MAPK1和eEF1B对奶牛乳腺上皮细胞泌乳调控作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个奶业大国,但奶牛产奶量低、发病率高严重制约着我国奶牛养殖业的发展,如何提高乳产量及乳蛋白含量成为我们亟待解决的问题。蛋氨酸和赖氨酸是乳蛋白合成的重要前体物质,以前的研究主要侧重于蛋氨酸和赖氨酸对奶牛生产性能的影响,而对体外培养的奶牛乳腺上皮细胞的促进泌乳和增殖作用研究较少。为了确定泌乳期奶牛乳蛋白合成的功能基因,揭示重要功能基因在乳蛋白合成中的作用机制,建立乳腺中乳蛋白合成的基因调控网络,以及在细胞信号转导调控中的作用,为建立乳腺泌乳调控技术提供基本理论依据和研究技术方法。
     本研究采用组织块儿培养法,成功构建了体外培养的奶牛乳腺上皮细胞模型,应用CASY细胞分析仪检测了不同浓度和作用时间下蛋氨酸和赖氨酸对奶牛乳腺上皮细胞活力的影响,利用高效液相色谱检测了β-casein的分泌情况,确定了蛋氨酸和赖氨酸最佳剂量分别为0.6mmol/L和1.2mmol/L,最佳作用时间为24h。建立奶牛乳腺上皮细胞核磷酸化蛋白质组技术,应用双向电泳(2-DE)结合质谱技术(MALDI-TOF-MS)鉴定蛋氨酸和赖氨酸对奶牛乳腺上皮细胞核磷酸化蛋白质的差异影响,发现蛋氨酸处理组,Staphylococcal nucleasedomain-containing protein1、Glycyl-tRNA synthetase、Septin-6、Twinfilin-1和Elongationfactor1-beta (eEF1B)蛋白质表达上调,赖氨酸处理组,SKIV2L2、sec-related protein D、T-complex protein1subunit delta、protein disulfide-isomerase A3、coronin actin binding protein1C和mitogen-activated protein kinase1(MAPK1)蛋白质表达上调;并应用荧光定量PCR和Western blotting技术验证差异蛋白在转录水平和蛋白水平上的表达,与2-DE结果一致。实验过程中,采用基因沉寂技术,qRT-PCR鉴定eEF1B(P<0.05)和MAPK1基因沉寂有效(P<0.01),应用Western blotting检测了沉寂eEF1B后,mTOR(P<0.05)、Phospho-mTOR(P<0.05)、GARS(P<0.05)和SND1(P<0.05)蛋白表达降低,并且差异显著,而Stat5(P>0.05)和Phospho-Stat5(P>0.05)蛋白表达稍有降低,但差异不显著;高效液相色谱检测β-酪蛋白含量增加,并且差异显著(P<0.05)。沉寂MAPK1后,mTOR(P<0.05)、Phospho-mTOR(P<0.01)、S6K1(P<0.05)、Phospho-S6K1(P<0.05)、Stat5(P<0.05)和Phospho-Stat5(P<0.05)蛋白表达降低,并且差异显著;高效液相色谱检测β-酪蛋白含量增加,并且差异极其显著(P<0.01)。采用基因过表达技术,qRT-PCR鉴定eEF1B(P<0.01)和MAPK1基因表达增高(P<0.05),应用Western blotting检测了过表达eEF1B后,mTOR(P<0.05)、Phospho-mTOR(P<0.05)、GARS(P<0.05)和SND1(P<0.05)蛋白表达降低,并且差异显著,而Stat5(P>0.05)和Phospho-Stat5(P>0.05)蛋白表达变化不明显;高效液相色谱检测β-酪蛋白含量增加,但差异不显著(P>0.05)。过表达MAPK1后,mTOR(P<0.05)、Phospho-mTOR(P<0.05)、S6K1(P<0.05)和Stat5(P<0.01)蛋白表达升高,并且差异显著;而Phospho-S6K1、Phospho-Stat5蛋白表达升高,但差异不显著(P>0.05);高效液相色谱检测β-酪蛋白含量增加,并且差异极其显著(P<0.01)。实验过程中通过G418筛选获得稳定转染pGCMV-IRES-EGFP-eEF1B和pGCMV-IRES-EGFP-MAPK1的细胞株,稳定转染细胞后,分别添加蛋氨酸和赖氨酸,应用Western blotting检测了mTOR(P<0.05)和Phospho-mTOR(P<0.05)的表达变化,发现蛋氨酸和赖氨酸营养素可以通过调节MAPK1和eEF1B介导mTOR信号转导通路,进而调节乳蛋白的表达。应用细胞免疫沉淀和GST-pull down技术并联合质谱鉴定与MAPK1相互作用的蛋白有ARPC4、β-enolase、Annexin A2、Small G protein signaling modulator1和PolymeraseI and transcript release factor;与eEF1B相互作用的蛋白有14-3-3theta、Heat shock protein、eEF1A1、Small nuclear ribonucleoprotein polypeptide A和40S ribosomal protein S4。
     以上实验结果为奶牛营养基因组学的研究提供了理论依据和技术方法。
China is a country of milk, but milk yield is low, a high incidence of seriously restricting thedevelopment of China's dairy industry, how to improve the milk yield and quality has become anurgent problem. Methionine and lysine are important precursors of milk protein synthesis, previousstudies mainly focused on the effects of methionine and lysine on production performance of dairycows, while the effects of lactation regulation on dairy cow mammary gland epithelial cells(DCMECs) are poorly researched. In order to determine genes of milk protein synthesis in dairycows and reveal the mechanism of important functional genes in milk protein synthesis haveimportant basic theory and research methods by regulating mammary gland development.
