磷在固体废物热处理过程中的迁移转化及再利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体废物的热解和焚烧等热化学处理技术不仅可以大量削减废物总量,还能够实现其资源化利用。固体废物中含有不同比例的营养元素,其中磷是一个不可再生的营养元素,因而备受关注。它在热解产物中的分布和形态以及转化机制关系到它的再利用途径。本论文以污泥和塑料固体废物为研究对象,探索了磷在热化学处理过程中的迁移转化行为,并研究了热化学处理固体产物中的磷在环境中的释放规律。论文主要研究结果如下:
     1.污泥经过热解或焚烧之后,其产物SSC/A中磷的形态较污泥中有显著的变化。热处理温度是影响这一变化的主要因素,而热处理氛围的影响相对很小。我们通过逐级提取,通过31P-NMR和XRD表征发现:在低温(400-600℃)热解的条件下,污泥中的磷倾向于转化为较为稳定的NaOH-P(主要为吸附在铝铁化合物上的磷);而在高温条件下(700-800℃),污泥中的磷倾向于转化为更为稳定的HC1-P(即Ca、Mg-P的化合物)。
     2.通过对磷酸三(丁氧基乙基)酯与木质素的共热解研究发现,在快速热解条件下,温度对生物炭上磷的分配比例(即生物炭上的磷占原始进料中磷的比例)起着关键作用,热解温度越高(从400到600℃),生物炭上磷的分配比例越低(从76.6%到51%);在慢速热解条件下,生物炭中磷的比例几乎不受温度影响,且均在70%以上;CaCl2和MgCl2在热解过程中与磷生成Ca、Mg-P的化合物,从而显著增强生物炭对磷的固定作用。通过XPS表征,我们发现生物炭中磷的形态主要有正磷、焦磷(或P4O10)、以及一系列与生物炭上芳环相连的磷(Ar-P),其中以Ar-P最为稳定,很难被普通溶剂提取。快速热解的生物炭中可提取磷的比例要低于慢速热解生物炭中的磷的可提取比例,这是由于慢速热解生物炭上Ar-P含量高于快速热解的Ar-P含量的缘故。通过TG/FTIR/MS的分析,可以推断磷酸三(丁氧基乙基)酯和木质素热解中间产物之间的反应是导致磷固定在生物炭上的主要原因。
     3.稻壳生物炭(磷含量为4.7mg Pg-1)中含有不同形态的含磷化合物,利用生物炭-水的释放体系,并结合实际的土壤环境条件研究了生物炭中磷在不同环境条件下的释放规律。结果显示,在纯水中(平衡pH值约为9.0)约有一半的磷在8h之内释放出来,所释放的磷的形态为正磷和焦磷;共存阴离子(Cl、NO3-或SO42-)能够促进正磷的释放,这是由阴离子之间的竞争作用和溶液中升高的离子强度导致的;然而,由于焦磷能够在溶液中形成稳定的配合物,其释放并不受共存阴离子的影响。霍格兰德营养液对磷的释放起到抑制作用,这是由于霍格兰德营养液中过剩的Ca2+、Mg2+和NH4+离子与生物炭释放的含磷化合物反应形成沉淀所致。
Thermal processing (pyrolysis or incineration) of solid wastes can substantially reduce the waste volume and simultaneously properly reuse the energy and resource contained in wastes. Phosphorus, one of the most important and nonrenewable nutrient elements contained in solid wastes, has received more interests. The distribution and form of P in biochar or ash (the solid product derived from the thermal treatment of solid wastes) are essential for the disposal (reutilization) of biochar or ash. Herein, the thermochemical behaviors of P in different solid wastes (e.g., sewage sludge and plastics) in thermal treatment were investigated. Moreover, the release of P from biochar of rice husk to the environment was also explored and the environmental factors affecting the release of P were evaluated.
     1. Investigations into the transformation and migration of P in the sewage sludge under various thermal treatment conditions show that the temperature significantly influenced the species and content of P in the sewage sludge char or ash (SSC/A), while the atmosphere of thermal treatment had a slight effect on the fate of P. The sequential extraction,31P-NMR, and XRD analysis indicate that P was mainly migrated to the medium-term plant available P pool (poolNaOH) when treating the sewage sludge at low temperatures (400-600℃), while it was migrated to long-term plant available P pool (poolhcl) when treated at high temperatures (700-800℃).
     2. To investigate the behaviors. of tris(2-butoxyethyl) phosphate (TBEP) in co-pyrolysis, the mixture of TBEP and lignin was used to simulate the feedstock of the co-pyrolysis of wood biomass and waste plastics. In fast pyrolysis, the proportion of P distributed in char was significantly influenced by temperature. With an increase in temperature (400-500℃), the proportion of P distributed in char decreased from76.6%to51%. In slow pyrolysis, temperature had little effect on the proportion of P in char (all of them exceeded70%). The dose of CaCl2and MgCl2could significantly increase the P distributed in char through the formation of Ca, Mg-P compounds. The XPS analysis shows that the P species in char were orthophosphate, pyrophosphate (or P4O10), and the P associated with the aromatic rings in char (Ar-P), among which Ar-P was the most stable species and hardly to be extracted. Compared with the P in the char produced in fast pyrolysis, the P in the char derived from the slow pyrolysis could hardly be extracted, which was caused by the higher Ar-P content in the char of slow pyrolysis. The TG/FTIR/MS analysis suggests that the thermochemical reactions between the intermediates of both lignin and TBEP were responsible for the diversity of the P species in chars.
     3. The effects of environmental (soil) conditions on the release of different P species from rice husk biochar in a biochar-water system were explored. About2.2mg g-1P in the form of inorganic orthophosphate and pyrophosphate was released from a raw biochar (contained4.7mg P g-1) at initial pH of9.0in the initial8h. The release of orthophosphate was significantly enhanced by the coexisting anions of Cl-, NO3-or SO42-, attributed to the effect of ion exchange competition and the elevated ionic strength, while the release of pyrophosphate (P2O74-) was not influenced by the introduction of anions, which might be attributed to the formation of stable complexes. The introduction of Hoagland nutrient solution led to the decrease in release of P due to the formation of precipitates between dissolved P and excessive Ca2+, Mg2+, and NH4+.
