水泥—木梗纤维复合吸声材料的组成、性能及吸声模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对如何制备出相容性好、吸声性能优良、结构耐久的水泥-木梗纤维复合吸声材料的关键问题,研究了木梗纤维与水泥的适应性、水泥-木梗纤维体系组成的优化以及水泥-木梗纤维复合材料的耐久性,并探讨了影响理想多孔结构的因素,建立了理想多孔吸声材料的传声与吸声模型。
     研究表明,组成木梗纤维的纤维素、半纤维素、木质素等是影响水泥凝结硬化的主要原因。在水化初期(1小时以内),纤维素、半纤维素严重影响了水泥的水化硬化速度,二者的影响程度基本相当;而木质素对水泥水化硬化的影响是开始的十几分钟严重降低了水泥水化速度,17分钟到1小时内其对水泥水化的影响不是很大。在1小时到3天内,半纤维素和木质素对水泥水化硬化的抑制作用很强,而纤维素的作用相对较弱。组成木梗纤维的化学纯物质对水泥水化硬化的影响具有加和性,建立了木梗纤维与水泥相容性的预测模型,可以通过木梗纤维的化学组成初步判定其对水泥水化硬化的影响程度。加入硅灰、对木梗纤维进行热处理或氢氧化钙浸泡处理都能有效地改善木梗纤维与水泥的适应性。另外,加入促进水泥水化硬化或阻止木梗纤维分解的化学外加剂能显著改善水泥与木梗纤维的适应性。
     水泥-木梗纤维复合吸声材料的组成显著影响复合材料的声学性能和力学性能。实验结果表明:木梗纤维的几何尺寸对复合吸声材料的性能影响很大,由长度较长、截面较小的木梗纤维制得的复合材料具有良好的吸声性能。木梗纤维的长度对复合材料的力学性能影响很大,随着木梗纤维长度的增加,复合材料的抗折强度和断裂韧性提高。不同比例的长、短木梗纤维混掺可以制得吸声性能优异的复合吸声材料。另外,水泥-木梗纤维复合吸声材料的厚度、密度、复合材料背后设置空腔以及采用层合梯度结构等对材料的吸声性能都有较大的影响。
     由于木梗纤维干湿循环变形量很大,导致水泥-木梗纤维的尺寸稳定性较差。实验研究表明,经多次干湿循环后,在硬化水泥浆体与木梗纤维的界面处出现沟槽,从而降低了水泥浆体与木梗纤维之间的作用,使复合吸声材料的强度和韧性降低,并且随着干湿循环次数的增加,水泥-木梗纤维复合吸声材料的上述性能不断降低。把木梗纤维放入丙烯酸乳液、甘油酸酯和硬脂酸混合液、有机硅憎水剂中浸泡处理,能改善制品抗干湿循环的变形性能,但多次干湿循环后,复合材料的尺寸稳定性也逐渐降低。硬化水泥浆体孔溶液的碱度较高,不利于白腐菌、褐腐菌等微生物的生长,因此水泥-木梗纤维复合材料具有很高的抗生物侵蚀性。通过对多次干湿循环后试样破坏形态的研究,建立了水泥-木梗纤维复合材料的微结构和抗干湿循环破坏模型,认为水泥浆体和木梗纤维之间存在界面;在木梗纤维内部,纤维素纤维与结合相半纤维素以及木质素之间也存在界面,前者的结合主要是物理作用,后者的结合是化学作用。在非干湿循环状态下,应力破坏主要发生在木梗纤维与水泥浆体的界面处;而在干湿循环状态下,由于半纤维素与木质素在碱性环境下的水解,导致木梗纤维内部纤维素纤维与木质素以及半纤维的作用严重削弱,复合材料应力状态下的破坏主要为纤维撕裂破坏,木梗纤维内部界面成为整个复合材料的薄弱环节。
     通过对理想多孔体吸声性能的研究,得出孔结构是影响吸声材料的主要因素,并且在相同空隙率的条件下,随着孔径的减小吸声材料的吸声性能提高;在相同孔径的条件下,随着空隙率的增加,吸声材料的吸声性能提高。孔的长度(也就是吸声材料的厚度)也是影响材料吸声性能的因素,增加孔的长度对改变材料的吸声频率特性有很重要的影响。另外,表面层空隙率高、孔径较大而内部空隙率较低孔径较小的类层合结构有利于声波在材料内部的传播和吸收,是多孔材料理想的孔结构。同时,建立了水泥-木梗复合吸声材料声传播及吸收的模型,认为吸声材料的结构是影响材料吸声性能的关键因素,多孔材料表面的结构特点影响声波的透过性能,表面开孔率越高、孔径越大越利于声波的透过,为声波在吸声材料内部的高效吸收提供了条件;多孔材料内部结构是决定材料对声波吸收的重要条件,较高的空隙率、细化的孔结构、合理的声传播距离有利于吸声材料对声波的吸收。并且通过合理的材料结构设计可以制备出吸声性能优异的吸声材料。
To develop cement-based wood fiber sound absorption material that have good compatibility between wood and cement, excellent performance of sound absorption and outstanding durability, the author has systematically studied the properties of wood and cement, optimized the composition of cement-wood fiber system, and the durability of the composite material. It is also discussed the factors that influence sound absorption of ideal porous sound absorption material. A model is established to describe sound wave absorption in ideal porous material.
     It is indicated that the main factors influencing the setting time of cement is the composition of wood fiber, that is, cellulose, hemicellulose and lignose. During the initial stage of hydration (less than 1 hour), cellulose and hemicellulose affect the hydration rate of cement severely, to a same extent. However, in the first ten minutes, lignose decreases the hydration rate of cement significantly. From 1 hour to 3 days, hemicellulose and lignose retarded the hydration of cement strongly. Compared with that, the effect of cellulose is much small. Based on the observations, the compatibility between wood and cement has been established. The compatibility can be improved by measures of adding silica fume into cement paste, pre-heating the wood fiber or pre-treating it using saturated lime. In addition, chemical admixtures can be used to improve the compatibility between cement and wood fiber.
