻微,有一定的临床运用价值。
1、Antimicrobial and antibiofilm activity of pleurocidin againstcariogenic microorganisms
     Pleurocidin, produced by Pleuronectes americanus, is an antimicrobialpeptide that exerts broad-spectrum activity against pathogenic bacteria and fungi.Moreover, pleurocidin shows less hemolysis and is less toxic than other naturalpeptides. In the present study, we investigated whether pleurocidin is aneffective antibiotic peptide against common cariogenic microorganisms andperformed a preliminary study of the antimicrobial mechanism. We assayedminimal inhibitory concentration (MIC), minimal bactericide concentration(MBC) and bactericidal kinetics and performed a spot-on-lawn assay. TheBioFlux system was used to generate bacterial biofilms under controllable flow.Fluorescence microscopy and confocal laser scanning microscopy (CLSM) wereused to analyze and observe biofilms. Scanning electron microscopy was used toobserve the bacterial membrane. MIC and MBC results showed that pleurocidin had different antimicrobial activities against the tested oral strains. Althoughcomponents of saliva could affect antimicrobial activity, pleurocidin dissolved insaliva still showed antimicrobial effects against oral microorganisms.Furthermore, pleurocidin showed a favorable killing effect against BioFlux flowbiofilms in vitro. Our findings suggest that pleurocidin has the potential to killdental biofilms and prevent dental caries
     2Design and antimicrobial activity of new peptides againstcariogenic microorganisms
     Fish possess a strong innate immune system that acts as the first line ofdefense against a broad spectrum of pathogens. We have demonstrated thatα-helix linear cationic peptide pleurocidin is sensitive to cariogenic bacteria,fungi, and have antibiofilm of Streptococcus mutans biofilms. However,pleurocidin is composed by25amino acid residue, and synthetic cost is highand has the poor ability to penetrate the entire bacterial biofilm, therefore thedevelopment of new peptide is even more necessary.
     In this study, GW18, activity centers of pleurocidin, was confirmed and aseries of new peptides were designed. Pc1, pc8, pc9, pc11and pc12, congenersof pleurocidin, had antibacterial ability against several oral microorganisms. Pc9had the best antibacterial activity, while pc12was the shortest peptide..Hydrophobicity and the length of the peptide are related to antibacterial ability.Duo to the short time killing effect of, it was suggested that pc12was a ‘rapidkill’peptide.
     3The antibacterial mechanism and the cytotoxic of the new designed peptides Pc9, Pc12
     Many peptides are cytotoxic and even have a strong hemolytic effect. Theideal peptide does not have any side effects or allergic reactions of the immunesystem. In this part of the experiment, electron microscopy was used to observethe membrane damage of pc9, pc12and cell experiments was taken to study thecytotoxic of new designed peptides.
     Electron microscopy showed that after exposed under Pc9and Pc12,membrane of Streptococcus mutans and Streptococcus sanguis is damaged bythe peptide. The bacteria lose their original shape, and transmembrane poreappeared. The pore diameter is about10nm, the formation of ion channels in thebacterial surface caused the outflow of the bacterial contents, resulting in thedeath of the bacteria. HGFs were treated with8xMIC of pc9and pc12. Aftercultured for2hours, there was some influence to the cell. However, shortexpose (5minutes,1hour) showed no statistically significant difference to thecontrol group. However, pc12had the ability to kill Streptococcus mutans in onehour. Therefore, our findings suggest that pc9has the potential to prevent dentalcaries
引文
[1] Rozen R, Bachrach G, Bronshteyn M, Gedalia I, Steinberg D. The role offructans on dental biofilm formation by Streptococcus sobrinus,Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus.FEMS Microbiol Lett.2001;195:205-10.
    [2] Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol.2000;182:2675-9.
    [3] Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin,an antimicrobial peptide in the skin secretions of winter flounder. J BiolChem.1997;272:12008-13.
    [4] Lee J, Lee DG. Influence of the hydrophobic amino acids in the N-andC-terminal regions of pleurocidin on antifungal activity. J MicrobiolBiotechnol.2010;20:1192-5.