引文
(1)李敏.固体废物的焚烧和热解.中国环境科学出版社:北京,2006.
    (2)Daskalopoulos, E.; Badr, O.; Probert, S. D. Economic and environmental evaluations of waste treatment and disposal technologies for municipal solid waste. Appl. Energy 1997,58,209-255.
    (3)El-Fadel, M.; Findikakis, A. N.; Leckie, J. O. Environmental impacts of solid waste landfilling. J. Environ. Manage.1997,50,1-25.
    (4)Burnley, S. J. A review of municipal solid waste composition in the United Kingdom. Waste Manage.2007,27,1274-1285.
    (5)Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manage.2012,32,625-639.
    (6)Wang, F.; Shih, K.; Lu, X.; Liu, C. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge. Environ. Sci. Technol.2013,47,2621-2627.
    (7)Lee, C. C.; Huffman, G. L. Incineration of solid-waste. Environ. Prog 1989,8, 143-151.
    (8)Hartman, M.; Svoboda, K.; Pohorely, M.; Trnka, O. Combustion of dried sewage sludge in a fluidized-bed reactor. Ind Eng. Chem. Res.2005,44, 3432-3441.
    (9)Hossain, M. K.; Strezov, V.; Chan, K. Y.; Ziolkowski, A.; Nelson, P. F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage.2011,92,223-228.
    (10)李秀金.固体废物处理与资源化.科学出版社:北京,2011.
    (11)Fonts, I.; Gea, G.; Azuara, M.; Abrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production:A review. Renew.Sust. Energ. Rev.2012,16,2781-2805.
    (12)Tsai, W.; Lee, M.; Chang, Y. Fast pyrolysis of rice husk:product yields and compositions. Bioresour. Technol.2007,98,22-28.
    (13)Cao, X. D.; Ma, L. N.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol.2009,43,3285-3291.
    (14)Scott, D.; Czernik, S.; Piskorz, J.; Radlein, D. S. A. Fast pyrolysis of plastic wastes. Energy Fuels 1990,4,407-411.
    (15)Mohan, D.; Pittman, C. U., Jr.; Steele, P. H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy Fuels 2006,20,848-889.
    (16)Ates, F.; Isikdag, M. A. Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel 2009,88,1991-1997.
    (17)Zhang, X. D.; Xu, M.; Sun, R. F.; Sun, L. Study on biomass pyrolysis kinetics. J. Eng. Gas Turb. Power 2006,128,493-496.
    (18)Beis, S.; Onay, O.; Kockar, O. Fixed-bed pyrolysis of safflower seed:influence of pyrolysis parameters on product yields and compositions. Renew. Energ. 2002,26,21-32.
    (19)Luo, Z.; Wang, S.; Cen, K. A model of wood flash pyrolysis in fluidized bed reactor. Renew. Energ.2005,30,377-392.
    (20)Sens(o|")z, S.; Angin, D.; Yorgun, S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.):fuel properties of bio-oil. Biomass Bioenerg 2000, 19,271-279.
    (21)Inguanzo, M.; Dominguez, A.; Menendez, J.; Blanco, C.; Pis, J. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas fractions. J.Anal. Appl. Pyrol.2002,63,209-222.
    (22)Onay, O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol.2007,88,523-531.
    (23)Williams, P. T.; Besler, S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energ.1996,7,233-250.
    (24)Encinar, J.; Beltran, F.; Bernalte, A.; Ramiro, A.; Gonzalez, J. Pyrolysis of two agricultural residues:olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenerg.1996,11,397-409.
    (25)Home, P. A.; Williams, P. T. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 1996,75,1051-1059.
    (26)Gronli, M. G.; Melaaen, M. C. Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions. Energy Fuels 2000,14,791-800.
    (27)Zhang, S.; Yan, Y.; Li, T.; Ren, Z. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol.2005,96,545-550.
    (28)Williams, P. T.; Nugranad, N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 2000,25,493-513.
    (29)Richards, G. N.; Zheng, G. Influence of metal ions and of salts on products from pyrolysis of wood:applications to thermochemical processing of newsprint and biomass. J.Anal. Appl. Pyrol.1991,21,133-146.
    (30)van Lith, S. C.; Jensen, P. A.; Frandsen, F. J.; Glarborg, P. Release to the gas phase of inorganic elements during wood combustion. Part 2:Influence of fuel composition. Energy Fuels 2008,22,1598-1609.
    (31)Hait, S.; Tare, V. Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges. Ecotox. Environ. Safe.2012,79,214-224.
    (32)Perez-Murcia, M. D.; Moral, R.; Moreno-Caselles, J.; Perez-Espinosa, A.; Paredes, C. Use of composted sewage sludge in growth media for broccoli. Bioresour. Technol. 2006,97,123-130.
    (33)Liu, Z. Q.; Liu, Z. H.; Li, X. L. Status and prospect of the application of municipal solid waste incineration in China. Appl. Therm. Eng.2006,26, 1193-1197.
    (34)Avila-Segura, M.; Barak, P.; Hedtcke, J. L.; Posner, J. L. Nutrient and alkalinity removal by corn grain, stover and cob harvest in Upper Midwest USA. Biomass Bioenerg 2011,35,1190-1195.
    (35)陆文静,王.农村固体废物处理处置与资源化技术.中国环境科学出版社:北京,2006.
    (36)Brechin, J.; mcdonald, g. k. effect of form and rate of pig manure on the growth, nutrient-uptake, and yield of barley (cv galleon). Aust. J. Exp. Agr.1994,34, 505-510.
    (37)Chen, Y.; Peng, H.; Li, J.; Xia, Z.; Tan, H. A novel flame retardant containing phosphorus, nitrogen, and sulfur. Journal of Thermal Analysis and Calorimetry 2014,115,1639-1649.