     A dairy cow mammary epithelial cell line was established through culture method of tissueblock and detection of cell biological characters. Effects of methionine and lysine on viabilitiesand β-casein of DCMECs were evaluated by CASY and HPLC, and determined the optimal dose ofmethionine and lysine was0.6mmol/L and1.2mmol/L, the best time was24h. A nuclearphosphoproteomics of DCMECs was successfully established, five proteins for which expressionwas significantly increased in methionine-treated DCMECs were selected, the5up-regulatedexpressed phosphoproteins included staphylococcal nuclease domain-containing protein1(SND1),Septin-6, Glycyl-tRNA synthetase (GARS), Twinfilin-1and eukaryotic elongation factor1-beta(eEF1B); Six proteins for which expression was significantly increased in lysine-treated DCMECswere selected, The6up-regulated expressed phosphoproteins included SKIV2L2、sec-relatedprotein D、T-complex protein1subunit delta、protein disulfide-isomerase A3、coronin actin bindingprotein1C and mitogen-activated protein kinase1(MAPK1); the expression levels of these wereverified by quantitative real-time PCR (qRT-PCR) and western blotting analysis, which wereconsisted with the results of2-DE. In this research, eukaryotic expression vectorpGCMV-IRES-EGFP-MAPK1and pGCMV-IRES-EGFP-eEF1B were constructed by stablytransfected into DCMECs after geneticin (G418) selection. The gene functions of MAPK1andeEF1B were identified by the RNA interference and gene overexpression, methionine and lysine asenergy substrates can promote expression of Stat5a gene and increase lactation of DCMECs byMAPK1and eEF1B. MAPK1and eEF1B also regulates the expression of key mediators of thePRLR/JAK2/STAT5and mTOR signaling pathway. We used Co-immunoprecipitation andGST-pull down assay here to identify the interacting proteins of MAPK1, including ARPC4、β-enolase、Annexin A2、Small G protein signaling modulator1and Polymerase I and transcript release factor, the interacting proteins of eEF1B are14-3-3theta、heat shock protein、eEF1A1、small nuclear ribonucleoprotein polypeptide A and40S ribosomal protein S4.
     The results of this research have enriched the study content of nutritional genomics of dairycow, and have important basic theory and research methods.
引文
[1] Macias H, Hinck L. Mammary Gland Development [J]. Wiley Interdiscip Rev Dev Biol,2012,1(4):533-557.
    [2] Paw owski KM, Popielarz D, Szyszko K, et al. Growth hormone receptor (GHR) RNAidecreases proliferation and enhances apoptosis in CMT-U27canine mammary carcinoma cellline[J]. Vet Comp Oncol,2012,10(1):2-15.
    [3] Song Y, Santen RJ, Wang JP, et al. Effects of the conjugated equine estrogen/bazedoxifenetissue-selective estrogen complex (TSEC) on mammary gland and breast cancer in mice [J].Endocrinology,2012,153(12):5706-5715.
    [4] Li M, Zhao D, Ma G, et al. Upregulation of ATBF1by progesterone-PR signaling and itsfunctional implication in mammaryepithelial cells [J]. Biochem Biophys Res Commun,2013,430(1):358-363.
    [5] Pearlman WH, Lamay EN, Skaryak LA,et al.Adrenocortical hormones and lactation:metabolism of3H-corticosterone and3H-aldosterone by rat mammary gland minces and by thenuclear fraction of the homogenates [J]. Endocrinol Exp,1986,20(2-3):301-309.
    [6] Shushanov SS.Insulin-like growth factors1and2regulate expression of β-casein in vitro inmouse mammaryepithelial cells [J]. Bull Exp Biol Med,2011,152(2):202-205.
    [7] Li M, Li Q, Gao X. Expression and function of leptin and its receptor in dairy goat mammarygland [J]. J Dairy Res,2010,77(2):213-219.
    [8] Yuan HX, Xiong Y, Guan KL. Nutrient sensing, metabolism, and cell growth control [J]. MolCell,2013,49(3):379-387.
    [9] Bionaz M, Loor JJ. Gene networks driving bovine mammary protein synthesis during thelactation cycle [J]. Bioinform Biol Insights,2011,5:83-98.