    [5] Tao R, Tong Z, Lin Y, Xue Y, Wang W, Kuang R, et al. Antimicrobial andantibiofilm activity of pleurocidin against cariogenic microorganisms.Peptides.2011;32:1748-54.
    [6] Mattos-Graner RO, Napimoga MH, Fukushima K, Duncan MJ, Smith DJ.Comparative analysis of Gtf isozyme production and diversity in isolates ofStreptococcus mutans with different biofilm growth phenotypes. J ClinMicrobiol.2004;42:4586-92.
    [7] Lemos JA, Burne RA. A model of efficiency: stress tolerance byStreptococcus mutans. Microbiology.2008;154:3247-55.
    [8] Suntharalingam P, Senadheera MD, Mair RW, Levesque CM, CvitkovitchDG. The LiaFSR system regulates the cell envelope stress response inStreptococcus mutans. J Bacteriol.2009;191:2973-84.
    [9] Senadheera D, Krastel K, Mair R, Persadmehr A, Abranches J, Burne RA, etal. Inactivation of VicK affects acid production and acid survival ofStreptococcus mutans. J Bacteriol.2009;191:6415-24.
    [10] Napimoga MH, Hofling JF, Klein MI, Kamiya RU, Goncalves RB.Tansmission, diversity and virulence factors of Sreptococcus mutansgenotypes. J Oral Sci.2005;47:59-64.
    [11] Gutierrez JA, Crowley PJ, Cvitkovitch DG, Brady LJ, Hamilton IR,Hillman JD, et al. Streptococcus mutans ffh, a gene encoding a homologueof the54kDa subunit of the signal recognition particle, is involved inresistance to acid stress. Microbiology.1999;145(Pt2):357-66.
    [12] Paramonova E, Kalmykowa OJ, van der Mei HC, Busscher HJ, Sharma PK.Impact of hydrodynamics on oral biofilm strength. J Dent Res.2009;88:922-6.
    [13] Davison J. Genetic exchange between bacteria in the environment. Plasmid.1999;42:73-91.
    [14] Liu Y, Wang L, Zhou X, Hu S, Zhang S, Wu H. Effect of the antimicrobialdecapeptide KSL on the growth of oral pathogens and Streptococcusmutans biofilm. Int J Antimicrob Agents.2011;37:33-8.
    [15] Weistroffer PL, Joly S, Srikantha R, Tack BF, Brogden KA, Guthmiller JM.SMAP29congeners demonstrate activity against oral bacteria and reducedtoxicity against oral keratinocytes. Oral Microbiol Immunol.2008;23:89-95.
    [16] Wei GX, Campagna AN, Bobek LA. Effect of MUC7peptides on thegrowth of bacteria and on Streptococcus mutans biofilm. J AntimicrobChemother.2006;57:1100-9.
    [17] Zhu J, Luther PW, Leng Q, Mixson AJ. Synthetic histidine-rich peptidesinhibit Candida species and other fungi in vitro: role of endocytosis andtreatment implications. Antimicrob Agents Chemother.2006;50:2797-805.
    [18] Younson J, Kelly C. The rational design of an anti-caries peptide againstStreptococcus mutans. Mol Divers.2004;8:121-6.
    [19] Joly S, Maze C, McCray PB, Jr., Guthmiller JM. Human beta-defensins2and3demonstrate strain-selective activity against oral microorganisms. JClin Microbiol.2004;42:1024-9.
    [20] Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, deKruijff B, et al. Specific binding of nisin to the peptidoglycan precursorlipid II combines pore formation and inhibition of cell wall biosynthesis forpotent antibiotic activity. J Biol Chem.2001;276:1772-9.
    [21] Qi F, Chen P, Caufield PW. Purification of mutacin III from group IIIStreptococcus mutans UA787and genetic analyses of mutacin IIIbiosynthesis genes. Appl Environ Microbiol.1999;65:3880-7.
    [22] Brogden KA, Ackermann M, Huttner KM. Detection of anionicantimicrobial peptides in ovine bronchoalveolar lavage fluid andrespiratory epithelium. Infect Immun.1998;66:5948-54.
    [23] Brogden KA, De Lucca AJ, Bland J, Elliott S. Isolation of an ovinepulmonary surfactant-associated anionic peptide bactericidal for Pasteurellahaemolytica. Proc Natl Acad Sci U S A.1996;93:412-6.
