非线性自适应迭代学习控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十多年来,非线性系统控制理论是自动化控制领域研究的热点问题之一。基于Backstepping技术的自适应控制作为非线性控制理论的一种研究方法,可以使不满足匹配条件的时不变参数不确定性非线性系统,实现跟踪误差渐近收敛于零,但无法处理含有时变参数不确定性的情形。当系统中控制方向未知和含有混合参数(时变参数和时不变参数)不确定性以及目标轨线发生变化时,单一的自适应控制算法远不能解决这些问题。而Nussbaum增益技术是处理控制方向未知问题的一种有效方法;传统迭代学习控制是处理重复性跟踪问题的一种有效控制方法,经过若干次迭代能以较高的精度在给定有限时间区间内实现给定目标轨迹的完全跟踪,但现有的这种方法还存在很大的缺陷,如要满足全局Lipchitz连续,跟踪目标轨迹一致(与迭代次数无关)等。因此,如何将基于Backstepping技术的自适应控制、Nussbaum增益技术、迭代学习控制相结合,来解决控制方向未知问题和非一致目标轨迹跟踪问题是值得研究的课题。
     由以上研究思想,本文工作主要包括以下几个方面:
     第一,针对一类具有参数不确定性和多个控制方向未知的非线性时滞系统,提出了一种基于观测器的输出反馈稳定化设计方案。利用Nussbaum增益技术处理未知控制系数,利用Backstepping技术设计自适应控制器。通过构造一个Lyapunov-Krasovskii泛函,证明了闭环系统的稳定性,实现了系统状态渐近收敛于零,且保证了所有信号有界;第二,针对一类控制方向未知的一阶混合参数化非线性时滞系统,提出一种自适应迭代学习控制方案。利用Nussbaum增益技术处理未知控制系数;设计微分-差分型参数自适应律以及迭代学习控制律,解决非一致目标跟踪问题。通过构造一个Lyapunov-Krasovskii泛函,证明了跟踪误差的平方在一个有限时间区间上的积分收敛于零,同时保证所有信号均在有限时间区间内有界;第三,针对一类控制增益未知的在有限时间区间上可重复运行的高阶混合参数化非线性系统,利用改进Backstepping技术,将参数重组技巧和分段积分机制相结合,提出一种由参数微分-差分型自适应律和学习控制律组成的混合自适应迭代学习控制算法,处理非一致目标轨迹跟踪问题。通过构造一个Lyapunov-like泛函使得跟踪误差的平方在一个有限时间区间上的积分收敛于零,同时保证所有信号均在有限时间区间内有界;第四,对文中所提的算法都做了计算机仿真研究,进一步验证了算法的可行性和有效性。
In last two decades, the control theory of nonlinear systems becomes one of hot topics in the fields of automatic control. The adaptive control based on Backstepping technique as a method of nonlinear control theory ensures the stability and asymptotic tracking convergence of unmatched nonlinear systems with time-invariant uncertainties, instead of time-varying parametric uncertainties. However, when the control direction is unknown, the plant has of mixed parametric uncertainties and non-uniform trajectories, the above mentioned adaptive algorithm can not deal with these problems. Now, Nussbaum gain technique is an effective method to solve the problem of unknown control directions; iterative learning control is a kind of control methodology effectively dealing with repeated control problems, after some iterations, perfect tracking can be achieved over a finite time interval, but the present method has some defects, such as global Lipchitz continuity of nonlinear functions, uniform trajectory (independent of iteration) etc. Thus, how to incorporate Backstepping technique, Nussbaum gain technique and iterative learning control into solve problems of unknown control direction and non-uniform tracking trajectory is a subject worthwhile to research.