    [10] Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control [J].NatRev Mol Cell Biol,2009,10(5):307-318.
    [11] Proud CG. Signalling to translation: how signal transduction pathways control the proteinsynthetic machinery [J]. Biochem J,2007,403(2):217-234.
    [12] Yang X, Yang C, Farberman A, et al. The mammalian target of rapamycin-signaling pathwayin regulating metabolism and growth [J]. J Anim Sci,2008,86(14Suppl):E36-50.
    [13] Qazi AK, Hussain A, Hamid A, et al.Recent Development in TargetingPI3K-Akt-Mtor Signaling for Anticancer Therapeutic Strategies [J]. Anticancer Agents MedChem,2013, Feb7.
    [14] Roux PP, Shahbazian D, Vu H, et al. RAS/ERK signaling promotes site-specific ribosomalprotein S6phosphorylation via RSK and stimulates cap-dependent translation [J]. J BiolChem,2007,282(19):14056-14064.
    [15] Chen CT, Du Y, Yamaguchi H, et al. Targeting the IKKβ/mTOR/VEGF signaling pathway asa potential therapeutic strategy for obesity-related breast cancer [J]. Mol Cancer Ther,2012,11(10):2212-2221.
    [16] Inoki K, Zhu T, Guan KL. TSC2mediates cellular energy response to control cell growth andsurvival [J]. Cell,2003,115:577–590.
    [17] Inoki K, Ouyang H, Zhu T, et al. TSC2integrates Wnt and energy signals via a coordinatedphosphorylation by AMPK and GSK3to regulate cell growth [J]. Cell,2006,126,955-968.
    [18] Korsse SE, Peppelenbosch MP, van Veelen W. Targeting LKB1signaling in cancer [J].Biochim Biophys Acta,2012,1835(2):194-210.
    [19] Dong LX, Sun LL, Zhang X, et al. Negative regulation of mTOR activity by LKB1-AMPKsignaling in non-small cell lung cancer cells [J]. Acta Pharmacol Sin,2013,34(2):314-318.
    [20] Moon RT.Wnt/beta-catenin pathway [J]. Sci STKE,2005,15:(271):cm1.
    [21] Huang J, Nguyen-McCarty M, Hexner EO, et al. Maintenance of hematopoietic stem cellsthrough regulation of Wnt and mTOR pathways [J]. Nat Med,2012,18(12):1778-1785.
    [22] Lv C, Sun W, Sun H, et al. Asperolide A, a Marine-Derived Tetranorditerpenoid, InducesG2/M Arrest in Human NCI-H460Lung Carcinoma Cells, Is Mediated by p53-p21Stabilization and Modulated by Ras/Raf/MEK/ERKSignaling Pathway [J]. Mar Drugs,2013,11(2):316-331.
    [23] Imai Y, Yamagishi H, Ono Y, et al.Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells[J]. Clin Transl Med,2012,1(1):24.
    [24] Lin Y, Li Q Z. Expression and Function of Leptin and its Receptor in Mouse Mammary Gland[J]. Sci China C Life Sci,2007,50(5):669-675.
    [25] Williams KC, Renthal NE, Condon JC, et al. MicroRNA-200a serves a key role in the declineof progesterone receptor function leading to term and preterm labor [J]. Proc Natl Acad Sci US A,2012,109(19):7529-7534.
    [26] Dentelli P, Rosso A, Orso F, et al. microRNA-222controls neovascularization by regulatingsignal transducer and activator of transcription5A expression [J]. Arterioscler Thromb VascBiol,2010,30(8):1562-1568.
    [27] Wang CM, Li QZ. Identification of Differentially Expressed MicroRNAs During theDevelopment of Chinese Murine Mammary Gland ournal of Genetics and Genomics [J].Formerly Acta Genetica Sinica,2007,34(11):974-983
    [28]王春梅,李庆章,李晔. miR-138对小鼠乳腺上皮细胞的作用及其调控的靶序列[J].生物化学与生物物理学进展,2008,35(7):834-838.
    [29] Feuermann Y, Robinson GW, Zhu BM, et al. The miR-17/92cluster is targeted by STAT5butdispensable for mammary development [J]. Genesis,2012,50(9):665-671.
    [30] Hansen ML, Woetmann A, Krejsgaard T,et al. IFN-α primes T-and NK-cells forIL-15-mediated signaling and cytotoxicity [J]. Mol Immunol,2011,48(15-16):2087-2093.
    [31] Ahmed M, Dusanter-Fourt I, Dugray A, et al. BCR-ABL fails to inhibit apoptosis in U937myelomonocytic cells expressing a carboxyl-terminal truncated STAT5[J]. LeukLymphoma,2001,42(3):445-455.