    [24] Brogden KA, Ackermann MR, McCray PB, Jr., Huttner KM. Differences inthe concentrations of small, anionic, antimicrobial peptides inbronchoalveolar lavage fluid and in respiratory epithelia of patients withand without cystic fibrosis. Infect Immun.1999;67:4256-9.
    [25] Brogden KA, Ackermann M, Huttner KM. Small, anionic, andcharge-neutralizing propeptide fragments of zymogens are antimicrobial.Antimicrob Agents Chemother.1997;41:1615-7.
    [26] Gennaro R, Zanetti M. Structural features and biological activities of thecathelicidin-derived antimicrobial peptides. Biopolymers.2000;55:31-49.
    [27] Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobialpeptides. Biopolymers.2000;55:4-30.
    [28] Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B.Conformation-dependent antibacterial activity of the naturally occurringhuman peptide LL-37. J Biol Chem.1998;273:3718-24.
    [29] Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activityanalysis of buforin II, a histone H2A-derived antimicrobial peptide: theproline hinge is responsible for the cell-penetrating ability of buforin II.Proc Natl Acad Sci U S A.2000;97:8245-50.
    [30] Otvos L, Jr. The short proline-rich antibacterial peptide family. Cell MolLife Sci.2002;59:1138-50.
    [31] Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxicpeptides of mammalian cells. Annual review of immunology.1993;11:105-28.
    [32] Schutte BC, McCray PB, Jr.[beta]-defensins in lung host defense. Annualreview of physiology.2002;64:709-48.
    [33] Ganz T. Immunology. Versatile defensins. Science.2002;298:977-9.
    [34] Ganz T, Selsted ME, Lehrer RI. Defensins. European journal ofhaematology.1990;44:1-8.
    [35] Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, et al. A cyclicantimicrobial peptide produced in primate leukocytes by the ligation of twotruncated alpha-defensins. Science.1999;286:498-502.
    [36] Weiss TM, Yang L, Ding L, Waring AJ, Lehrer RI, Huang HW. Two statesof cyclic antimicrobial peptide RTD-1in lipid bilayers. Biochemistry.2002;41:10070-6.
    [37] Wiedemann I, Benz R, Sahl HG. Lipid II-mediated pore formation by thepeptide antibiotic nisin: a black lipid membrane study. J Bacteriol.2004;186:3259-61.
    [38] Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC. MICs of mutacinB-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens.Antimicrob Agents Chemother.2000;44:24-9.
    [39] Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, et al.Role of lipid-bound peptidoglycan precursors in the formation of pores bynisin, epidermin and other lantibiotics. Mol Microbiol.1998;30:317-27.
    [40] Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitorsin bacteria? Nat Rev Microbiol.2005;3:238-50.
    [41] Huo L, Zhang K, Ling J, Peng Z, Huang X, Liu H, et al. Antimicrobial andDNA-binding activities of the peptide fragments of human lactoferrin andhistatin5against Streptococcus mutans. Arch Oral Biol.2011.
    [42] Liu C, Worthington RJ, Melander C, Wu H. A new small moleculespecifically inhibits the cariogenic bacterium Streptococcus mutans inmultispecies biofilms. Antimicrob Agents Chemother.2011;55:2679-87.
    [43] He J, Yarbrough DK, Kreth J, Anderson MH, Shi W, Eckert R. A systematicapproach to optimizing specifically-targeted antimicrobial peptides againstStreptococcus mutans. Antimicrob Agents Chemother.2010.
    [44] Altman H, Steinberg D, Porat Y, Mor A, Fridman D, Friedman M, et al. Invitro assessment of antimicrobial peptides as potential agents againstseveral oral bacteria. J Antimicrob Chemother.2006;58:198-201.
    [45] Lee J, Park C, Park SC, Woo ER, Park Y, Hahm KS, et al. Cellselectivity-membrane phospholipids relationship of the antimicrobialeffects shown by pleurocidin enantiomeric peptides. J Pept Sci.2009;15:601-6.
    [46] Wang W, Tao R, Tong Z, Ding Y, Kuang R, Zhai S, et al. Effect of a novelantimicrobial peptide chrysophsin-1on oral pathogens and Streptococcusmutans biofilms. Peptides.2012;33:212-9.