     Motivated by the above discussion, the main results of this paper are summarized as follows:
     Firstly, an output feedback stabilized control algorithm is proposed for a class of nonlinear time-delay systems with parametric uncertainties and multiple unknown control directions. Nussbaum function is used to deal with unknown control coefficients and Backstepping technique is used to design an adaptive control law. By constructing a Lyapunov-Krasvoskii functional, it is proved that the system is stable and its states are asymptotically convergent to zero, guaranteeing all signals bounded. Secondly, a hybrid adaptive iterative learning control method is proposed for a class of hybrid parametric nonlinear time-delay systems with unknown control direction.
     Nussbaum function is used to deal with unknown control; the approach consisted of a differential-deference type updating law can deal with non-uniform trajectory tracking problem. By constructing a Lyapunov-Krasvoskii functional, it is proved that the system is stable and its states are asymptotically convergent to zero, guaranteeing all signals bounded over a finite interval. Thirdly, an adaptive iterative learning control algorithm is proposed for a class of high-order hybrid parametric nonlinear systems with unknown control gain, which are repeatable on a finite time interval. By using modified Backstepping technique, parameters reconstructed technique and piecewise integration mechanism. The algorithm is consisted of a differential-deference type updating law and a learning control law, which can deal with the tracking problem with iterative changing desired trajectory. By constructing a Lyapunov-like functional, one can guarantee the tracking error converging to zero in terms of mean-square on the finite interval and guarantee all signals bounded in a finite time interval. Lastly, the simulation researches are done to every method, which illustrate the effectiveness and feasibility of the proposed algorithms.
引文
[1] Kanellakopoulos I., Kokotovic P.V. and Morse A.S. Systematic design of adaptive controllers for feedback linearizable systems [J].IEEE Transaction on Automatic Control, 1991, 36, (11):1241-1253.
    [2] Krstic M., Kanellkopoulos I.and Kokotovic P.V. Adaptive nonlinear control without over-parameterization [J].System and Control Letters, 1992, 19(3): 177-185.
    [3] Kanellakopoulos I., Kokotovic P.V. and Middleton R.H. Observer-based adaptive output-feedback control of nonlinear systems under matching condition [C].American Control Conference, Proceeding, 1990, 36(3):549-555.
    [4] Kanellakopoulos I., Kokotovic P.V. and Middleton R.H. Indirect adaptive output-feedback control of a class of nonlinear systems [A].Proceeding of 29th Conference on Decision and Control[C], 1990:2714-2719.
    [5] Kanellakopoulos I., Kokotovic P.V. and Morse A.S. Adaptive output-feedback control of systems with output nonlinearities [J].IEEE Transaction on Automatic Control, 1992, 37(11):1666-1682.
    [6] Marrino R. and Tomei P. Global adaptive output-feedback control of nonlinear systems, part I: linear parameterization [J].IEEE Transaction on Automatic Control, 1993, 38(1):17-32.
    [7] Marrino R.and Tomei P. Global adaptive output-feedback control of nonlinear systems, part II: linear parameterization [J]. IEEE Transaction on Automatic Control, 1993, 38(1):33-48.
    [8]陈卫田,施颂椒,张钟俊.不确定非线性系统的鲁棒自适应控制[J].上海交通大学学报,1998,32(6):88-93.
    [9]黄长水,阮荣耀.一类不确定性非线性系统的鲁棒自适应控制[J].自动化学报,2001,27(1):82-88.
    [10] Ge S. S, Hang C. C and Zhang T. Adaptive network control of nonlinear systems by state and output feedback [J]. IEEE Transaction on Systems, Man and Cybernetics–Part B: Cybernetics, 1999, 29(6):818-827.
    [11] Yang B. and Lin W. Homogeneous observers, iterative design and global stabilization of high-order nonlinear systems by smooth output feedback [J]. IEEE Transaction on Automatic Control, 2004, 49(7):1069-1080.
    [12] Yang B. and Lin W. Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization [J]. IEEE Transaction on Automatic Control, 2005, 50(5):619-630.