    (38)Gaan, S.; Sun, G. Effect of phosphorus and nitrogen on flame retardant cellulose:A study of phosphorus compounds. J.Anal. Appl. Pyrol.2007,78, 371-377.
    (39)Ennis, C. J.; Evans, A. G.; Islam, M.; Ralebitso-Senior, T. K.; Senior, E. Biochar. Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. Crit. Rev. Env. Sci. Tech.2012,42,2311-2364.
    (40)Fahmi, R.; Bridgwater, A.; Donnison, I.; Yates, N.; Jones, J. M. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 2008,87,1230-1240.
    (41)Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipila, K. Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 2010,24, 1380-1388.
    (42)Demirbas, A. Potential applications of Renew. Energ. sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog, Energ. Combust.2005,31,171-192.
    (43)Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E. High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 2006,85,783-795.
    (44)Dayton, D. C.; French, R. J.; Milne, T. A. Direct observation of alkali vapor release during biomass combustion and gasification.1. application of molecular-beam mass-spectrometry to switchgrass combustion. Energy Fuels 1995,9,855-865.
    (45)Cummer, K. R.; Brown, R. C. Ancillary equipment for biomass gasification. Biomass Bioenerg 2002,23,113-128.
    (46)Lv, D.; Xu, M.; Liu, X.; Zhan, Z.; Li, Z.; Yao, H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process. Technol.2010,91,903-909.
    (47)Yu, Y.; Liu, D.; Wu, H. Formation and characteristics of reaction intermediates from the fast pyrolysis of NaCl-and MgCl2-loaded celluloses. Energy Fuels 2013,28,245-253.
    (48)Bai, X.; Brown, R. C.; Fu, J.; Shanks, B. H.; Kieffer, M. The Influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction. Energy Fuels 2014,28, 1111-1120.
    (49)Seames, W. S.; Fernandez, A.; Wendt, J. O. L. A study of fine particulate emissions from combustion of treated pulverized municipal sewage sludge. Environ. Sci. Technol.2002,36,2772-2776.
    (50)Jenkins, B. M.; Baxter, L. L.; Miles, T. R.; Miles, T. R. Combustion properties of biomass. Fuel Process. Technol.1998,54,17-46.
    (51)Hongfang, C.; Yin, W.; Guangwen, X.; Yoshikawa, K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content. Energies 2012,5,5418-38.
    (52)McKay, G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration:review. Chem. Eng. J.2002,86, 343-368.
    (53)Beck, J.; Brandenstein, J.; Unterberger, S.; Hein, K. R. G. Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts. Appl. Catal. B: Environ.2004,49,15-25.
    (54)Beck, J.; Muller, R.; Brandenstein, J.; Matscheko, B.; Matschke, J.; Unterberger, S.; Hein, K. R. G. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion. Fuel 2005,84,1911-1919.
    (55)Beck, J.; Unterberger, S. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels. Fuel 2006,85,1541-1549.
    (56)Beck, J.; Unterberger, S. The behaviour of particle bound phosphorus during the combustion of phosphate doped coal. Fuel 2007,86,632-640.
    (57)Olsson, J. G.; Jaglid, U.; Pettersson, J. B.; Hald, P. Alkali metal emission during pyrolysis of biomass. Energy Fuels 1997,11,779-784.
    (58)Davidsson, K.; Pettersson, J.; Nilsson, R. Fertiliser influence on alkali release during straw pyrolysis. Fuel 2002,81,259-262.
    (59)Jensen, P. A.; Frandsen, F.; Dam-Johansen, K.; Sander, B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy Fuels 2000,14,1280-1285.
    (60)Knudsen, J. N.; Jensen, P. A.; Dam-Johansen, K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy Fuels 2004,18,1385-1399.
    (61)van Lith, S. C.; Alonso-Ramirez, V.; Jensen, P. A.; Frandsen, F. J.; Glarborg, P. Release to the gas phase of inorganic elements during wood combustion. Part 1: development and evaluation of quantification methods. Energy Fuels 2006,20, 964-978.
    (62)Belevi, H.;Moench, H. Factors determining the element behavior in municipal solid waste incinerators.1. Field studies. Environ. Sci. Technol.2000,34, 2501-2506.
    (63)Okuno, T.; Sonoyama, N.; Hayashi, J.-i.; Li, C.-Z.; Sathe, C.; Chiba, T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy Fuels 2005,19,2164-2171.
    (64)Yuan, S.; Zhou, Z. J.; Li, J.; Chen, X. L.; Wang, F. C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis. Energy Fuels 2010,24, 6166-6171.
    (65)Tian, F.-J.; Yu, J.; McKenzie, L. J.; Hayashi, J.-i.; Li, C.-Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam:a comparative study of coal and biomass. Energy fuels 2007,21,517-521.
    (66)Zhang, J.; Tian, Y.; Zhu, J.; Zuo, W.; Yin, L. Characterization of nitrogen transformation during microwave-induced pyrolysis of sewage sludge. J.Anal. Appl. Pyrol.2014,105,335-341.
    (67)Cao, J. P.; Li, L. Y.; Morishita, K.; Xiao, X. B.; Zhao, X. Y.; Wei, X. Y.; Takarada, T. Nitrogen transformations during fast pyrolysis of sewage sludge. Fuel 2013,104,1-6.
    (68)Zhang, J.; Tian, Y.; Cui, Y.; Zuo, W.; Tan, T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study. Bioresour. Technol.2013,132,57-63.
    (69)Tian, Y.; Zhang, J.; Zuo, W.; Chen, L.; Cui, Y.; Tan, T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ. Sci. Technol.2013,47,3498-3505.
    (70)Bourgel, C.; Veron, E.; Poirier, J.; Defoort, F.; Seiler, J.-M.; Peregrina, C. Behavior of phosphorus and other inorganics during the gasification of sewage sludge. Energy Fuels 2011,25,5707-5717.