    [47] Tong Z, Dong L, Zhou L, Tao R, Ni L. Nisin inhibits dentalcaries-associated microorganism in vitro. Peptides.2010;31:2003-8.
    [48] Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME.Interaction of human defensins with Escherichia coli. Mechanism ofbactericidal activity. J Clin Invest.1989;84:553-61.
    [49] Yenugu S, Hamil KG, Radhakrishnan Y, French FS, Hall SH. Theandrogen-regulated epididymal sperm-binding protein, humanbeta-defensin118(DEFB118)(formerly ESC42), is an antimicrobialbeta-defensin. Endocrinology.2004;145:3165-73.
    [50] Kalfa VC, Jia HP, Kunkle RA, McCray PB, Jr., Tack BF, Brogden KA.Congeners of SMAP29kill ovine pathogens and induce ultrastructuraldamage in bacterial cells. Antimicrob Agents Chemother.2001;45:3256-61.
    [51] Ladokhin AS, Selsted ME, White SH. Sizing membrane pores in lipidvesicles by leakage of co-encapsulated markers: pore formation by melittin.Biophys J.1997;72:1762-6.
    [52] Matsuzaki K, Yoneyama S, Miyajima K. Pore formation and translocationof melittin. Biophys J.1997;73:831-8.
    [53] Kang JH, Shin SY, Jang SY, Lee MK, Hahm KS. Release of aqueouscontents from phospholipid vesicles induced by cecropin A (1-8)-magainin2(1-12) hybrid and its analogues. The journal of peptide research: officialjournal of the American Peptide Society.1998;52:45-50.
    [54] Hristova K, Selsted ME, White SH. Critical role of lipid composition inmembrane permeabilization by rabbit neutrophil defensins. J Biol Chem.1997;272:24224-33.
    [55] Zhao H, Mattila JP, Holopainen JM, Kinnunen PK. Comparison of themembrane association of two antimicrobial peptides, magainin2andindolicidin. Biophys J.2001;81:2979-91.
    [56] Matsuzaki K, Murase O, Miyajima K. Kinetics of pore formation by anantimicrobial peptide, magainin2, in phospholipid bilayers. Biochemistry.1995;34:12553-9.
    [57] Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, et al.Augmentation of the lipopolysaccharide-neutralizing activities of humancathelicidin CAP18/LL-37-derived antimicrobial peptides by replacementwith hydrophobic and cationic amino acid residues. Clin Diagn LabImmunol.2002;9:972-82.
    [58] Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, et al.Effects of the antimicrobial peptide temporin L on cell morphology,membrane permeability and viability of Escherichia coli. Biochem J.2004;380:859-65.
    [59] Sawai MV, Waring AJ, Kearney WR, McCray PB, Jr., Forsyth WR, LehrerRI, et al. Impact of single-residue mutations on the structure and functionof ovispirin/novispirin antimicrobial peptides. Protein Eng.2002;15:225-32.
    [60] Lee MT, Chen FY, Huang HW. Energetics of pore formation induced bymembrane active peptides. Biochemistry.2004;43:3590-9.
    [61] Zelezetsky I, Pag U, Sahl HG, Tossi A. Tuning the biological properties ofamphipathic alpha-helical antimicrobial peptides: rational use of minimalamino acid substitutions. Peptides.2005;26:2368-76.
    [62] Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC,et al. De novo generation of cationic antimicrobial peptides: influence oflength and tryptophan substitution on antimicrobial activity. AntimicrobAgents Chemother.2005;49:316-22.
    [63] Oishi O, Yamashita S, Nishimoto E, Lee S, Sugihara G, Ohno M.Conformations and orientations of aromatic amino acid residues oftachyplesin I in phospholipid membranes. Biochemistry.1997;36:4352-9.
    [64] Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. Activities of LL-37, acathelin-associated antimicrobial peptide of human neutrophils. AntimicrobAgents Chemother.1998;42:2206-14.
    [65] Bechinger B. The structure, dynamics and orientation of antimicrobialpeptides in membranes by multidimensional solid-state NMR spectroscopy.Biochim Biophys Acta.1999;1462:157-83.