    [32] Wang Z, Kang Z, Zhang Y, et al.Mutation of STAT1/3binding sites in gp130(FXXQ)knock-in mice does not alter hematopoietic stem cell repopulation or self-renewal potential[J]. Am J Stem Cells,2012,1(2):146-153.
    [33] Lee SY, Cho ML, Oh HJ, et al. Interleukin-2/anti-interleukin-2monoclonal antibody immunecomplex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5signalling pathways [J]. Immunology,2012,137(4):305-316.
    [34] Granillo AR, Boffi JC, Bara ao L, et al.STAT5transcriptional activity is impaired by LIF in amammary epithelial cell line [J]. Biochem Biophys Res Commun,2007,356(3):727-732.
    [35] Lucchese G, Cambi GE, De Rita F, et al.Cardioplegia and angiotensin II receptor antagonistsmodulate signal transducers and activators of transcription activation in neonatal rat myocytes[J]. Artif Organs,2011,35(11):1075-1081.
    [36] Waters MJ, Brooks AJ. Growth hormone and cell growth. Endocr Dev,2012,23:86-95.
    [37] Yip SH, Eguchi R, Grattan DR, et al. Prolactin signalling in the mouse hypothalamus isprimarily mediated by signal transducer and activator of transcription factor5b but not5a [J].J Neuroendocrinol,2012,24(12):1484-1491.
    [38] Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thüsen JH, TwicklerMT, Spek CA, Goffin V, Griffioen AW, Borensztajn KS. Functional consequences ofprolactin signaling in endothelial cell: a potential link with a ngiogenesis inpathophysiology[J]? J Cell Mol Med,2012,16(9):2035-2048.
    [39] Yokoyama C, Wang X, Briggs MR, et al. SREBP-1, a basic-helix-loop-helix-leucine zipperprotein that controls transcription of the low density lipoprotein receptor gene [J]. Cell,1993,75(1):187-97.
    [40] Hua X, Wu J, Goldstein JL, Brown MS, et al. Structure of the human gene encoding sterolregulatoryelement binding protein-1(SREBF1) and localization of SREBF1and SREBF2tochromosomes17p11.2and22q13[J]. Genomics,1995,25(3):667-673
    [41] Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform1c ofsterol regulatory element binding protein is less active than isoform1a in livers of transgenicmice and in cultured cells [J]. J Clin Invest,1997,99(5):846-854.
    [42] Bennett MK, Toth JI, Osborne TF. Selective association of sterol regulatory element-bindingprotein isoforms with target promoters in vivo [J]. J Biol Chem,2004,279(36):37360-37367.
    [43] Eberlé D, Hegarty B, Bossard P, et al. SREBP transcription factors: master regulators of lipidhomeostasis [J]. Biochimie,2004,86(11):839-848.
    [44] Heemers HV, Verhoeven G, Swinnen JV. Androgen activation of the sterol regulatoryelement-binding protein pathway: Current insights [J]. Mol Endocrinol,2006,20(10):2265-2277.
    [45] Peterson DG, Matitashvili EA, Bauman DE. The inhibitory effect of trans-10, cis-12CLA onlipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation ofthe transcription factor SREBP-1[J]. J Nutr,2004,134(10):2523-2527.
    [46] Lengi AJ, Corl BA. Short communication: Identification of the bovine sterol regulatoryelement binding protein-1c promoter and its activation by liver X receptor [J]. J Dairy Sci,2010,93(12):5831-5836.
    [47] Walker AK, Jacobs RL, Watts JL et al. A Conserved SREBP-1/Phosphatidylcholine FeedbackCircuit Regulates Lipogenesis in Metazoans [J]. Cell,2011,147(4):840-852.
    [48] Ma L, Ji G, Jiang Z. Effect of soy protein on expression of SREBP-1in rats [J]. Wei ShengYan Jiu,2012,41(6):916-919.
    [49] Dever TE, Green R.The elongation, termination, and recycling phases of translation ineukaryotes [J]. Cold Spring Harb Perspect Biol,2012,4(7):a013706.
    [50] Janssen GM, M ller W. Kinetic studies on the role of elongation factors1beta and1gammain protein synthesis [J]. J Biol Chem,1988,263(4):1773-1778.
    [51] Bellé R, Derancourt J, Poulhe R, Capony JP, Ozon R, Mulner-Lorillon O. A purified complexfrom Xenopus oocytes contains a p47protein, an in vivo substrate of MPF, and a p30proteinrespectively homologous to elongation factors EF-1gamma and EF-1beta [J]. FEBS Lett,1989,255(1):101-104.
    [52] Minella O, Mulner-Lorillon O, Bec G, Cormier P, Bellé R. Multiple phosphorylation sites andquaterny organization of guanine–nucleotide exchange complex of elongation factor-1(EF-1bgd/ValRS) control the various functions of EF-1a [J]. Biosci Rep,1998,18(3):119-127.