     The composition of cement-based wood fiber sound absorption materials can influence the acoustic and mechanical performances. The result of experiment showed that, the size of wood fiber affects the performance composite greatly, and the composite made of large aspect ratio wood fiber has much better sound absorbing performance. Increasing the length of wood fiber, bending strength and toughness will be improved. The composite made of certain proportion of long and short wood fibers has excellent sound absorbing performance. In addition, thickness and density of cement-based wood fiber sound absorption materials influence the sound absorption performance. Creating cavum behind the composite or density gradient distribution will cause the first resonance frequency transfer towards lower frequency.
     The cement-based wood fiber sound absorption material has poor stability in dimension because wood fiber has larger distortion after several drying and wetting cycles. The result of experiment showed that, there was a groove at the interface of wood fiber and cement paste after several drying and wetting cycles. This leads to the bond reduction between wood fiber and cement paste, which results in the decrease in flexural strength and toughness. Increasing drying and wetting cycles, has the same effect with large decrease rate. Pre-treating wood fiber in 10% acrylic emulsion (by volume), or soaking in organic silicon repellent agent, the dimensional stability of composite will improve greatly. But its stability still gets worse and worse with drying and wetting cycles. Because of the rather high alkalinity of cement paste, the brown and white rot fungi cannot survive. As a result, the composite has an excellent fungi resistance. A model of micro-structure and anti cycle destruction is established through the study on destruction of cement-based wood fiber composite undergoing drying and wetting cycles. It shows that there are two interfaces in the composite, one is between cement paste and wood fiber, the other is between cellulose fiber and hemicellulose as well as lignose. The first bond is molecule force, and the second one is chemical force. Without undergoing drying and wetting cycles, the destruction occurs at the interface between cement paste and wood fiber; while after several cycles, hemicellulose and lignose will decompose under alkali environment, the bond between cellulose fiber and hemicellulose, lignose becomes very weak, therefore this interface is the weakest part in the composite.