    [66] Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M. Solid-state NMRinvestigations of peptide-lipid interaction and orientation of a beta-sheetantimicrobial peptide, protegrin. Biochemistry.2002;41:9852-62.
    [67] Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL,Ramamoorthy A. Antimicrobial and membrane disrupting activities of apeptide derived from the human cathelicidin antimicrobial peptide LL37.Biophys J.2010;98:248-57.
    [68] Wang G. Structures of human host defense cathelicidin LL-37and itssmallest antimicrobial peptide KR-12in lipid micelles. J Biol Chem.2008;283:32637-43.
    [69] Bechinger B, Zasloff M, Opella SJ. Structure and orientation of theantibiotic peptide magainin in membranes by solid-state nuclear magneticresonance spectroscopy. Protein science: a publication of the ProteinSociety.1993;2:2077-84.
    [70] Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, et al.Orientation and dynamics of an antimicrobial peptide in the lipid bilayer bysolid-state NMR spectroscopy. Biophys J.2001;81:2203-14.
    [71] Henzler Wildman KA, Lee DK, Ramamoorthy A. Mechanism of lipidbilayer disruption by the human antimicrobial peptide, LL-37.Biochemistry.2003;42:6545-58.
    [72] Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. Sublethalconcentrations of pleurocidin-derived antimicrobial peptides inhibitmacromolecular synthesis in Escherichia coli. Antimicrob AgentsChemother.2002;46:605-14.
    [73] Mason AJ, Chotimah IN, Bertani P, Bechinger B. A spectroscopic study ofthe membrane interaction of the antimicrobial peptide Pleurocidin. MolMembr Biol.2006;23:185-94.
    [74] Li L, He J, Eckert R, Yarbrough D, Lux R, Anderson M, et al. Design andcharacterization of an acid-activated antimicrobial peptide. Chem BiolDrug Des.2010;75:127-32.
    [75] Lockey TD, Ourth DD. Formation of pores in Escherichia coli cellmembranes by a cecropin isolated from hemolymph of Heliothis virescenslarvae. Eur J Biochem.1996;236:263-71.
    [76] Boman HG. Peptide antibiotics and their role in innate immunity. Annualreview of immunology.1995;13:61-92.
    [77] Silvestro L, Gupta K, Weiser JN, Axelsen PH. The concentration-dependentmembrane activity of cecropin A. Biochemistry.1997;36:11452-60.
    [78] Huang HW. Action of antimicrobial peptides: two-state model.Biochemistry.2000;39:8347-52.
    [79] Chen FY, Lee MT, Huang HW. Evidence for membrane thinning effect asthe mechanism for peptide-induced pore formation. Biophys J.2003;84:3751-8.
    [80] Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, et al.Membrane thinning effect of the beta-sheet antimicrobial protegrin.Biochemistry.2000;39:139-45.
    [81] Wu Y, He K, Ludtke SJ, Huang HW. X-ray diffraction study of lipid bilayermembranes interacting with amphiphilic helical peptides: diphytanoylphosphatidylcholine with alamethicin at low concentrations. Biophys J.1995;68:2361-9.
    [82] Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model ortoroidal model? A case study on melittin pores. Biophys J.2001;81:1475-85.
    [83] Ladokhin AS, White SH.'Detergent-like' permeabilization of anionic lipidvesicles by melittin. Biochim Biophys Acta.2001;1514:253-60.
    [84] Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helicalantimicrobial peptides. Biopolymers.1998;47:451-63.
    [85] Spaar A, Munster C, Salditt T. Conformation of peptides in lipidmembranes studied by x-ray grazing incidence scattering. Biophys J.2004;87:396-407.
    [86] Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide,magainin2, induced rapid flip-flop of phospholipids coupled with poreformation and peptide translocation. Biochemistry.1996;35:11361-8.
    [87] Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of themagainin antimicrobial peptides, disrupts lipid bilayer structure via positivecurvature strain. Biophys J.2003;84:3052-60.
    [88] Wimley WC, Selsted ME, White SH. Interactions between human defensinsand lipid bilayers: evidence for formation of multimeric pores. Proteinscience: a publication of the Protein Society.1994;3:1362-73.