    (71)Grimm, A.; Skoglund, N.; Bostrom, D.; Oohman, M. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels. Energy Fuels 2011,25,937-947.
    (72)Elled, A.-L.; Amand, L.-E.; Leckner, B.; Andersson, B.-A. Influence of phosphorus on sulphur capture during co-firing of sewage sludge with wood or bark in a fluidised bed. Fuel 2006,85,1671-1678.
    (73)Adam, C.; Peplinski, B.; Michaelis, M.; Kley, G.; Simon, F. G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage.2009,29,1122-1128.
    (74)Wu, H.; Castro, M; Jensen, P. A.; Frandsen, F. J.; Glarborg, P.; Dam-Johansen, K.; Rokke, M.; Lundtorp, K. Release and transformation of inorganic elements in combustion of a high-phosphorus fuel. Energy Fuels 2011,25,2874-2886.
    (75)Cheeseman, C. R.; da Rocha, S. M.; Sollars, C.; Bethanis, S.; Boccaccini, A. R. Ceramic processing of incinerator bottom ash. Waste Manage.2003,23, 907-916.
    (76)Hjelmar, O. Disposal strategies for municipal solid waste incineration residues. J. Hazard. Mater.1996,47,345-368.
    (77)Bridgwater, A. V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem.1999,30,1479-1493.
    (78)Bridgwater, A. V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J.2003,91,87-102.
    (79)Wiles, C. C. Municipal solid waste combustion ash:State-of-the-knowledge. J.Hazard. Mater.1996,47,325-344.
    (80)van der Sloot, H. A.; Kosson, D. S.; Hjelmar, O. Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manage.2001, 21,753-765.
    (81)Lam, C. H. K.; Ip, A. W. M.; Barford, J. P.; McKay, G. Use of incineration msw ash:A review. Sustainability 2010,2,1943-68.
    (82)Joseph, J. Biochar for Environmental Management:Science and Technology, Lehmann, J.; Joseph, S., Eds. Earthscan:London,2009.
    (83)Bruder-Hubscher, V.; Lagarde, F.; Leroy, M.; Coughanowr, C.; Enguehard, F. Utilisation of bottom ash in road construction:evaluation of the environmental impact. Waste Manage.& research 2001,19,545-556.
    (84)Tan, Z.; Lagerkvist, A. Phosphorus recovery from the biomass ash:A review. Renew. Sust. Energ. Rev.2011,15,3588-3602.
    (85)Pettersson, A., L.-E. Amand, and B.-M. Steenari, Leaching of ashes from co-combustion of sewage sludge and wood-Part Ⅰ:Recovery of phosphorus. Biomass and Bioenergy,2008.32(3):p.224-235.
    (86)Kaikake, K., T. Sekito, and Y. Dote, Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash. Waste Management,2009.29(3):p.1084-1088.
    (87)Petzet, S., B. Peplinski, and P. Cornel, On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research,2012.46(12):p.3769-3780.
    (88)Laine, J.; Simoni, S.; Calles, R. Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln. Chem. Eng. Commum 1991,99, 15-23.
    (89)Asai, H., et al., Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research,2009.111(1-2):p.81-84.
    (90)Inyang, M., et al., Biochar from anaerobically digested sugarcane bagasse. Bioresource technology,2010.101(22):p.8868-8872.
    (91)Chai, Y. J.; Currie, R. J.; Davis, J.; Wilken, M.; Martin, G. D.; Fishman, S.; Ghosh, U. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ. Sci. Technol.2011.
    (92)Atkinson, C. J.; Fitzgerald. J. D.; Hipps. N.A., Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review. Plant Soil,2010.337,1-18.
    (93)Rondon, M. A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fert. Soils 2007,43,699-708.
    (94)Chintala, R.; Schumacher, T. E.; McDonald, L. M.; Clay, D. E.; Malo, D. D.; Papiernik, S. K.; Clay, S. A.; Julson, J. L. Phosphorus sorption and availability from biochars and soil/biochar mixtures. CLEAN-Soil, Air, Water 2013.
    (95)Sudhakar, Y.; Dikshit, A. Kinetics of endosulfan sorption on to wood charcoal. J. Environ. Sci. Heal. B 1999,34,587-615.
    (96)Preston, C.; Schmidt, M. Black (pyrogenic) carbon:a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006,3,397-420.
    (97)Lehmann, J.; Rillig, M. C.; Thies, J.; Masiello, C. A.; Hockaday, W. C.; Crowley, D. Biochar effects on soil biota-A review. Soil Biolog. Biochem. 2011,43,1812-1836.
    (98)Silber, A.; Levkovitch, I.; Graber, E. R. pH-Dependent mineral release and surface properties of cornstraw biochar:Agronomic implications. Environ. Sci. Technol.2010,44,9318-9323.
    (99)Chan, K. Y.; Van Zwieten, L.; Meszaros, Ⅰ.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res.2008,46,437-444.
    (100)Parvage, M.M., et al., Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils,2013.49,245-250.
    (101)Sharpley, A.; B. Moyer. Phosphorus forms in manure and compost and their release during simulated rainfall. J. Environ, Qual,2000.29,1462-1469.
    (102)Huang, X.L.; M. Shenker. Water-Soluble and Solid-State Speciation of Phosphorus in Stabilized Sewage Sludge. J. Environ. Qual,2004.33, 1895-1903.
    (103)Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant soil 2012,357,173-187.
    (104)Parvage, M. M.; Ulen, B.; Eriksson, J.; Strock, J.; Kirchmann, H. Phosphorus availability in soils amended with wheat residue char. Biol. Fert. Soils 2013,49, 245-250.
    (105)Uchimiya, M.; S. Hiradate. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agr. food chem.2014.62,1802-1809.
    (106)Turner, B.L. Extraction of soil organic phosphorus. Talanta,2005.66,294-306.
    (107)Cade-Menun, B.J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta,2005.66, 359-371.
    (108)Ahlgren, J., et al., Sediment depth attenuation of biogenic phosphorus compounds measured by P-31 NMR. Environ. Sci. Technol.2005.39,867-872.