     Through the study on the sound absorption property of ideal porous material, it can be concluded that pore structure is the main factor affecting sound absorption property of a composite. At the same porosity, absorption performance can be improved by reducing aperture. On the other hand, the absorbing performance can be improved with the porosity increasing at the same aperture. With the increase of pore length, the first resonance frequency transfers towards lower frequency. In addition, the distribution of higher porosity with much bigger pores at the surface and lower porosity with smaller pore inside the materials is the best pore structure for sound absorption. At the same time, a model is established to show the diffusion and absorption of sound wave. Sound absorption of material is determined by its porous structure. The higher the porosity and the bigger the aperture is, the better sound diffusion will be. On the other hand, inner porous structure of the composite is the main factor for sound absorption, the higher the porosity and the smaller the aperture is, the better sound absorption will be.
引文
[1-1] 姚成 我国公路交通环境降噪方法的理论和应用 环境工程[J] 1999.6
    [1-2] 赵仁兴 环境噪声对居民的影响 噪声与振动控制[J] 1994年10月第5期
    [1-3] 周新祥 噪声控制与应用实例[M] 海洋出版社
    [1-4] 李耀中 噪声控制技术 化学工业出版社 2001.5
    [1-5] 孙广荣 从建筑声学到环境声学 应用声学[J] 第21卷1期(2002)
    [1-6] GB3096—93:城市区域环境噪声标准
    [1-7] 谢浩 设置高架路声屏障降低城区噪声[J] 噪声与振动控制 2006.4
    [1-8] 任文堂等[M] 交通噪声控制 人民交通出版社 1984.9
    [1-9] 张鹏飞 姚成 高速公路与城市道路沿线交通噪声对环境的污染分析[J] 城市环境与城市生态 Vol.12.No.3(1999)
    [1-10] 杨满宏 公路交通噪声的污染控制,环境工程,1997.5
    [1-11] 张海明 影响交通嗓声的因素及控制对策,噪声与振动控制,2000(3).42
    [1-12] M. Furstoss, D. Thenall Surface impedance control for sound absorption: direct and hybid passive/active strategies Journal of Sound Vibration(1997) 203 (2, 219~236)
    [1-13] 马大猷 现代声学理论基础[M] 科学出版社
    [1-14] Eyring C. Reverberation time in 'dead' rooms. Journal of the Acoustical Society of America 1930; 1: 217-26
    [1-15] 吕如榆 近代声学概况 物理 第7卷第2期
    [1-16] 文庆珍 姚树人等 新型高分子材料在舰船中的应用和发展 兵器材料科学与工程 第24卷第6期11/2001。
    [1-17] 曹伟 《城市道路声屏障发展述评》郑州大学学报 Vol.30 No.3(1998)
    [1-18] 同以烙 建筑材料[M] 第1版 中国铁道出版社,1991
    [1-19] 马大猷主编 噪声与振动控制工程手册[M] 机械工业出版社 2002.9
    [1-20] 张守梅 曾令可 张明 黄浪欢 王慧 程小苏 地铁多孔吸音材料的研制[J]佛山陶瓷 2002年第12期:6~7.