    [89] Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L. Insect defensin,an inducible antibacterial peptide, forms voltage-dependent channels inMicrococcus luteus. J Biol Chem.1993;268:19239-45.
    [90] Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, et al.Relationship of membrane curvature to the formation of pores by magainin2. Biochemistry.1998;37:11856-63.
    [91] Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions ofan antimicrobial peptide, magainin2, with outer and inner membranes ofGram-negative bacteria. Biochim Biophys Acta.1997;1327:119-30.
    [92] Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides:their potential to modulate activity on model membranes and biologicalcells. Biochim Biophys Acta.1999;1462:71-87.
    [93] Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M.General aspects of peptide selectivity towards lipid bilayers and cellmembranes studied by variation of the structural parameters of amphipathichelical model peptides. Biochim Biophys Acta.2002;1558:171-86.
    [94] Duclohier H. Anion pores from magainins and related defensive peptides.Toxicology.1994;87:175-88.
    [95] Zhao H, Kinnunen PK. Modulation of the activity of secretoryphospholipase A2by antimicrobial peptides. Antimicrob Agents Chemother.2003;47:965-71.
    [96] Shi J, Ross CR, Chengappa MM, Sylte MJ, McVey DS, Blecha F.Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, aproline-arginine-rich neutrophil antimicrobial peptide. Antimicrob AgentsChemother.1996;40:115-21.
    [97] Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action ofindolicidin. FEMS Microbiol Lett.1998;160:91-6.
    [98] Ma S, Shan LQ, Xiao YH, Li F, Huang L, Shen L, et al. The cytotoxicity ofmethacryloxylethyl cetyl ammonium chloride, a cationic antibacterialmonomer, is related to oxidative stress and the intrinsic mitochondrialapoptotic pathway. Brazilian journal of medical and biological research=Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileirade Biofisica [et al].2011;44:1125-33.
    [99] Salomon RA, Farias RN. Microcin25, a novel antimicrobial peptideproduced by Escherichia coli. J Bacteriol.1992;174:7428-35.
    [100] Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al.Arginine-rich peptides. An abundant source of membrane-permeablepeptides having potential as carriers for intracellular protein delivery. J BiolChem.2001;276:5836-40.
    [101] Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobialpeptide buforin II: buforin II kills microorganisms by penetrating the cellmembrane and inhibiting cellular functions. Biochem Biophys ResCommun.1998;244:253-7.
    [102] Yonezawa A, Kuwahara J, Fujii N, Sugiura Y. Binding of tachyplesin I toDNA revealed by footprinting analysis: significant contribution ofsecondary structure to DNA binding and implication for biological action.Biochemistry.1992;31:2998-3004.
    [103] Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichiacoli of cecropin P1and PR-39, two antibacterial peptides from pig intestine.Infect Immun.1993;61:2978-84.
    [104] Subramanian S, Ross NW, Mackinnon SL. Comparison of the biochemicalcomposition of normal epidermal mucus and extruded slime of hagfish(Myxine glutinosa L.). Fish Shellfish Immunol.2008;25:625-32.
    [105] Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventionalantimicrobials from fish, marine invertebrates and micro-algae. Marinedrugs.2010;8:1213-62.
    [106] Ellis AE. Innate host defense mechanisms of fish against viruses andbacteria. Dev Comp Immunol.2001;25:827-39.
    [107] Cole AM, Darouiche RO, Legarda D, Connell N, Diamond G.Characterization of a fish antimicrobial peptide: gene expression,subcellular localization, and spectrum of activity. Antimicrob AgentsChemother.2000;44:2039-45.
    [108] Lee J, Lee DG. Structure-antimicrobial activity relationship betweenpleurocidin and its enantiomer. Exp Mol Med.2008;40:370-6.
    [109] Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW.Pleurocidin-family cationic antimicrobial peptides are cytolytic for breastcarcinoma cells and prevent growth of tumor xenografts. Breast cancerresearch: BCR.2011;13:R102.
    [110] Lim SS, Song YM, Jang MH, Kim Y, Hahm KS, Shin SY. Effects of twoglycine residues in positions13and17of pleurocidin on structure andbacterial cell selectivity. Protein Pept Lett.2004;11:35-40.
