低频段脉冲探地雷达技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达是近十几年来发展起来的地球物理探测仪器,广泛应用于工程、环境等无损探测。目前取得良好应用效果的探地雷达系统均为超宽带脉冲体制,仪器设备主要依赖进口。本文以隧道地质预报这一应用为背景,开展了低频段脉冲探地雷达相关技术研究工作。给出了一种仪器总体设计方案,由超宽带收发天线、超宽带脉冲源模块、采集与控制模块、上位机等组成,实现了超宽带脉冲电磁波的产生、辐射、接收、数据采集、处理成像等功能。在超宽带脉冲产生方面,通过选择合适的雪崩三极管及电路结构实现了用较少数量的雪崩三极管产生较大幅度的纳秒级窄脉冲,这样的工作方式可增强雪崩电路的稳定性。基于此思想,设计了单级雪崩三极管串行级联电路。获得的纳秒级窄脉冲的幅度、频谱、重复频率等指标满足隧道地质预报对脉冲探地雷达的基本要求。脉冲源电路与应用于超宽带雷达系统中的脉冲源的对比结果表明,本文设计的脉冲源具有结构简单、性能稳定等优点。针对平面对称阵子类超宽带天线做了大量的研究工作,指出了平面蝶形天线在较高的频点上方向图变异问题,并与平面半椭圆天线做了对比,分析了其本质原因,指出了其最佳的脉冲辐射方向。提出了两种方法来实现超宽带脉冲源电路与平面蝶形天线系统的匹配:集总阻感加载方法和射频变压器匹配法。实测结果证明了这两种方法的有效性和实用性。为实现平面对称振子天线的定向辐射特性,对振子的边缘形状做了优化设计,并提出了屏蔽式四分之一椭圆天线(SQEA)的概念。仿真结果表明,此天线具有良好的阻抗带宽,时域脉冲辐射失真小,前后比可达35dB,能有效屏蔽非目标方向的辐射。超宽带脉冲通过空间辐射和电路系统的反射,对同步系统中的时钟信号形成了强烈的干扰,对此设计了基于光耦器件和瞬态抑制器件的干扰抑制电路,提高了系统同步精度。基于Windows环境,设计了上位机软件,实现了数据的实时采集、传输、处理、A-scan、B-scan显示成像、存储及系统控制等功能。
As a geophysics exploration instrumentation with the highest resolution rising in the last decade, Ground penetrating radar (GPR) has been already widely used in the fields of construction,tunnel engineering,environment,archaeology and military for non-destructive testing.UWB pulse-GPR system is the most successful and has been proved in the practice as a useful geophysics exploration instrumentation.Instrument equipments of GPR system are mainly depended on import now. In order to ensure the safety of tunnel constructing and avoiding geological disaster,it is necessary to predict the geology in front of the tunnel face using scientific instruments.It is called Tunnel geology prediction(TGP).Tunnel seismic method associated with GPR method can accurately predict geology several ten meters in front of the tunnel face.This paper takes this application as background,and attempts to design and produce the low-resolution Pulse-GPR instrument equipments to meet the application requirement of tunnel geological prediction (TGP).
     The main research work of this paper are as follows:
     (1) The design of the low-resolution pulse GPR system.The instrument system consists of four parts:ultra-wideband(UWB) transceiver antennas,UWB pulser module, data acquisition module and the host computer.It achieves the assignment as followings:generation of UWB pulse, transmission and receival, data acquisition and imaging.