    (109)Carter, M.R. Soil sampling and methods of analysis.1993. CRC Press.
    (110)Cross, A.F.; W.H. Schlesinger. A literature review and evaluation of the. Hedley fractionation:Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma,1995.64,197-214.
    (1)Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sust. Energ. Rev.2008,12,116-140.
    (2)Fonts, I.; Gea, G.; Azuara, M.; Abrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production:A review. Renew. Sust. Energ. Rev.2012,16,2781-2805.
    (3)Hartman, M.; Svoboda, K.; Pohorely, M.; Trnka, O. Combustion of dried sewage sludge in a fluidized-bed reactor. Ind. Eng. Chem. Res.2005,44,3432-3441.
    (4)Hossain, M. K.; Strezov, V.; Chan, K. Y.; Ziolkowski, A.; Nelson, P. F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage.2011,92,223-228.
    (5)Pettersson, A.; Amand, L.-E.; Steenari, B. M. Leaching of ashes from co-combustion of sewage sludge and wood-Part I:Recovery of phosphorus. Biomass Bioenergy 2008,32,224-235.
    (6)Hossain, M. K.; Strezov, V.; Yin Chan, K.; Nelson, P. F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculenrum). Chemosphere 2010,78,1167-1171.
    (7)Plaza, C.; Sanz, R.; Clemente, C.; Fernandez, J. M.; Gonzalez, R.; Polo, A.; Colmenarejo, M. F. Greenhouse Evaluation of Struvite and Sludges from Municipal Wastewater Treatment Works as Phosphorus Sources for Plants. J. Agric. Food Chem.2007,55,8206-8212.
    (8)Belevi, H.; Moench, H. Factors determining the element behavior in municipal solid waste incinerators.1. Field studies. Environ. Sci. Technol.2000,34, 2501-2506.
    (9)Atha, D. H.; Wang, H.; Petersen, E. J.; Cleveland, D.; Holbrook, R. D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B. C. Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environ. Sci. Technol.2011,46, 1819-1827.
    (10)Pant, H. K.; Reddy, K. R. Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Res.2003,37,965-972.
    (11)Chakraborty, D.; Nair, V. D.; Harris, W. G. Compositional differences between alaquods and paleudults affecting phosphorus sorption-desorption behavior. Soil Science 2012,177,188-197
    (12)McDowell, R. W.; Condron, L. M. Chemical nature and potential mobility of phosphorus in fertilized grassland soils. Nutr Cycl Agroecosys 2000,57,225-233.
    (13)McDowell, R. W.; Condron, L. M.; Mahieu, N.; Brookes, P. C.; Poulton, P. R.; Sharpley, A. N. Analysis of potentially mobile phosphorus in arable soils using solid state nuclear magnetic resonance. J. Environ. Qual.2002,31,450-456.
    (14)Beauchemin, S.; Hesterberg, D.; Chou, J.; Beauchemin, M.; Simard, R. R.; Sayers, D. E. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation contribution. J. Environ. Qual.2003,32,1809-1819.
    (15)McDowell, R. W.; Sharpley, A. N. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma 2003,112,143-154.
    (16)Sharpley, A. N.; McDowell, R. W.; Kleinman, P. J. A. Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil Sci. Soc. Am. J.2004,68, 2048-2057.
    (17)Hamdan, R.; El-Rifai, H. M.; Cheesman, A. W.; Turner, B. L.; Reddy, K. R.; Cooper, W. T. Linking phosphorus sequestration to carbon humification in wetland soils by 31P and 13C NMR Spectroscopy. Environ. Sci. Technol.2012, 46,4775-4782.
    (18)Chen, L.; Bhattacharya, S. Sulfur emission from victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions. Environ. Sci. Technol. 2013,47,1729-1734.
    (19)Okuno, T.; Sonoyama, N.; Hayashi, J.-i.; Li, C. Z.; Sathe, C.; Chiba, T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy Fuels 2005,19,2164-2171.
    (20)Lu, S.; Du, Y.; Zhong, D.; Zhao, B.; Li, X.; Xu, M.; Li, Z.; Luo, Y. M.; Yan, J.; Wu, L. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators. Environ. Sci. Technol.2012.
    (21)Mayoral, M. C.; Izquierdo, M. T.; Andres, J. M.; Rubio, B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochim Acta 2001,370, 91-97.
    (22)Munir, S.; Daood, S. S.; Nimmo, W.; Cunliffe, A. M.; Gibbs, B. M. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol.2009,100, 1413-1418.
    (23)Wang, G.; Liu, G.; Xu, M. Above-and belowground dynamics of plant community succession following abandonment of farmland on the loess plateau, China. Plant Soil 2009,316,227-239.
    (24)Ozaki, H.; Watanabe, I.; Kuno, K. Investigation of the heavy metal sources in relation to automobiles. Water, air, and soilpollut.2004,157,209-223.
    (25)Antosiewicz, D. M. Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance. Environ Pollut 2005,134, 23-34.
    (26)Buehler, S.; Oberson, A.; Rao, I. M.; Friesen, D. K.; Frossard, E. Sequential phosphorus extraction of a 33P-labeled oxisol under contrasting agricultural systems. Soil Sci. Soc. Am. J.2002,66,868-877.
    (27)Cross, A. F.; Schlesinger, W. H. A literature review and evaluation of the. Hedley fractionation:Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 1995,64,197-214.
    (28)Huang, X.-L.; Chen, Y.; Shenker, M. Chemical fractionation of phosphorus in stabilized biosolids. J Environ Qual 2008,37,1949-1958.
    (29)Cade-Menun, B. J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 2005,66, 359-371.
    (30)Cordell, D.; Rosemarin, A.; Schroder, J. J.; Smit, A. L. Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options. Chemosphere 2011,84,747-758.
    (31)Petzet, S.; Peplinski, B.; Cornel, P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res.2012,46,3769-3780.