    [53] Boulben S, Monnier A, Le Breton M, Morales J, Cormier P, Bellé R, Mulner-Lorillon O.Sea urchin elongation factor1delta (EF1delta)and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase [J]. Cell Mol Life Sci,2003,60(10):2178-2188.
    [54]王健,赵嘉庆,王娅娜,丁淑琴,张焱,王洁,王淑静,高岭,赵巍.重组质粒Eg.EF-1/pGEX-6P-1的构建及原核诱导表达[J].2006,13(2):079-082
    [55] Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O.eEF1B: At the dawn of the21st century [J]. Biochim Biophys Acta,2006,1759(1-2):13-31.
    [56] Guoyao Wu. Amino acids: metabolism, functions, and nutrition [J]. Amino Acids,2009,37:1-17.
    [57] Bruhat A, Chérasse Y, Chaveroux C, et al. Amino acids as regulators of gene expression inmammals: molecular mechanisms [J]. Biofactors,2009,35(3):249-257.
    [58] Chanelle A T, Donald R T, and John P C. Nutritional stimulation of milk protein yield of cowsis associated with changes in phosphorylation of mammary eukaryotic initiation factor2andribosomal S6kinase1[J]. J. Nutr.,2010,140:285-292.
    [59] Liu XF, Li M, Li QZ, Lu LM. Stat5a Increases Lactation of Dairy Cow Mammary GlandEpithelial Cells Cultured in Vitro [J]. In Vitro Cell Dev Biol Anim,2012.48(9):554-561.
    [60] Limin Lu, Xuejun Gao, Qingzhang Li et al. Comparative Phosphoproteomics Analysis of theEffects of L-methionine on Dairy Cow Mammary Epithelial Cells [J]. Canadian Journal ofAnimal Science,2012,92(4):433-442.
    [61] Limin Lu, Qing-Zhang Li, Jian-Guo Huang et al. Proteomic and Functional Analyses RevealMAPK1regulates milk protein synthesis [J]. Molecules,2013,18(1):263-275.
    [62] Dourmad J Y, Noblet J, Etienne M. Effect of protein and lysine supply on performance,nitrogen balance,and body composition changes of sows during lactation [J]. Anim.Sci,1998,76:500-542
    [63] Koketsu Y, Dial G D, Pettigrew JE, et al.Feed intake pattern during lactation and subsequentreproductive performance of sows.Anim sci,1996,74(12):2875-2884
    [64]徐元年,张幸开,袁耀明等.过瘤胃赖氨酸和过瘤胃蛋氨酸对泌乳早期奶牛生产性能影响的研究.乳业科学与技术,2007,122:43-45
    [65]曹志军,李胜利.日粮中添加蛋氨酸对奶牛产奶性能的研究.饲料研究,2004,3:1-3
    [66]王运亨,张振山,谢运等.奶牛日粮添加保护性氨基酸产奶量和经济效益显著提高.中国奶牛,1995,(l):19-22
    [67]王纪亭,万文菊,李松建.保护性蛋氨酸对奶牛生产的试验.中国畜牧杂志,2003,(4):27-28
    [68] Leibetsede A G, Jimvec KJ, SMnnem et al. Coors, Crop processing and chop length of COl8ih: Efects on intake, digestion, and milk production by daily cow [J].Dairy Sci,83:1264-1273
    [69] Hsu C B, Cheng S P, Hsu J C, et al.Effect of threonine addition to a low protein diet on IgGlevels in body fluid of first-litter sows and their piglets [J].Asian Australasian Journal ofAnimal Sciences,2001,14:1157-1163
    [70] Theurer CB, Huber JT, Delgado Elordo A, et al. Invited review: summary of steam-flakingcorn or sorghum grain for lactating dairy cows [J]. Journal of Dairy Science,1999(82):9
    [71] Bruckntal I, Accarelli I, Yosif B et al. Effect of duodenal praline infusion on milk productionand composition in dairy cows [J]. Anim Prod,1991,53:299-303
    [72] Meijer LA, Zhou H, Chan OY, Altelaar AF, Hennrich ML, Mohammed S, Bos JL, Heck AJ.Mol Biosyst.Quantitative global phosphoproteomics of human umbilical vein endothelialcells after activation of the Rap signaling pathway [J].2013.
    [73]李蕾,应万涛,杨何义,蔡耘,钱小红.蛋白质组研究中的二维电泳分离技术[J].色谱,2003,21(1):27-31.
    [74] Unlü M, Morgan M E, Minden J S. Difference gel electrophoresis: a single gel method fordetecting changes in protein extracts [J]. Electrophoresis,1997,18(11):2071-2017.
    [75] Mortz E, Krogh T N, Vorum H, G rg A. Improved silver staining protocols for high sensitivityprotein identification using matrix-assisted laser desorption/ionization-time of flightanalysis[J]. Proteomics,2001,1(11):1359-1363.
    [76] Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E,Currie I, Davison M. Validation and development of fluorescence two-dimensionaldifferential gel electrophoresis proteomics technology [J]. Proteomics,2001,1(3):377-396.