    [13] Boskovic J. D. Adaptive control of a class of nonlinear parameterized plant [J].IEEE Transactions on Automatic Control, 1998, 43(7):930-934.
    [14] Ye X D. Global adaptive control of nonlinear parameterized systems [J].IEEE Transactions on Automatic Control, 2003, 48(1):169-173.
    [15] Qu Z. H., Hull R. A. and Wang J. Global stabilizing adaptive control design for nonlinearly parameterized systems [J].IEEE Transactions on Automatic Control, 2006, 51(6):1073-1079.
    [16] Nussbaum. R. D. Some remarks on a conjecture in parameter adaptive control [J]. Systems and Control Letters, 1983, 3(5):243-246.
    [17] Kaloust J, Qu Z. Continuous robust control design for nonlinear uncertain systems without a priori knowledge of control direction [J]. IEEE Transactions on Automatic Control, 1995, 40 (2): 276-282.
    [18] Ding Z. Adaptive control of non-linear systems with unknown virtual control coefficients [J].International Journal of Adaptive Control and Signal Processing, 2000, 14: 505-517.
    [19] Ye X, Jiang J. Adaptive nonlinear design without a priori knowledge of control directions [J].IEEE Transactions on Automatic Control,1998,43(11): 1617-1621.
    [20] Ye X. Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions [J]. Automatica, 1999, 35(5): 929-935.
    [21] Zhang Y, Wen C, Soh Y C. Adaptive Backstepping control design for systems with unknown high-frequency gain [J]. IEEE Transactions on Automatic Control, 2000, 45 (12): 2350-2354.
    [22] Ye X. Adaptive nonlinear output-feedback control with unknown high-frequency gain sign [J]. IEEE Transactions on Automatic Control, 2001, 46(1): 112-115.
    [23] Zheng Y, Yang Y. Adaptive output feedback control for a class of nonlinear systems with unknown virtual control coefficients signs [J].International Journal of Adaptive Control and Signal Processing, 2007, 21: 77-89.
    [24] Liu L, Huang J. Global robust output regulation of output feedback systems with unknown high-frequency gain sign [J]. IEEE Transactions on Automatic Control, 2006, 51 (4): 625-631.
    [25] Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2004, 34(1): 499-516.
    [26] Liu Y. G.. Output-feedback adaptive control for a class of nonlinear systems with unknown control directions [J].Acta Automatica Sinica, 2007, 33(12):1306-1312.
    [27] Ge S. S., Yang C.G., Lee T. H. Adaptive robust control of a class of nonlinear strict-feedback discrete-time systems with unknown control directions [J]. Systems & Control Letters, 2008, 57(11):888–895.
    [28] Yang C.G., Ge S. S, Lee T. H. Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions [J].Automatica, 2009, 45(1):270-276.
    [29]伏玉笋,田作华,施颂椒.非线性时滞系统输出反馈镇定[J].自动化学报,2002,28(5):802-805.
    [30]伏玉笋,田作华,施颂椒.非线性随机时滞系统输出反馈镇定(英文)[J].控制理论与应用,2003,20(5):749-752.
    [31] Ge S.S., Hong F., Lee T.H. Adaptive neural network control of nonlinear systems with unknown time delays [J].IEEE Transaction on Automatic Control, 2003,48(11):2004-2010.
    [32] Ge S.S., Hong F., Lee T .H. Robust adaptive control of nonlinear systems with unknown time delays [J].Automatica, 2005, 41(7):1181-1190.
    [33]陆东先,魏振国,高庆争,解学军.一类具有未知控制方向非线性时滞系统的输出反馈镇定[J].曲阜师范大学学报,2008,34(3):19-24.
    [34] Uchiyama M. Formulation of high speed motion pattern of a mechanical arm by trial [J].Transactions of Society of Instrumentation and Control Engineers, 1978, 14:706-712.
    [35] Arimoto S., Kawamura S. and Miyazaki F. Better operation of robots by learning [J].Journal of Robotic Systems, 1984, 1(2):123-140.