    (32)Font, R.; Fullana, A.; Conesa, J. A.; Llavador, F. Analysis of the pyrolysis and combustion of different sewage sludges by TG. J. Anal. Appl. Pyrolysis 2001, 58-59,927-941.
    (33)Bagreev, A.; Bandosz, T. J.; Locke, D. C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 2001,39,1971-1979.
    (34)Sharpley, A.; Moyer, B. Phosphorus forms in manure and compost and their release during simulated rainfall. J. Environ. Qual.2000,29,1462-1469.
    (35)Huang, X. L.; Shenker, M. Water-soluble and solid-state speciation of phosphorus in stabilized sewage sludge. J. Environ. Qual.2004,33,1895-1903.
    (36)Leytem, A. B.; Plumstead, P. W.; Maguire, R. O.; Kwanyuen, P.; Brake, J. What aspect of dietary modification in broilers controls litter water-soluble phosphorus. J. Environ. Qual.2007,36,453-463.
    (37)Bridgwater, A. V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem.1999,30,1479-1493.
    (38)Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2013,102 (0),137-143.
    (39)Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res.2012,46, 854-862.
    (40)Downie, A.; Crosky, A.; Munroe, P. Physical Properties of Biochar. In Biochar for Environmental Management:Science and Technology, Lehmann, J.; Joseph, S., Eds. Earthscan:London,2009.
    (41)Ajiboye, B.; Akinremi, O. O.; Racz, G. J. Laboratory characterization of phosphorus in fresh and oven-dried organic amendments. J. Environ. Qual.2004, 33,1062-1069.
    (42)Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis:Mineralogical, Organic and Inorganic Methods. Springer Verlag:Berlin,2006.
    (43)Bourgel, C.; Veron, E.; Poirier, J.; Defoort, F.; Seiler, J. M.; Peregrina, C. Behavior of phosphorus and other inorganics during the gasification of sewage sludge. Energy Fuels 2011,25,5707-5717.
    (44)Folgueras, M. B.; Diaz, R. M.; Xiberta, J.; Alonso, M. Effect of inorganic matter on trace element behavior during combustion of coal-sewage sludge blends. Energy Fuels 2007,21,744-755.
    (45)Jindarom, C.; Meeyoo, V.; Kitiyanan, B.; Rirksomboon, T.; Rangsunvigit, P. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Prog, Energ. Combust.2007,133, 239-246.
    (46)Jindarom, C.; Meeyoo, V.; Rirksomboon, T.; Rangsunvigit, P. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere. Chemosphere 2007, 67,1477-1484.
    (47)Bowman, R. A.; Moir, J. O. Basic edta as an extractant for soil organic phosphorus. Soil Sci. Soc. Am. J.1993,57,1516-1518.
    (48)Turner, B. L.; Cade-Menun, B. J.; Condron, L. M.; Newman, S. Extraction of soil organic phosphorus. Talanta 2005,66,294-306.
    (49)Zhang, Z.-H.; Song, Q.; Yao, Q.; Yang, R.-M. Influence of the atmosphere on the transformation of alkali and alkaline earth metallic species during rice straw thermal conversion. Energy Fuels 2012,26,1892-1899.
    (50)Pilon, G.; Lavoie, J. M. Pyrolysis of switchgrass (panicum virgatum L.) at low temperatures within N2 and CO2 Environments:Product yield study. ACS Sustainable Chem.& Eng.2012,1,198-204.
    (51)Adam, C.; Peplinski, B.; Michaelis, M.; Kley, G.; Simon, F. G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage.2009, 29,1122-1128.
    (52)Zhang, Q.; Liu, H.; Li, W.; Xu, J.; Liang, Q. Behavior of phosphorus during co-gasification of sewage sludge and coal. Energy Fuels 2012,26,2830-2836.
    (53)Schrodter, K.; Bettermann, G.; Staffel, T.; Wahl, F.; Klein, T.; Hofmann, T. Phosphoric Acid and Phosphates. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA:2000.
    (1)Marklund, A.; Andersson, B.; Haglund, P. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 2003,53,1137-1146.
    (2)Stapleton, H. M.; Klosterhaus, S.; Eagle, S.; Fuh, J.; Meeker, J. D.; Blum, A.; Webster, T. F. Detection of Organophosphate Flame Retardants in Furniture Foam and U.S. House Dust. Environ. Sci. Technol.2009,43,7490-7495.
    (3)Meeker, J. D.; Stapleton, H. M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ. Health Perspect. 2010,118,318-323.
    (4)Kanazawa, A.; Saito, Ⅰ.; Araki, A.; Takeda, M.; Ma, M.; Saijo, Y.; Kishi, R. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air 2010,20,72-84.
    (5)Matthews, H.; Eustis, S.; Haseman, J. Toxicity and carcinogenicity of chronic exposure to tris (2-chloroethyl) phosphate. Toxicol. Sci.1993,20,477-485.
    (6)World Health Organization, Environmental Health Criteria 209.
    (7)Carlsson, H.; Nilsson, U.; Becker, G.; Ostman, C. Organophosphate ester flame retardants and plasticizers in the indoor environment: Analytical methodology and occurrence. Environ. Sci. Technol.1997,31,2931-2936.
    (8)Hartmann, P. C.; Biirgi, D.; Giger, W. Organophosphate flame retardants and plasticizers in indoor air. Chemosphere 2004,57,781-787.
    (9)Regnery, J.; Puttmann, W.; Merz, C.; Berthold, G. Occurrence and distribution of organophosphorus flame retardants and plasticizers in anthropogenically affected groundwater. J. Environ. Monit.2011,13,347-354.
    (10)Fries, E.; P(u|")ttmann, W. Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany). J. Environ. Monit.2003,5,346-352.
    (11)Marklund, A.; Andersson, B.; Haglund, P. Organophosphorus Flame Retardants and Plasticizers in Swedish Sewage Treatment Plants. Environ. Sci. Technol. 2005,39,7423-7429.
    (12)Fries, E.; Mihajlovic, I. Pollution of soils with organophosphorus flame retardants and plasticizers. J. Environ. Monit.2011,13,2692-2694.