    [1-21] 马保国 朱洪波 董荣珍 梁志坚 高效吸声材料的研制[J] 新型建筑材料5/2002
    [1-22] 黄学辉等 公路隧道降噪用吸声材料的研制[J] 武汉理工大学学报 第25卷 第4期2003年4月
    [1-23] 张守梅 曾令可等 环保吸声材料的发展动态及展望;[J]陶瓷学报 Vol.23,No.1 Mar.2002:
    [1-24] 钟祥璋 刘明明 吸声泡沫玻璃的吸声特性[J] 保温材料与建筑节能1998(3):27
    [1-25] Semiha Yilmazer, Mesut B. Ozdeniz The effect of moisture content on sound absorption of expand perlite plate Building And Environment 40(2005) 307~316;
    [1-26] 余海燕 王武祥 姚燕 水泥膨胀珍珠岩复合吸声材料的研究[J] 混凝土与水泥制品 2006.1
    [1-27] M. J. Swift P. BrS K. N. Horoshenkov Acoustic absorption in re-cycled rubber granulate Applied Acoustics 57(1999) 203~212
    [1-28] Vikrant Tiwari, Arun Shukla Acoustic properties of cenosphere reinforced cement and asphalt concrete Applied Acoustics 65(2004)263~275
    [1-29] Falke P, Rotermund I, Schmutzer K, etal. U. S 6 316 514
    [1-30] Mendelsolhn MA, Bolton R, Nvaish J, etal, U. S 5 422 380
    [1-31] 毛东兴 洪宗辉[J] 噪声与振动控制,1999,(2):27—30
    [1-32] 李旭祥 钱军民等[J] 噪声与振动控制,2000,(2):42~43
    [1-33] 钱军民 李旭祥[J] 功能高分子报,2000,13(3):309~311
    [1-34] 席莺 李旭祥 方志刚等[J] 高分子材料科学与工程,2001,17(7):129~133
    [1-35] 刘吉轩 陈天宁 张升阶等[J] 应用声学(Applied Acoustics),1996,15(4): 38—42
    [1-36] Cushman W B. U. S. 5 745 434
    [1-37] Liu Z Y, Zhang XX, Mao Y W, etal. Science, 2002, 289(8): 1734-1736
    [1-38] 王滨生 泡沫金属吸声材料制备及吸声性能的研究[J] 化学工程师8/2003
    [1-39] 程桂萍 陈宏灯 何德坪等 多孔铝的声学性能[J] 东南大学学报,1998,28(6):169
    [1-40] 程桂萍 陈宏灯 何德坪等 多孔铝在不同介质中的吸声性能[J] 噪声与振动控制,1998(5):29
    [1-41] 方正春 马章林 泡沫铝在噪声控制中的应用[J] 材料开发与应用1999,14(4):42
    [1-42] 王月 泡沫铝的吸声特性及影响因素[J] 材料开发与用,1999,14(4):15
    [1-43] 赵增典,张勇,苗汇静,等.[J]泡沫铝的吸声性能初探.兵器材料科学与工程,1998,21(1):48
    [1-44] MATERIALS SCIENCE&ENGINEERINGA 386(2004)390-395 Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification Zhenkai Xie 等
    [1-45] 李明俊等 不锈钢纤维棉、毡吸声性能探讨[J] 南昌航空工业学院学报.1997(1):76—80
    [1-46] 张燕等 金属纤维材料的吸声特性及应用性能研究[J] 噪声与振动控制.1999(5):32—36
    [1-47] 钟祥璋 铝纤维吸声板的材料特性及应用[J] 装饰装修材料.2000(11):19~22
    [1-48] 赵立 影响人造板吸声效率因素的研究[J] 北京林学院学报 1982年第3期
    [1-49] Narayanan Neithalath, Jason Weiss, Jan Olek Acoustic performance and damping behavior of cellulose-cement composites Cement & Concrete Composite 26(2004) 359~370
    [1-50] 马大猷 微穿孔板吸声结构的理论和设计[J] 中国科学.1975,18(3):38~50
    [1-51] 刘克 无纤维材料研究进展[J] 物理.1998,27(9):537-540
    [1-52] Mwamilla B L M. Characteristics of Natural Fibrous Reinforcement in Cement-Based Materials. In: Proceedings of Symposium on Building Materials for Low-Income Housing. Asian & Pacific Region. London: E &FN Spon, 1987. 87~93
    [1-53] Aggarwal L K. Durability Studies on Coir Fibre Reinforced Cement Boards. In: Swamy R Ned. Proceedings of the Fourth International Symposium on fibre Reinforced Cement and Concrete. London: E &FN Spon, 1992. 1120~1127
    [1-54] Saxena M, Morchhale R K et al. Development of sisal Cement Composites as Substitute for Asbestos Cement Composite for Roofing. In Swamy R N ed. Proceedings of the Fourth International Symposium on fibre Reinforced Cement and Concrete. London: E &FN Spon, 1992. 1140~1151
    [1-55] Sande O, Dutt O, Lei W et al. Performance Properties of Sisal Fiber Reinforced Roofing Tiles in the Ivory Coat. In: Swamy R Ned. Proceedings of the Fourth International Symposium on fibre Reinforced Cement and Concrete. London: E &FN Spon, 1992. 1185~1192