    [77] Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie J W, Hu N, Taylor P R,Emmert-Buck M R, Liotta L A, Petricoin E F, Zhao Y.2D differential in-gel electrophoresisfor the identification of esophageal scans cell cancer-specific protein markers[J]. Mol CellProteomics,2002,1(2):117-24.
    [78] Henzel W J, Watanabe C, Stults J T. Protein identification: the origins of peptide massfingerprinting [J]. J Am Soc Mass Spectrom,2003,14(9):931-942.
    [79]范锋贵,张晓科,任万杰,王晓龙,叶石,付晓洁,王宏礼,朱建楚.晋麦47幼苗中一个水分胁迫应答蛋白的SDS-PAGE和Nano LC-MS/MS鉴定.麦类作物学报[J].2012,32(6):1161-1166.
    [80]谢苗,成娟,尤民生,杨广,蔡敬轩.基于质谱和生物信息学分析的小菜蛾蛋白质鉴定[J].昆虫学报,2009,52(11):1206-1212.
    [81]刘荣.中药王不留行对奶牛乳腺上皮细胞核蛋白质组学的影响[D].哈尔滨:东北农业大学,2012.
    [82]金鑫.乳脂前体物对奶牛乳腺上皮细胞亚细胞结构蛋白质组学的影响[D].哈尔滨:东北农业大学,2012.
    [83]王佳丽.蛋氨酸对奶牛乳腺上皮细胞亚细胞器蛋白质组学影响[D].哈尔滨:东北农业大学,2012.
    [84] Yates J R3rd, Gilchrist A, Howell K E, et al. Proteomics of organellesand largecellularstructures[J]. Nat Rev Mol Cell Biol,2005,6(9):702-714.
    [85] Igor Paron, Andrea Scaloni, Alex Pines, et al. Nuclerr localization of Galectin-3intransformed thyroid cells: a role in transcriptional regulation [J]. BBRC,2003,302:545-553.
    [86] Natacha Turck, Sophic Richert, Patrick Gendy et al. Proteomic analysis of nuclear proteinsfrom proliferative and differentiated human colonic intestinal epithelial cells [J]. Proteomics,2004,4,93-105.
    [87]颜玉蓉,付玉荣,邱宗荫.羟基喜树碱诱导肝癌细胞凋亡前后细胞核蛋白质组变化的定量分析[J].分子生物学报,2008,2(41):120-128.
    [88]薛振伟,周小林,谷娟娟. BEP2D细胞受照前后蛋白质组学研究[J].辐射防护,2009,4(29),237-242.
    [89]王建锋,赵兴绪,张勇,徐铁山.健康奶牛与临床型乳腺炎奶牛乳腺核蛋白组差异表达分析[J].畜牧兽医学报,2010,41(1):105-111.
    [90] Scherl A, Coute Y, Deon C,et al. Functional proteomic analysis of htunan nucleolus [J]. MolBiol Cell,2002,13(11):4700-4709.
    [91] Feng J, Lawson MA, Melamed P. A proteomic comparison of immature and mature mousegonadotrophs reveals novel differentially expressed nuclear proteins that regulategonadotropin gene transcription and RNA splicing [J]. Biol Reprod,2008,79(3):546-561.
    [92] Zolnierowicz S, Bollen M. Protein phosphorylation and protein phosphatases [J]. De Panne,Belgium,2000,19(4):483-488.
    [93] Smet-Nocca C, Launay H, Wieruszeski JM, Lippens G, Landrieu I. Unravelinga phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of thePin1WW domain by PKA [J]. J Biomol NMR.2013.
    [94] Houlden H. Defective N-linked protein glycosylation pathway in congenital myasthenicsyndromes [J]. Brain,136(Pt3):692-695.
    [95] Yang L, Tong ML, Chi X, Zhang M, Zhang CM, Guo XR. GenomicDNA Methylation Changes in NYGGF4-Overexpression3T3-L1Adipocytes [J]. Int J MolSci,2012,22;13(12):15575-15587.
    [96] Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, RosenMK, Potts PR. Regulation of WASH-Dependent Actin Polymerizationand Protein Trafficking by Ubiquitination [J]. Cell,2013,152(5):1051-1064.
    [97] Nowacki A, Liberek B.Acetylated methyl1,2-dideoxyhex-1-enopyranuronates in densityfunctional theory conformational studies [J]. Carbohydr Res,2013,371C:1-7.
    [98] Emmer J, Vavrinská A, Sychrovsky V, Benda L, K í Z, Ko a J, Boelens R, Sklená V,Trantírek L.Influence of the O-phosphorylation of serine, threonine and tyrosine in proteinson the amidic (15) N chemical shielding anisotropy tensors [J]. J Biomol NMR,2013,55(1):59-70.