    [36]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社,1999.
    [37]谢胜利,田森平,谢振东.迭代学习控制的理论与应用[M].北京:科学出版社,2005.
    [38] Taybei A, Zarmba M B. Exponential convergence of an iterative learning control for time-varying nonlinear systems[A].Proceedings of the 38th IEEE Conference Decision and Control[C], Phoneix, AZ, USA, 1999,2:1593-1598.
    [39]皮道映,孙优贤.一类离散非线性系统开闭环P型迭代学习控制收敛的充要条件[J].浙江大学学报(自然科学版),1999,32(2):152-156.
    [40]皮道映,孙优贤.非线性系统开闭环IP型迭代学习控制律及其收敛性[J].控制理论与应用,1998,15(3):400-403.
    [41]魏燕定.提高迭代学习控制算法收敛速度初探[J].控制理论与应用,2001, 18(2):314-316.
    [42] Xu J.X., Tan Y. On the convergence speed of a class of higher order ILC schemes[C].Proceedings of the 40th IEEE Conference on Decision and Control Orlando, Florida, USA, 2001:4932-4937.
    [43] Heinzinger G, Frenwick D, Paden B, etc. Robust learning control[A].Proceedings of the 28th IEEE Conference on Decision and Control[C], Tampa, Florida, 1989: 436-440.
    [44] Saab S, Voglt G, Mickle M H. Learning control algorithms for tracking“slowly”varying trajectories [J]. IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics, 1997, 27(4):657-659.
    [45]刘山,吴铁军.基于小波逼近的非线性系统鲁棒迭代学习控制[J].自动化  学报,2004,30(2):270-276.
    [46] Tayebi A., Abdul S., Zaremba M.B. Robust iterative learning control design via u-synthesis[C].Proceedings of the 2005 IEEE Conference on Control Applications, Toronto, Canada, 2005:416-421.
    [47]任雪梅,高为炳,任意初始状态下的学习控制[J].自动化学报,1994,20(1):74-79.
    [48]杨晓峰,樊晓平,杨胜跃.迭代学习初态问题研究及其在机器人中的应用[J].计算技术与自动化,2001,20(4):15-18.
    [49] Xu J.X, Yan R. On initial conditions in iterative learning control [J].IEEE Transactions on Automatic Control, 2005, 50(9):1349-1354.
    [50] Cheah C C,Wang D.A model reference learning control scheme for a class of nonlinear system [J] . International Journal of Control, 1997, 66(2):271-287.
    [51] Xu Jian-Xin and Xu Jing .On iterative learning from different tracking tasks in the presence of time-varying uncertainties [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2004, 34(1):589-597.
    [52]张冬梅,孙明轩,俞立.基于观测器非一致跟踪轨迹的迭代学习控制器设[J].控制理论与应用,2006,23(5):795-799.
    [53]李俊民,孙云平,刘赟.非一致目标跟踪的混合自适应迭代学习控制[J].控制理论与应用,2008,25(1):100-104.
    [54]孙云平,李俊民,王元亮.二阶系统非一致目标跟踪混合自适应迭代学习控制[J].工程数学学报,2008,25(1):10-16.
    [55] Chien Chiang Ju. A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks [J].IEEE Transaction on Fuzzy Systems, 2008, 16(1):40-51.
    [56] Li J.M., Li X.M., Xing K.Y. Hybrid adaptive iterative learning control of non-uniform trajectory tracking for nonlinear time-delay systems[C].Proceedingsof the 26th Chinese Control Conference ,Zhangjiajie,China,2007:515-519.
    [57]孙云平,李俊民,王江安.目标轨线迭代可变的非线性自适应学习控制[J].系统工程与电子技术,2009,31(7) :1715-1719.
    [58] Wei Q., Chang W. and Zhang P. Hybrid force/position control of robot manipulators based iterative learning [J]. Acta Automatica Sinica, 1997, 23(4): 468- 474.