    [1-56]Pires Sobrinho de CW . A. Coconut and Sisal Fibre Reinforced Cement and Gypsum matrices . In : Swamy R N ed .Proceedings of the Fourth International Symposium on fibre Reinforced Cement and Concrete .London : E &FN Spon ,1992.1193-1202
    [1-57]Mai, Y .W . & Hakeem , M .I., Slow crack growth in cellulose fibre cements. J.Mat. Sci. ,19(1984)501-8
    [1-58]Das Gupta , N . C . ,Paramasivam , P .&Lee ,S . L . , Mechanical properties of coir reinforced cement paste composites . Int . J . Housing Science and its Applications, 2(1978) 391-406
    [1-59]Coutts R.S.P. & Jensen, H.W. Air cured wood pulp , fibre cement composites J. Mat. Sci. (1985) 117-19
    [1-60]Coutts R.S.P. Autoclaved beaten wooden fibre-reinforced cement composites , Composites ,15(1984), 139-43
    [1-61]Akers , S . A . S . & Studinka , J .B ., Ageing behaviour of cellulose fibre cement composites in natural weathering and accelerated tests . Int J . Cem . Comp . & Ltwt. Concr ., 11(1989) 93-7
    [1-62]Bentur, A.& Akers, S.A.S. , The microstructure and ageing of cellulose fibre reinforced autoclaved cement composites . Int J . Cem . Comp . & Ltwt . Concr., 11(1989)111-15
    [1-63]Coutts R.S.P. Air cured wood pulp ,fibre/cement mortars. Composites 18(1987)325-8.
    [1-64]Coutts R.S.P. Wood Fibre Reinforced Cement Composites. In Swamy R N ed .Natural Fibre Reinforced Cement and Concrete. London: Blackie, 1998.
    [1-65]Mai Y M, Hakeem M I, Cotterell B. Effects of Water and Bleaching on the Mechanical Properties of Cellulose Fibre Cements. Joural of Material Science. 1983,18
    [1-66] Bentur , A. & Akers, S.A .S. , The Microstructure and Ageing of Cellulose Fibre Reinforced Cement Composites Cured in Normal Environment. Int J . Cem . Comp . & Ltwt. Concr ., 11(1989)99-109
    
    [1-67]Cooke A M. Durability of Autoclaved Cellulose Fiber Cement Composites. In:Moslemi A A ed. Proceedings of Inorganic-bonded Wood and Fiber Composite Materials. Vol.7. Forest Products Society. Idaho USA. 2000. 184-219
    [1-68] Gram ,H . -E., Durability of natural fibres in concrete . Research report, Swedish Cement and Concrete Research Institute ,Swiden ,1983
    [1-69] Gram ,H . -E., Durability studies of natural organic fibres in concrete , mortar or cement. In Developments in Fibre Reinforced Cement and Concrete , ed .R . N . Swamy, R . L. Wagstaffe & D . R . Oakley . Proc . RILEM Symp ., Sheffield, 1986 ,Paper 7.1
    [1-70]Gram ,H . -E.,Methods for reducing the tendency towards embrittlement in sisal fibre concrete . Nordic Concrete Research , Publ. No. 5,Oslo ,1983 pp.62~71
    [1-71]Singh S M. Alikali Resistance of some Vegetables Fibres and Their Adhesion with Portland Cement. Research and industry. 1985,15:121-126.
    [1-72]Bergstrom , S. G. & Gram ,H . -E. ,Durability and alkali-sensitive fibres in concrete . Int. J . Cem. Comp. & Ltwt. Concr. ,6(1984) 75-80
    [2-1] Coutts RSP. From forest to factory to fabrication. In: Swamy RN, editor. Proceedings 4th International Symposium Fibre Reinforced Cement and Concrete London: E&FN Spon; 1992. p. 31~47(RILEM Proceedings, 17)
    [2-2] Gram HE. Durability of natural fibres in concrete Stockholm: Swedish Cement and Concrete Research Institute; 1983
    [2-3] Persson K. Micro mechanical modelling of wood and fibre properties. Doctoral Thesis. Lund: University of Lund; 2000.