     (2) Design of the UWB pulser.UWB pulser is proposed to genetrate nanosecond time domain pulse.The principle of avalanche transistor and the basic circuit of avalanche transistor is analysed.Main methods of generating UWB pulse are compared with each other.Series-wise avalanche circuit and Marx circuit based on avalanche transistor are contrasted.Avalanche transistors that have high avalanche beakdown voltage and high cut-off frequency are elaborately selected and tested.Single stage series-wise avalanche circuit can achieve the proposed nanosecond time domain pulse and requires the least avalanche transistors.Single stage series-wise avalanche circuit is designed and applied in the UWB Pulse-GPR system as the UWB pulser.Testing results show that the pulse outputed by the pulser has several advantages such as high frequency stability,high waveform stability,high repetition frequency. This is necessary that the pulser can be used in the Pulse-GPR system. The amplitude and spectrum of the pulse are suitable in the pulse-GPR system for the application of TGP. The UWB pulser is compared with other pulser used in UWB radar system and they have respective advantages and disadvantages.The pulser designed in the paper has simple structure and stable performance.
     (3) Design and match methods of the planar bowtie antenna.UWB planar dipoles antennas are familiar in the UWB Pulse-GPR system and they are simulated and analysised by HFSS and CST software. Performance of plannar Bowtie antenna is given under different structure parameter.The paper investigated the split of radiation pattern when Bowtie antenna works on high frequence(compared to its structure).The substaintial reason is analysed.The problem astricted the bandwidth of the radiation pattern and decided the best radiation direction of the antenna.The extent of the split problem is decided by the equivalent degree in the side of the Bowtie antenna.In order to achieve the match between the antenna and the pulser a resistively-inductively loaded (RL-loaded) method for bowtie antenna is theoretically and experimentally investigated.The antenna has been designed for transmission of Gaussian-like pulses with duration of 5ns.The RL-loading method raised in this paper makes the UWB pulse generator and the antenna-feed system get matched fast in the laboratory.The time-domain waveforms and VSWR of the antenna are shown in this paper.RF transformer (JTX-2-10T+) is used as high frequency,wide band balun and it can make that the 75ohm coaxial-cable and the antenna get matched.
     (4) Design of the SQEA. In order to achieve expected pattern,the edge of the UWB planar dipoles antenna is optimized and a shield quarter-ellipse antenna(SQEA) is raised.SQEA has expected input impedance and its front-to-back ratio (F/B) can reach 35dB which can effectively avoid the unexpected noise from the poor environment.
     (5) Suppression of jamming pulse in synchronization system.UWB pulse coupled from the pluser and transmitted by the antenna employs itself as jamming in the synchronization system. So the circuit based on optical coupler(OC) and transient voltage suppressor (TVS) is designed to isolate and filter the jamming pulse. Testing results show the the method can effectively avoid error trigger and improve the precision of the synchronization system.
     (6) Design of the software.The software system is programmed under windows OS.It achieves the performance of real-time data acquisition,transfer,processing, A-scan、B-scan imaging, store and controlling system.
     The main innovation points of the paper are as follows:
     (1) Single stage series-wise avalanche circuit is designed and applied in the UWB Pulse-GPR system as the UWB pulser.Testing results show that the pulse outputed by the pulser has several advantages such as high frequency stability,high waveform stability,high repetition frequency. This is necessary that the pulser can be used in the Pulse-GPR system. The amplitude and spectrum of the pulse are suitable in the pulse-GPR system for the application of TGP.
     (2) The paper investigated the split of radiation pattern when Bowtie antenna works on high frequence(compared to its structure).Two methods(the RL-loading, RF transformer matcher) is raised in this paper to get the match between the pulser and the antenna.
     (3) SQEA is raised in this paper to achieve expected F/B and shield performance.
     (4) The circuit based on optical coupler(OC) and transient voltage suppressor (TVS) is designed to suppress jamming pulse.It can improve the precision of the synchronization system.
引文
[1]钟宏伟,赵凌.我国隧道工程超前预报技术现状分析[J].人民长江,2004,35(9):15-17.
    [2]赵世文.超前地质预报技术及其在隧道中的应用[J].广州建筑,2008,36(1):32-35.
    [3]周黎明,刘天佑,刘江平,等.复杂铁路隧道施工地质超前预报中TSP探测技术应用研究[J].铁道工程学报,2008,1:37-40.