    [59] Kim Y.H., Han S.H., Cho S.H., etc. A learning approach to control of servomotors under disturbance torque dependent on time and states [J].IEE Porc.- D: Control Theory and Applications, 1998, 145(3):251-258.
    [60] Wu H.Y., Zhou Z.Y., Xiong S.S. D-type iterative learning control with application to FNS 1imb motion control system[J].Control Theory and Applications, 2001, 13 (3):410-413.
    [61]姚仲舒,杨成梧.迭代学习控制烟叶发酵系统中的应用[J].自动化仪表,2002,23(12):41-43.
    [62] Xu J X. The frontiers of iterative learning control-part I [J].Journal of Systems Control and Information, 2002, 46(5):233-243.
    [63] French M and Rogers E. Nonlinear iterative learning by adaptive Lyapunov technique [A].Proceeding of the 37th conference on Decision and Control[C], 1998, Florida, USA: 175-180.
    [64] French M, Rogers E. Nonlinear iterative learning by an adaptive Lyapunov technique [J].International Journal of Control, 2000, 73(10):840-850.
    [65] Park B. H., Kuc T.Y. and Lee J.S. Adaptive learning control of uncertain robotic systems [J].International Journal of Control, 1996, 65(5):725-744.
    [66] Choi J.Y, Lee J.S. Adaptive iterative learning control of uncertain robotic system [J].IEEE Proceedings Control Theory and Applications, 2000, 147(2):217-223.
    [67] Xu J. X. and Badrinath V. Adaptive robust iterative learning control with dead zone scheme [J].Automatica, 2000, 36(1):91-99.
    [68] Hsu C.T., Chein C. J. and Yao C Y.A new algorithm of adaptive learning control for uncertain robotic systems [C].Proceeding of 2003 IEEE International Conference on Robotics & Automation, 2003:4130-4135.
    [69] Qu Z. and Xu J.X. Adaptive learning control for a class of cascaded nonlinear systems [J].IEEE Transaction on Automatic Control, 2002, 47(8):1369-1376.
    [70] Chien C.J, Fu L.C. An iterative learning control of nonlinear systems using neural network design [J] .Asian Journal of Control, 2002, 4(1):21-29.
    [71]杨小军,李俊民.一类未知非线性系统的智能迭代学习控制[J].控制与决策,2002,17(3):360-363.
    [72] Xu J X., Tan Y.A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties [J]. IEEE Transaction on Automatic Control, 2001, 47(11):1490-1495.
    [73] Tayebi A., Chien C.J.A unified adaptive iterative learning control framework for uncertain nonlinear systems [J].IEEE Transactions on Automatic Control, 2007, 52(10):1907-1913.
    [74] Chen W.S., Li J.M. Adaptive iterative learning control for nonlinear time-delay output feedback systems [C].Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004:1260-1263.
    [75] Taybei A. and Xu J.X. Observer-based iterative learning control for a class of time-varying nonlinear systems [J].IEEE Transaction on Circuits and System-I: Fundamental Theory and Applications, 2003, 50(3):452-455.
    [76] Xu Jian-Xin,Yan Rui.Iterative learning control design without a priori knowledge of the control direction [J]. Automatica, 2004, 40(10):1803-1809.
    [77]陈刚,柴毅.欠控制方向的非线性系统自适应迭代学习控制[J].重庆大学学报,2008,31(2):170-174.
    [78] Krstic M, Kanellakopoulos I and Kokotovic P V. Nonlinear and adaptive control design [M]. New York: Wiley, 1995.
    [79] Taybei A. Adaptive iterative learning control for robot manipulators[J]. Automatica, 2004, 40(7): 1195-1203.
    [80] Sastry S S, Boston M. Adaptive control: stability, convergence and robustness [M].Upper Saddle River, NJ: Prentice-Hall, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700