    [2-4] 水泥的结构和性能[M] P.Barnes et al 著,吴兆琦 汪瑞芬等译 中国建筑工业出版社 1991
    [2-5] 胶凝材料学[M] 中国建筑工业出版社 1985
    [2-6] Kondo, R. and Ueda, S. Proc. 5th Int. Symp. Chem. Cement, Tokyo, 1968, Ⅱ, 203(1969)
    [2-7] Kondo, R. and Daimon, M. J. Am. Ceram. Soc., 52, 503(1969)
    [2-8] N. B. Milestone The effect of Lignosulphonate Fraction on the Hydration of Tricalcium Aluminate Cem. Concr. Res. 6(1) 89~102(1976
    [2-9] Schubert and A. lindenbaum, Stability of Alkaline Earth-Organic Acid Complexes Measured by Ion Exchange J. Am. Chem. Soc. 74(14) 3529~32
    [2-10] M. E. Tadros, J. Skalny, and R. S. Kalyoncu, Early Hydration of Tricalcium Silicate J. Am. Ceram. Soc., 59(7~8) 344-47(1976)
    [2-11] Hydration of Tricalcium Silicate in the presence of lignosulfonates, glucose, and sodium gluconate N. B. Milestone J. Am. Ceraln. Soc. 62(7-8) 1979
    [2-12] The retarding action of sugar on cement hydration N. L. Thomas J. D. Birchall Cement and concreye Research 1983 830~842.
    [2-13] Sugar cane bagasse fibre reinforced cement composites. Part Ⅰ. Influence of the botanical components of bagasse on the setting of bagasse/cement composite K. Bilba, M-A. Arsene, A. Ouensanga Cement & Concrete Composites 25(2003)91~96
    [2-14] R. C. Weatherwax, H. Tarkow, Effect of wood on the setting of Portland cement: decayed wood as an inhibitor, For. Prod. J. 17(7) (1967) 30-32.
    [2-15] W. Sandermann, H. T. Preusser, W. Schweers, Einfiuss chemischer faktoren auf die Festigkeiseigenschaften zementgebundener Holzwolleplatten, Holzals Roh-und werkstoff 14(1960) 307-311.
    [2-16] M. H. Hachmi, A. G. Campbell, Wood-cement chemical relationships, Fiber and Particleboards Bonded with Inorganic Binders, Forest Products Research Society, Madison, WI, 1989, pp. 43-47.
    [2-17] Cenment-bonded wood particleboard with a mixture of eucalypt and rubberwood Esmeralda Y. A. Okino, Mario R. de Souza et a| Cement & Concrete Composites26(2004) 729~734
    [2-18] M. Hachmi et al. Anew technique to classify the compotibility of wood with cement. Wood Science and Technology. 1990. 24
    [2-19] 不同品种纤维素醚在水泥基干拌砂浆产品中的应用,L.Schmitz,C-J.Hacker2006 第二届中国国际干混砂浆生产应用技术研讨会论文集,北京
    [2-20] Young JF. The influence of sugar on the hydration of tricalcium aluminate. Proceedings of the fifth international symposium on chemistry of cement, Vol. Ⅱ-26. Tokyo: Cement Association of Japan; 1968. 256~267
    [2-21] Collepardi M, Monosi S, Moriconi G, Pauri M. Influnce of gluconate, Lignosulfate or glucose on the C3Ahydration in the present of gypsum with or without lime. Cem Concr Res 1984; 14: 105~112
    [2-22] 《木梗纤维化学》 中野三等著 鲍禾等译 1989年2月
    [2-23] 吴中伟,廉慧珍 高性能混凝土[M] 中国铁道出版社.北京 1999.7
    [3-1] 材料科学导论 冯端 师昌绪 刘治国 化学工业出版社
    [3-2] 噪声与振动控制工程手册 马大猷 机械工业出版社
    [3-3] 木梗纤维及其制品法向吸声系数的试验研究 王毓琦 吴又可 叶克圣 南京林业大学学报 1987第2期