    [111]孟焕新.牙周病学.第三版. p.36.
    [112] Dunne WM, Jr. Bacterial adhesion: seen any good biofilms lately? Clinicalmicrobiology reviews.2002;15:155-66.
    [113] Allison DG. The biofilm matrix. Biofouling.2003;19:139-50.
    [114] Monroe D. Looking for chinks in the armor of bacterial biofilms. PLoSBiol.2007;5:e307.
    [115]樊明文,周学东.牙体牙髓病学.第三版. p.15.
    [116] Marsh PD. Dental plaque: biological significance of a biofilm andcommunity life-style. J Clin Periodontol.2005;32Suppl6:7-15.
    [117] Anderson GG, O'Toole GA. Innate and induced resistance mechanisms ofbacterial biofilms. Current topics in microbiology and immunology.2008;322:85-105.
    [118] Renye JA, Jr., Piggot PJ, Daneo-Moore L, Buttaro BA. Persistence ofStreptococcus mutans in stationary-phase batch cultures and biofilms. ApplEnviron Microbiol.2004;70:6181-7.
    [119] Foster JS, Kolenbrander PE. Development of a multispecies oral bacterialcommunity in a saliva-conditioned flow cell. Appl Environ Microbiol.2004;70:4340-8.
    [120] Ding AM, Palmer RJ, Jr., Cisar JO, Kolenbrander PE. Shear-enhanced oralmicrobial adhesion. Appl Environ Microbiol.2010;76:1294-7.
    [121] Benoit MR, Conant CG, Ionescu-Zanetti C, Schwartz M, Matin A. Newdevice for high-throughput viability screening of flow biofilms. ApplEnviron Microbiol.2010;76:4136-42.
    [122] Institute CaLS. Performance standards for antimicrobial susceptibilitytesting, twenty informational supplement, approved standardMS100-S20.2010.
    [123] Brogden KA, Nordholm G, Ackermann M. Antimicrobial activity ofcathelicidins BMAP28, SMAP28, SMAP29, and PMAP23againstPasteurella multocida is more broad-spectrum than host species specific.Vet Microbiol.2007;119:76-81.
    [124] Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl JMed.2001;345:1318-30.
    [125] Banas JA. Virulence properties of Streptococcus mutans. Front Biosci.2004;9:1267-77.
    [126] Marsh PD. Controlling the oral biofilm with antimicrobials. J Dent.2010;38Suppl1:S11-5.
    [127] Patel R. Biofilms and antimicrobial resistance. Clin Orthop Relat Res.2005:41-7.
    [128] Baehni PC, Takeuchi Y. Anti-plaque agents in the prevention ofbiofilm-associated oral diseases. Oral Dis.2003;9Suppl1:23-9.
    [129] Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A.Escherichia coli biofilms formed under low-shear modeled microgravity ina ground-based system. Appl Environ Microbiol.2006;72:7701-10.
    [130] Horswill AR, Stoodley P, Stewart PS, Parsek MR. The effect of thechemical, biological, and physical environment on quorum sensing instructured microbial communities. Anal Bioanal Chem.2007;387:371-80.
    [131] Wilson M. Susceptibility of oral bacterial biofilms to antimicrobial agents.J Med Microbiol.1996;44:79-87.
    [132] Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. Adv DentRes.2000;14:40-7.
    [133] de Soet JJ, van Loveren C, Lammens AJ, Pavicic MJ, Homburg CH, tenCate JM, et al. Differences in cariogenicity between fresh isolates ofStreptococcus sobrinus and Streptococcus mutans. Caries Res.1991;25:116-22.
    [134] Ahn SJ, Browngardt CM, Burne RA. Changes in biochemical andphenotypic properties of Streptococcus mutans during growth with aeration.Appl Environ Microbiol.2009;75:2517-27.
    [135] Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, BainbridgeBW, Dale BA. Inducible expression of human beta-defensin2byFusobacterium nucleatum in oral epithelial cells: multiple signalingpathways and role of commensal bacteria in innate immunity and theepithelial barrier. Infect Immun.2000;68:2907-15.
    [136] Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R. SMAP-29: apotent antibacterial and antifungal peptide from sheep leukocytes. FEBSletters.1999;463:58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700