    [99] Torres HN.[1992Nobel Prize of Medicine and Physiology: Edwin Krebs and Edmond Fisher.Protein phosphorylation and a hot summer][J]. Medicina (B Aires),1993,53(1):81-84.
    [100] Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, TaniguchiH, Nishida E, Hattori S. Phosphoproteomics reveals new ERK MAP kinase targets and linksERK to nucleoporin-mediated nuclear transport [J]. Nat Struct Mol Biol,2009,16(10):1026-1035.
    [101] Laserna EJ, Valero ML, Sanz L, del Pino MM, Calvete JJ, Barettino D. Proteomic Analysisof Phosphorylated Nuclear Proteins Underscores Novel Roles for Rapid Actions of RetinoicAcid in the Regulation of mRNA Splicing and Translation [J]. Mol Endocrinol,2009,23(11):1799-1814.
    [102] Bingnan Han, Luke H. Stockwin, Chad Hancock, Sherry X. Yu, Melinda G. Hollingshead,and Dianne L. Newton. Proteomic Analysis of Nuclei Isolated from Cancer Cell LinesTreated with Indenoisoquinoline NSC724998, a Novel Topoisomerase I Inhibitor[J].Journal of Proteome Research,2010,9,4016-4027.
    [103] Yates J R3rd, Gilchrist A, Howell K E, et al. Proteomics of organellesand largecellularstructures [J]. Nat Rev Mol Cell Biol,2005,6(9):702-714.
    [104] Broadhurst MK and Wheeler TT. The p100coactivator is present in the nuclei of mammaryepithelial cells and its abundance is increased in response to prolactin in culture and inmammary tissue during lactation [J]. J Endocrinol,2001,171(2):329-337.
    [105] Yang J, Aittom ki S, Pesu M, et al. Identification of p100as a coactivator for STAT6thatbridges STAT6with RNA polymerase II [J]. EMBO J,2002,21(18):4950-4958.
    [106] Sang Lee J, Gyu Park S, Park H, et al. Interaction network of human aminoacyl-tRNAsynthetases and subunits of elongation factor1complex [J]. Biochem Biophys Res Commun,2002,291(1):158-164.
    [107] Boulben S, Monnier A, Le Breton M, et al. Sea urchin elongation factor1delta (EF1delta)and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at Mphase [J]. Cell Mol Life Sci,2003,60(10):2178-2188.
    [108] Bionaz M. and Loor JJ. Gene networks driving bovine mammary protein synthesis duringthe lactation cycle [J]. Bioinform Biol Insights,2011,5:83-98.
    [109] Palmgren S, Ojala PJ, Wear MA, et al. Interactions with PIP2, ADP-actin monomers, andcapping protein regulate the activity and localization of yeast twinfilin [J]. J Cell Biol,2001,155(2):251-260.
    [110] Yang CT, Hindes AE, Hultman KA, Johnson SL. Mutation in gfpt1and skiv2l2cause distinctstage-specific defects in larval melanocyte regeneration in zebrafish [J]. PLoS Genet,2007,3(6):e88.
    [111] Hultman KA, Johnson SL. Differential contribution of direct-developing and stem cell-derivedmelanocytes to the zebrafish larval pigment pattern [J]. Dev Biol,2010,337(2):425-431.
    [112] Iwanami N, Okada M, Hoa VQ, Seo Y, Mitani H, Sasaki T, Shimizu N, Kondoh H, Furutani-Seiki M, Takahama Y. Ethylnitrosourea-induced thymus-defective mutants identify roles ofKIAA144-0, TRRAP, and SKIV2L2in teleost organ development [J]. Eur J Immunol,2009,39(9):2606-2616.
    [113] Wendeler MW, Paccaud JP, Hauri HP. Role of Sec24isoforms in selective export of membraneproteins from the endoplasmic reticulum [J]. EMBO Rep,2007,8(3):258-264.
    [114] Jensen D, Schekman R. COPII-mediated vesicle formation at a glance [J]. J Cell Sci,2011,124:1-4.
    [115] Malhotra V, Erlmann P. Protein export at the ER: loading big collagens into COPII carriers[J]. EMBO J,2011,30(17):3475-3480.
    [116] Demmel L, Melak M, Kotisch H, Fendos J, Reipert S, Warren G. Differential selection of Golgiproteins by COPII Sec24isoforms in procyclic Trypanosoma brucei [J]. Traffic,2011,12(11):1575-1591.
    [117] Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW.Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletalmorphog-enesis [J]. PLoS One,2010,5(4):e10367.
    [118] Melville DB, Knapik EW. Traffic jams in fish bones: ER-to-Golgi protein transport duringzebrafish development [J]. Cell Adh Migr,2011,5(2):114-118.
    [119] Young J C, Agashe V R, Siegers K, Hartl F U. Pathways of chaperone-mediated protein foldingin the cytosol [J]. Nat Rev Mol Cell Biol,2004,5:781-791.