    (13)Marklund, A.; Andersson, B.; Haglund, P. Traffic as a Source of Organophosphorus Flame Retardants and Plasticizers in Snow. Environ. Sci. Technol.2005,39,3555-3562.
    (14)Regnery, J.; Puttmann, W. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff. Chemosphere 2010,78, 958-964.
    (15)Reemtsma, T.; Quintana, J. B.; Rodil, R. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. TrAC Trend Anal. Chem. 2008,27,727-737.
    (16)Garcia, M.; Rodriguez, I.; Cela, R. Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples. J.Chromatogr. A 2007,1152,280-286.
    (17)Quintana, J. B.; Rodil, R.; Lopez-Mahia, P.; Muniategui-Lorenzo, S.; Prada-Rodriguez, D. Optimisation of a selective method for the determination of organophosphorous triesters in outdoor particulate samples by pressurised liquid extraction and large-volume injection gas chromatography-positive chemical ionisation-tandem mass spectrometry. Anal. Bioanalytical Chem.2007,388, 1283-1293.
    (18)Sharypov, V. I.; Marin, N.; Beregovtsova, N. G.; Baryshnikov, S. V.; Kuznetsov, B. N.; Cebolla, V. L.; Weber, J. V. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part 1:influence of experimental conditions on the evolution of solids, liquids and gases. J. Anal. and Appl. Pyrolysis 2002,64,15-28.
    (19)Chattopadhyay, J.; Kim, C.; Kim, R.; Pak, D. Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics. Korean J. Chem. Eng. 2008,25,1047-1053.
    (20)Abnisa, F.; Daud, W. M. A. W.; Ramalingam, S.; Azemi, M. N. B. M.; Sahu, J. N. Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel 2013,108,311-318.
    (21)Baumgarten, H. E.; Setterquist, R. A. Pyrolysis of Alkyl Phosphates. J. Am. Chem. Soc.1957,79,2605-2608.
    (22)Higgins, C. E.; Baldwin, W. H. The Thermal Decomposition of Tributyl Phosphate 1. J. Org. Chem.1961,26,846-850.
    (23)Bruneau, C.; Soyer, N.; Brault, A.; Kerfanto, M. Thermal degradation of tri-n-butyl phosphate. J. Anal. and Appl. Pyrolysis 1981,3,71-81.
    (24)Lhomme, V.; Bruneau, C.; Soyer, N.; Brault, A. Thermal behavior of some organic phosphates. Ind. Eng. Chem. Prod. Res. and Dev 1984,23,98-102.
    (25)Laird, D. A. The Charcoal Vision:A Win-Win-Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality. Agron. J.2008,100,178-181.
    (26)Cao, Y.; Pawlowski, A. Life cycle assessment of two emerging sewage sludge-to-energy systems:evaluating energy and greenhouse gas emissions implications. Bioresour. technol. 2013,127,81-91.
    (27)Lehmann, J.; Joseph, S. Biochar for Environmental Management:Science and Technology. Earthscan:London,2009.,2009.
    (28)Mihajlovic, I.; Miloradov, M. V.; Fries, E. Application of Twisselmann Extraction, SPME, and GC-MS To Assess Input Sources for Organophosphate Esters into Soil. Environ. Sci. Technol.2011,45,2264-2269.
    (29)Mohan, D.; Pittman, C. U.; Steele, P. H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006,20,848-889.
    (30)Tian, Y.; Zhang, J.; Zuo, W.; Chen, L.; Cui, Y.; Tan, T. Nitrogen Conversion in Relation to NH3 and HCN during Microwave Pyrolysis of Sewage Sludge. Environ. Sci. Technoly 2013,47,3498-3505.
    (31)Wang, F.; Shih, K.; Lu, X.; Liu, C. Mineralization Behavior of Fluorine in Perfluorooctanesulfonate (PFOS) during Thermal Treatment of Lime-Conditioned Sludge. Environ. Sci. Technol.2013.
    (32)Beck, J.; Unterberger, S. The behaviour of particle bound phosphorus during the combustion of phosphate doped coal. Fuel 2007,86,632-640.
    (33)Adam, C.; Peplinski, B.; Michaelis, M.; Kley, G.; Simon, F. G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage.2009, 29,1122-1128.
    (34)Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Chastain, J. Eds.; Perki-Elmer Corp, Eden Prairie, 1992.
    (35)Puziy, A. M.; Poddubnaya, O. I.; Socha, R. P.; Gurgul, J.; Wisniewski, M. XPS and NMR studies of phosphoric acid activated carbons. Carbon 2008,46, 2113-2123.
    (36)Liu, Q. S.; Zheng, T.; Wang, P.; Guo, L. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crop Prod.2010,31,233-238.
    (37)Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008,46,833-840.
    (38)Schrodter, K.; Bettermann, G.; Staffel, T.; Wahl, F.; Klein, T.; Hofinann, T. Phosphoric Acid and Phosphates. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA:2000.
    (39)El Mansouri, N.-E.; Salvado, J. Analytical methods for determining functional groups in various technical lignins. Ind. Crop Prod.2007,26,116-124.
    (40)Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007,86,1781-1788.
    (41)Shankwalkar, S. G.; ruz, C. Thermal degradation and weight loss characteristics of commercial phosphate esters. Ind. Eng. Chem. Res.1994,33,740-743.
    (42)Shimada, N.; Kawamoto, H.; Saka, S. Solid-state hydrolysis of cellulose and methyl α-and β-D-glucopyranosides in presence of magnesium chloride. Carbohydr. Res.2007,342,1373-1377.
    (43)Kawamoto, H.; Yamamoto, D.; Saka, S. Influence of neutral inorganic chlorides on primary and secondary char formation from cellulose. J. Wood Sci.2008,54, 242-246.
    (44)Yu, Y.; Liu, D.; Wu, H. Formation and Characteristics of Reaction Intermediates from the Fast Pyrolysis of NaCl-and MgC12-Loaded Celluloses. Energy Fuels 2013,28,245-253.