    [4]何继善,柳建新.隧道超前探测方法技术与应用研究[J].工程地球物理学报,2004,1(4):293-298.
    [5]王军保,包太.隧道地质预报在隧道施工中的应用[J].平顶山工学院学报,2008,17(1):54-55.
    [6]刘立春.岩溶隧道地质雷达超前预测预报技术[J].2008,6(2):91-96.
    [7]宋先海,顾汉明,肖柏勋.我国隧道地质超前预报技术述评[J].地球物理学进展,2006,21(2):605-613.
    [8]杨果林,杨立伟.隧道施工地质超前预报方法与探测技术研究[J].地下空间与工程学报,2006,2(4):627-630.
    [9]范志雄,黄东达,沈博,等.地质雷达技术在城市管道探测中的应用[J].工程地球物理学报,2009,6(增刊):59-61.
    [10]吴波鸿,白雪冰,孔祥春.探地雷达在隧道衬砌质量检测中的应用[J].物探与化探,2008,32(2):229-231.
    [11]赵永贵.国内外隧道超前预报技术评析与推介[J].地球物理学进展, 2007, 22(4): 1344-1352.
    [12]谢昭晖,李金铭.我国探地雷达的应用现状及展望[J].工程勘察,2007,11:71-75.
    [13]粟毅,黄春琳,雷太文.探地雷达理论与应用[M].北京,科学出版社,2006.
    [14] Gary R Olhoeft. Application and Frustrations in Using Ground Penetrating Radar[J].IEEE AESS Systems Magazine,February,2002:12-20.
    [15] Gary R Olhoeft. Application of Ground Penetrating Radar[J].Proceedings of the 6th International Conference on Ground Penetrating Radar GPR’96,Sept30-Oct 3,1996,Sendai,Japan:1-4.
    [16] J C Ralston, D W Hainsworth. Application of ground penetrating radar for coal depthmeasurement[J],Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing ICASSP99,1999:2275-2278.
    [17] L P Peters Jr, J J Daniels, J D Young. Ground penetrating radar as a subsurface environment sensing tool[J].Proceedings of the IEEE,vol.82,december 1994:1802-1822.
    [18] Takashi Kikuta, Hiroaki Tanaka.Ground Probing Radar System. IEEE Transactions on Aerospace and Electronic System.Magazine,June 1990:23-26.
    [19] G A Burrellm, L Jr Peters. Pulse Propagation in Lossy Media Using the Low-Frequency Window for Video Pulse Radar Application. Proceedings of the IEEE.1979,Vol.67,No.7:981-990.
    [20]李想堂,王端宜,张肖宁.探地雷达技术的回顾与展望[J].无损检测,2006,28(9):479-483.
    [21] L Gurel, U Oguz.Simulations of Ground-Penetrating Radars over Lossy and Heterogeneous Grounds.IEEE Transactions on Geoscience and Remote Sensing. 2001, Vol.39, No.6:1190-1197.
    [22] A Benedetto, F Benedetto, et al. Reliability of Signal Processing Technique for Pavement Damages Detection and Classification Using Ground Penetrating Radar. IEEE Sensors Journal,2005,Vol.5,No.3:471-480.
    [23] S A Arcone. Dielectric Constant and Layer-Thickness Interpretation of Helicopter-Borne Short-Pulse Radar Waveforms Reflected from Wet and Dry River-Ice Sheets. IEEE Transactions on Geoscience and Remote Sensing,1991,Vol.29, No.5:768-777.
    [24] P Paillou, G. Grandjean, et al. Subsurface Imaging in South-Central Egypt Using Low-Frequency Radar:Bir Safsaf Revisited.IEEE Transactions on Geoscience and Remote Sensing,2003,Vol.41,No.7:1672-1684.
    [25] Jerry A, Bradley David, L Wright. Microprocessor-Based Data-Acquisition System for a Borehole Radar.IEEE Transactions on Geoscience and Remote Sensing. 1987, Vol.25, No.4:441-447.