    [120] Knee KM, Goulet DR, Zhang J, Chen B, Chiu W, King JA. The group II chaperonin Mm-Cpnbinds and refolds human γD crystalline [J]. Protein Sci,2011,20(1):30-41.
    [121]丁莺,吕宾,孟立娜,范一宏,郭赘,沈雁,陈硕.肠易激综合征大鼠结肠组织的蛋白质组学研究[J].2010,中国医学杂志,90(8):564-569.
    [122] Wearsch P A, Cresswell P. Selective loading of high-affinity peptides onto majorhistocompatibility complex class I molecules by the tapasin-ERp57heterodimer [J]. Nat.Immunol,2007,8(8):873-881.
    [123] Antoniou A N, Santos S G, Campbell E C, Lynch S, Arosa F A, Powis S J. ERp57interacts withconserved cysteine residues in the MHC class I peptide-binding groove [J]. FEBS Lett,2007,581(10):1988-1992.
    [124] Zhang Y N, Baig E, Williams D B. Functions of ERp57in the folding and assembly of majorhistocompatibility complex class I molecules [J]. J. Biol. Chem,2006,281(21):14622-14631.
    [125] de Hostos EL, Bradtke B, Lottspeich F, Guggenheim R, Gerisch G. Coronin, an actinbinding protein of Dictyostelium discoideum localized to cell surfaceprojections, hassequence similarities to G protein beta subunits [J]. EMBO J,1991,10(13):4097-4104.
    [126] Rosentreter A, Hofmann A, Xavier CP, Stumpf M, Noegel AA, Clemen CS.Coronin3involvement in F-actin-dependent processes at the cell cortex [J].Exp Cell Res,2007,313(5):878-895.
    [127] Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton andmembrane trafficking [J]. Bioessays,2005,27(6):625-632.
    [128]王冰,吴燕红,杨志,张舒. MAPK/ERK信号转导通路的分子生物学特征及生物效应[J].第四军医大学学报,2005,(26):1000-2790.
    [129] Pircher TJ, Petersen H, Gustafsson JA, Haldosén LA. Extracellular signal-regulated kinase (ERK)interacts with signal transducer and activator of transcription (STAT)5a [J]. Mol Endocrinol,1999,13(4):555-565.
    [130] Servant MJ, Giasson E, Meloche S. Inhibition of growth factor-induced protein synthesis by aselective MEK inhibitor in aortic smooth muscle cells [J]. J Biol Chem,1996,271(27):16047-16052.
    [131] Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE,Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM.Identification of a novel inhibitor of mitogen-activated protein kinase kinase [J]. J BiolChem.1998,273(29):18623-18632.
    [132] Hoshino R, Tanimura S, Watanabe K, Kataoka T, Kohno M. Blockade of the extracellularsignal-regulated kinase pathway induces marked G1cell cycle arrest and apoptosis in tumorcells in which the pathway is constitutively activated: up-regulation of p27(Kip1). J BiolChem [J].2001,276(4):2686-2692.
    [133] Sang Lee J, Gyu Park S, Park H, Seol W, Lee S, Kim S.Interaction network of human aminoacyl-tRNA synthetases and subunits of elongationfactor1complex [J]. Biochem Biophys Res Commun,2002,291(1):158-164.
    [134] Kim S, Kellner J, Lee CH, Coulombe PA. Interaction between the keratin cytoskeleton andeEF1Bgamma affects protein synthesis in epithelial cells [J]. Nat Struct Mol Biol,2007,14(10):982-983.
    [135] Al-Maghrebi M, Anim JT, Olalu AA. Up-regulation of eukaryotic elongationfactor-1subunits in breast carcinoma [J]. Anticancer Res,2005,25(3c):2573-2577.
    [136] Hassell JA and Englhardt DL: The regulation of protein synthesis inanimal cells by serum factors [J]. Biochemistry,1976,15:1375-1381
    [137] Chang YW and Traugh JA. Phosphorylation of elongation factor1and ribosomalprotein S6kinase by multipotential S6kinase and insulin stimulation of translationalelongation [J]. J Biol Chem,1997,272:28252-28257
    [138] Venema RC, Peters HI and Traugh JA: Phosphorylation ofvalyl-tRNA synthetase and elongation factor1in response to phorbol esters is associatedwith stimulation of both activities [J]. J Biol Chem,1991,266:11993-11998.
    [139] Roux PP, Richards SA, Blenis J. Phosphorylation of p90ribosomal S6kinase (RSK)Regulates extracellular signal-regulated kinase docking and RSK activity [J]. Mol Cell Biol,2003,23(14):4796-4804.
    [140] The identification of raptor as substrate for p44/42MAPK [J]. Endocrinology,2011,152(4):1264-1273.
    [141] Pircher TJ, Petersen H, Gustafsson JA, Haldosén LA. Extracellular signal-regulatedkinase(ERK) interacts with signal transducer and activator of transcription (STAT)5a [J].Mol Endocrinol,1999,13(4):555-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700