    (45)Liu, Q.; Wang, S.; Zheng, Y.; Luo, Z.; Cen, K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J. Anal, and Appl. Pyrolysis 2008,82, 170-177.
    (46)Souza, B.; Moreira, A.; Teixeira, A. F. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J. Therm. Anal. Calorim.2009,97, 637-642.
    (47)Wang, S.; Wang, K.; Liu, Q.; Gu, Y.; Luo, Z.; Cen, K.; Fransson, T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 2009,27,562-567.
    (48)Socrates, G.,2001. Infrared Characteristic Group Frequencies:tables and charts; Wiley, New York.
    (49)van der Veen, I.; de Boer, J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012,88, 1119-1153.
    (50)Bourbigot, S.; Le Bras, M.; Delobel, R.; Breant, P.; Tremillon, J.-m. Carbonization mechanisms resulting from intumescence-part Ⅱ. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 1995,33,283-294.
    (1)Laird, D.; Fleming, P.; Wang, B. Q.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010,158, 436-442.
    (2)Al-Wabel, M. I; Al-Omran, A.; El-Naggar, A. H.; Nadeem, M.; Usman, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013,131,374-379.
    (3)Bridgwater, A.; Peacocke, G. Fast pyrolysis processes for biomass. Renew. Sust. Energ. Rev.2000,4,1-73.
    (4)Atkinson, C. J.; Fitzgerald, J. D.; Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:A review. Plant soil 2010,337,1-18.
    (5)Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and adaptation stra.2006,11,395-419.
    (6)Tan, Z.; Lagerkvist, A. Phosphorus recovery from the biomass ash:A review. Renew. Sust. Energ. Rev.2011,15,3588-3602.
    (7)Seyhan, D. Country-scale phosphorus balancing as a base for resources conservation. Resour Conserv Recy 2009,53,698-709.
    (8)Cordell, D.; Drangert, J. O.; White, S. The story of phosphorus:Global food security and food for thought. Global Environ Chang 2009,19,292-305.
    (9)Laird, D. A.; Fleming, P.; Davis, D. D.; Horton, R.; Wang, B. Q.; Karlen, D. L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010,158,443-449.
    (10)Chan, K. Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res.2008,46,437-444.
    (11)Silber, A.; Levkovitch, I.; Graber, E. R. pH-Dependent mineral release and surface properties of cornstraw biochar:Agronomic implications. Environ. Sci. Technol.2010,44,9318-9323.
    (12)Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol.2010,101,5222-5228.
    (13)Dastgheib, S. A.; Karanfil, T.; Cheng, W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 2004, 42,547-557.
    (14)Turner, B. L.; Mahieu, N.; Condron, L. M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci. Soc. Am. J.2003,67,497-510.
    (15)魏复盛,水和废水检测分析方法.第四版;中国环境科学出版社:北京,2002.
    (16)Skoog, D. A., Analytical Chemistry:An Introduction (7th Ed.); Harcourt College, (Florida) 1999.
    (17)Lee, J. W.; Kidder, M.; Evans, B. R.; Paik, S.; Buchanan Iii, A. C.; Garten, C. T.; Brown, R. C. Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol.2010,44,7970-7974.
    (18)Socrates, G. Infrared Characteristic Group Frequencies:tables and charts.2001.
    (19)Agnelli, A.; Celi, L.; Degl'Innocenti, A.; Corti, G.; Ugolini, F. Chemical and spectroscopic characterization of the humic substances from sandstone-derived rock fragments. Soil science 2000,165,314-327.
    (20)Chirone, R.; Salatino, P.; Scala, F. The relevance of attrition to the fate of ashes during fluidized-bed combustion of a biomass. Proc. Combust. Inst.2000,28, 2279-2286.
    (21)Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem.1999,34,451-465.
    (22)Chouyyok, W.; Wiacek, R. J.; Pattamakomsan, K.; Sangvanich, T.; Grudzien, R. M.; Fryxell, G. E.;Yantasee, W. Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ. Sci. Technol.2010,44,3073-3078.
    (23)Ahmad, Z.; El-Sharkawi, H.; Irshad, M.; Honna, T.; Yamamoto, S.; Al-Busaidi, A. S. Changes in water-extractability of soil inorganic phosphate induced by chloride and sulfate salts. Environ. Sci. Pollut. R.2008,15,23-26.
    (24)Ni, J.; Pignatello, J. J.; Xing, B. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ. Sci. Technol.2011,45,9240-9248.
    (25)Iskrenova-Tchoukova, E.; Kalinichev, A. G.; Kirkpatrick, R. J. Metal cation complexation with natural organic matter in aqueous solutions:molecular dynamics simulations and potentials of mean force. Langmuir 2010,26, 15909-15919.
    (26)Pansu, M.;Gautheyrou, J. Handbook of Soil Analysis:Mineralogical, Organic and Inorganic Methods. Springer Verlag:Berlin,2006.
    (27)Lambert, S. M.; Watters, J. I. The complexes of pyrophosphate ion with alkali metal ions. J. Am. Chem. Soc.1957,79,4262-4265.
    (28)Lambert, S. M.; Watters, J. I. The complexes of magnesium ion with pyrophosphate and triphosphate ions. J. Am. Chem. Soc.1957,79,5606-5608.
    (29)Watters, J. I.; Lambert, S. M. The complexes of calcium ion with pyrophosphate and triphosphate ionsl. J. Am. Chem. Soc.1959,81,3201-3203.
    (30)Stratful, I.; Scrimshaw, M. D.; Lester, J. N. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res.2001,35, 4191-4199.
    (31)Beck, J.; Unterberger, E. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels. Fuel 2006,85,1541-1549.
    (32)Zhang, L.; Ninomiya, Y. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. P Combust Inst 2007,31, 2847-2854.
    (33)Brown, R. C.; Brewer, C. E.; Schmidt-Rohr, K.; Satrio, J. A. Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy 2009,28,386-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700