    [26] D Vaccaneo, L Sambuelli, et al. Measurement System of Complex Permittivity of Ornamental Rocks in L Frequency Band. IEEE Transactions on Geoscience and Remote Sensing, 2004, Vol.42,No.11:2490-2498.
    [27] U Spagnolini.Permittivity Measurements of Multilayered Media with Monostatic Pulse Radar. IEEE Transactions on Geoscience and Remote Sensing, 1997,Vol.35, No.2:454-463.
    [28] Robert J, Greaves David, P Lesmes, et al.Velocity Variations and Water Content Estimated from Multi -offset,Ground-Penetrating Radar. GEOPHYSICS, 1996, Vol.61,No.3:683-695.
    [29] Peter Meincke. Linear GPR Inversion for Lossy Soil and a Planar Air-Soil Interface. IEEE Transactions on Geoscience and Remote Sensing. 2001,Vol.39, No.12:2713-2721.
    [30] Jeong Soo Lee, Cam Nguyen, Scullion T. A Novel,Compact,Low-Cost,Impulse Ground-Penetrating Radar for Nondestructive Evaluation of Pavements.IEEE Transactions on Instrumentation and Measurement.2004,Vol.53,No.6:1502-1509.
    [31] J R Wang. Microwave Emission from Smooth Bare Fields and Soil Moisture Sampling Depth. IEEE Transactions on Geoscience and Remote Sensing,1987, Vol.25,No.5:616-622.
    [32] Serbin G, Or Dani. Ground-Penetrating Radar Measurement of Soil Water Content Dynamics Using a Suspended Horn Antenna. IEEE Transactions on Geoscience and Remote Sensing.2004,Vol.42,No.8:1695-1705.
    [33] Wu R, Li X, Li J.Continuous Pavement Profiling with Ground-Penetrating Radar. IEEE Proceedings Radar, Sonar and Navigation, 2002, Vol.149,No.4:183-193.
    [34] Zhu Quan, L M Collins.Application of Feature Extraction Methods for Landmine Detection Using the Wichmann/Niitek Ground-Penetrating Radar. IEEE Transactions on Geoscience and Remote Sensing, 2005, Vol.43, No.1: 81-85.
    [35] S Lambot, E C Slob, et al. Modeling of Ground-Penetrating Radar for Accurate Characterization of Subsurface Electric Properties. IEEE Transactions on Geoscience and Remote Sensing,2004,Vol.42,No.11:2555-2568.
    [36] V P Prokhorenko, V E Ivashchuk, S V Korsun. Ground Penetrating Radar VIY-2. IEEE Aerospace and Electronic Systems Magazine,2005,Vol.20,No.7:16-18.
    [37]陈义群,肖柏勋.论探地雷达现状与发展[J].工程地球物理学报,2005,2(2):149-155.
    [38] M Zerzu, P Street, G Lodha, et al. Characterization of a moderately fractured granitic rock using single-hole radar reflection, crosshole radar tomography and ground penetrating radar at AECL’s Underground Research Laboratory [C], Pinawa , Manitoba ,67th SEGNS5.6,1997.912-915.
    [39] Oguz U, Gurel L.Frequency Responses of Ground-Penetrating Radars Operating over Highly Lossy Grounds. IEEE Transactions on Geoscience and Remote Sensing,2002, Vol.40,No.6:1385-1394.
    [40] A Chanzy, A Tarussov, A J udge, et al. Soil water content determination using a digital ground penetrating radar[J].Soil science society of Americajournal,1996,60(5):1318-1326.
    [41] Chieh-Hou Yang, et al. Underwater profiling by DC tomography and GPR methods [C]. 67th SEG INT4.6,1997. 654-656.
    [42]周杨,冷元宝,赵圣立.路用探地雷达的应用技术研究进展[J].地球物理学进展,2003,18(3):481-486.