    [3-4] 声学基础[M] 杜功焕
    [3-5] 吸声材料[M] C.席根 C.W.柯斯汀 著 吕如榆等译 1960年
    [3-6] 水泥基吸声材料的研究[J] 混凝土与水泥制品 2006.1 余海燕 王武祥 姚燕
    [3-7] 新野正之,平井敏雄,渡边龙三.颜料机能材料.日本复合材料学会志,1987,13(6):257
    [3-8] F Nogata. Proc. Conf. Functionally Graded Materials 1996. Tsukuba, Japan, 1996, I Shiota and Y Miyamoto, eds. Elsevier. Amsterdam: 737~742
    [3-9] S Amada and N Shimizu. Proc. Conf. Functionally Graded Materials 1996. Tsukuba, Japan, 1996, I Shiota and Y Miyamoto, eds. Elsevier. Amsterdam: 731~736
    [3-10] Romualdi J P, Mandel J A. Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Lengths of Wire Reiforcement. ACI Journal, Proceedings, 1964, (6): 657-670
    [3-11] Gibson RF. Principles of composite material mechanics. New York: McGraw-Hill; 1994
    [3-12] Herakovich CT. Mechanics of fibrous composites. New York: John Wiley & Sons; 1998
    [3-13] 马一平 碳纤维增强水泥基复合材料的研究 上海建材学院学报1994,7(4):393~397
    [3-14] Houssam A, Tahar El-korchi Toutanji, Nathan Katz R. Strength and Reliability of Carbon-Fiber-Reinforced Cement Composites. Cement and Concrete Composites, 1994, 16 (1): 15~21
    [3-15] Sun W, Yah Y. Study of the Fatigue Performance and Damage Mechanism of Steel Fiber Reinforced Concrete, ACI Materials Journal. 1996, 93(3): 206~211
    [3-16] 谷章昭 倪梦象 梦钩 合成纤维混凝土的性能及其工程应用 建筑材料学报 1999,2(2) 159~162
    [3-17] F M Lea(ed).The Chemistry of Cement and Concrete.唐明述等译.《水泥和混凝土化学》第三版.北京:中国建筑出版社,1980:31
    [4-1] 《木梗纤维化学》 中野三等著 鲍禾等译 1989年2月
    [4-2] F. F. Morehead.. Textile ResearchJ. 22, 535
    [4-3] 李坚 木质人造板的尺寸稳定化.中国木梗纤维,1992,(4):14~17
    [4-4] 李坚编译 蒸汽预处理改善木质基复合板体积稳定性.北京木梗纤维工业,1989(4):23~26,29
    [4-5] Dimensional instability of cement-bonded Particleboard Mechanisms of deformation of CBPB M. Z. Fan P. W. Bonfield Cement and Concrete Research 29(1999) 923~932
    [4-6] Dimensional change and water sorption studies of cement paste, H. RoperHighw Res Bd Spec Rept 90(1965)9974
    [4-7] Statistical evaluation of long-term durability characteristics of cellulose fiber reinforced cement composites, S. Marikunte, P. Soroushian ACI Mater. J. 91 (6)(1994) 607-615.
    [4-8] V S Porameswaran, Toughness of slurry infiltrated fibrous concrete. Am. Concr, Inst. 1994, SP142: 17-25
    [4-9] 木梗纤维学 北京林学院主编 中国林业出版社 1983
    [4-10] 苎麻落麻纤维 MMA 接枝共聚的研究 张一甫等 材料科学与工程 2002(4):527~529.
    [4-11] 苎麻落麻纤维丙烯腈接枝共聚的研究 张一甫等 岳阳师范学院学报2001-14-(4):54~56
    [4-12] Dimension stabilized, very low density fiberboard Roger M. Rowell, Shuichi Kawai, Masafumi Inoue Wood and fiber Science, 27(4). 1995, 428~436.
    [4-13] 木梗纤维表面非极性化原理的研究Ⅲ、各化学组分在乙酰化过程中酯化能力的差异 秦特夫 阎吴鹏 中国木梗纤维工业 2000年7月
    [4-14] Zollo R F. Fiber-reinforced Concrete: An Overview after 30 Years of Development. Cement and Concrete Composites. 1997, 19: 107~122
    [4-15] R. S. P. Coutts, Natural fiber cements—low or high technology? Search 19(4) (1988)195-198.
    [4-16] R. S. P. Courts, Wood fibers in inorganic matrices, Chem. Aust. 50(5)(1983) 143-148.
    [4-17] R. S. P. Coutts, P. Kightly, Bonding in wood fiber-cement composites, J. Mater. Sci. 19(1984) 3355-3359.
    [4-18] M. H. Hachmi, A. G. Campbell, Wood-cement chemical relationships, Fiber and Particleboards Bonded with Inorganic Binders, Forest Products Research Society, Madison, WI, 1989, pp. 43-47.
    [4-19] W. Y. Ahn, A. A. Moslemi, SEM examination of wood-portland cement bonds, Wood Sci. 13(2)(1980) 77-82.
    [4-20] R. S. P. Coutts; P. Kightly JOURNAL of MATERIAL SCIENCE VOL. 19. NO. 10 1984, PP3755~3759
    [4-21] 金重为 尤纪雪 何文龙 李永敬 南京林业大学学报 1988年第4期
    [4-22] 天然耐腐材有效抗菌成分的研究 Ⅱ、天然耐腐材在腐朽过程中超微结构的变化 金重为 尤纪雪 何文龙 张厚文 南京林业大学学报 1990年6月 第14卷 第2期
    [4-23] Highley T. L. Biochemical Aspects of White-rot and Brown-rot Decay, The Inter. Res. Group on Wood Preserv. 1987, Document No. IRG/WP/1319
    [4-24] 陈敏忠 王传槐等 白腐菌云芝腐朽杨木的超微结构研究 南京林业大学学报 1996(1):48~52
    [4-25] Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood S. Nami Kartal, Carol A. Clausen International Bioremediatation& Bioremediatation47(2001) 183~191
    [4-26] Physico-mechanical properties and decay resistance of Cupressus spp. cement-bonded particleboards Esmeralda Y. A. Okino et al, Cement and Concrete & Composites 27(2005) 333~338
    [2-27] B. J. Mohr H. Nanko K. E. Kurtis Durability of Kraft Pulp Fiber-cement Composites to Wet/dry Cycling Cement & Concrete Composites 27(2005) 435~448
    [5-1] C. ZWIKKER, C. W. KOSTEN, Sound Absorbing Materials 1949
    [5-2] 子安胜著,高履泰译 建筑吸声材料 中国建筑工业出版社 1975
    [5-3] D. F. Ross A Finite Element Analysis of Perforated Component Acoustic Systems Journal of Sound and Vibration(1981) 79(1) 133~143
    [5-4] A. Carggs A Finite Element Model for Rigid Porous Absorbing Materials Journal of Sound and Vibration(1978) 61(1) 101~111
    [5-5] Attenborough K Acta Acoustic, 1993(1): 213
    [5-6] Johnson D. L, et al Journal of Fluid Mechanics, 1987(176): 379
    [5-7] Jean-F Allard New expirical equations for sound propagation in rigid frame fibrous materials J. Acoust. Soc. Am. 91(6) 3346-3353
    [5-8] HoroshenkOV KV, Attenborough KJ Acoustic soc Am 1998: 104(3), 1198
    [5-9] Delany M. E, Bazley E. N Technical report, 1969
    [5-10] N. Volonina An empirical model for rigid frame porous materials with high porosity. Appl. Acoust. 1997; 51(2): 181~198)
    [5-11] N. Volonina An empirical model for rigid frame porous materials with low porosity. Appl. Acoust. 58(1999): 295~304)
    [5-12] Glenn C, Gardner, Meghan E Apllied Acoustic 2003(64): 229
    [5-13] 水中和等 吸声材料构造形式对吸声效果的影响 武汉理工大学学报2/2003
    [5-14] Michael R. Stinson Yvan Champoux Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries J. Acoust. Soc. Am. 91(2), 1992
    [5-15] 黄其柏 工业噪声控制学 P23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700