    [43]戚筱俊.探地雷达探测技术简介[J].水文地质工程地质,1994,1:11.
    [44]邓世坤,孙波.冰面雷达探测揭示东南极Amery冰架内部结构基本特征[J].工程地球物理学报,2004,1(1):1-9.
    [45]程业勋,刘海生,赵章元.城市垃圾污染的地球物理调查[J].工程地球物理学报,2004,1(1):26-30.
    [46]李成香,强建科,王建军.地质雷达在公路裂缝检测中的应用[J].工程地球物理学报,2004,1(3):282-286.
    [47]卢成明,刘江平,李修忠.综合物探在高速公路路基密实度检测中的应用[J].工程地球物理学报,2005,2(4):292-296.
    [48]张汉春,曹震峰.探地雷达在地下管线竣工测量中的应用[J].工程地球物理学报,2007,4(5):395-399.
    [49]胡朝彬,邓世坤,梅宝.探地雷达在调查地下人工构(建)筑物中的应用[J].工程地球物理学报,2007,4(1):46-51.
    [50]张宇,刘玉乾.铁路工程质量无损检测科研项目布局综述[J].工程地球物理学报,2009,6(增刊):188-194.
    [51]闪迪.探地雷达与面波勘探技术在考古调查中的综合应用[J].工程地球物理学报,2011,8(3):339-343.
    [52]沈飚,于东海,孙忠良.探地雷达系统的研制及其应用[J].东南大学学报,1996,26(3):86-90.
    [53]沈飚,于东海,孙忠良. 3ns脉宽的单脉冲探地雷达系统[J].石油地球物理勘探,1996,30(6):867-873.
    [54]曾昭发,田钢,丁凯.宽带探地雷达系统研究及在工程检测中的应用[J].地球物理学进展,2003,18(3):455-459.
    [55]黄玲.多输入多输出探地雷达方法研究[D].长春:吉林大学,2010.
    [56]苏茂鑫,田钢,曾昭发,等.一种简易探地雷达天线的制作及其应用效果分析[J].地球物理学进展,2008,23(1):295-300.
    [57]姚健,曾昭发,黄玲,等.基于矢量网络分析仪的低频探地雷达系统野外实验及结果分析[J].吉林大学学报(地球科学版),2006,36(专辑):169-173.
    [58]邓世坤,王惠濂.探地雷达图像的正演合成与偏移处理[J].地球物理学报,1993,36(4):528-536.
    [59]卢成明,秦臻,朱海龙,等.探地雷达检测公路结构层隐含裂缝实用方法研究[J].地球物理学报,2007,50(5):1558-1568.
    [60]阳威,邓世坤.人工挖孔桩底不明采矿空区探地雷达探测[J].工程地球物理学报,2009,6(1):23-27.
    [61]师学明,张剑,刘梦花,等.小波变换在地质雷达干扰波压制中的应用[J].工程地球物理学报,2008,5(3):279-286.
    [62]冉弥,邓世坤,陆礼训.探地雷达测量土壤含水量综述[J].工程地球物理学报,2010,7(4):480-486.
    [63]周游,潘锦,聂在平.时域背腔式领结天线的工程化设计[J].电子科技大学学报,2005,34(1):1-3.
    [64]吴建斌,田茂.一种超宽带窄脉冲信号发生器的设计[J].电子测量技术,2007,30(6):198-200.
    [65]吴建斌,田茂.基于AD603的时变增益放大器的实现[J].电子测量技术, 2008,31(4):29-32.
    [66]吴秉横,纪奕才,方广有.一种新型探地雷达天线的设计分析[J].电子与信息学报,2009,31(6):1487-1489.
    [67]吴建斌,田茂.一种改进的探地雷达蝶形天线[J].仪器仪表学报, 2009,30(5):1059-1062.
    [68]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16.
    [69]张春城,周正欧.探地雷达C_scan数据中直接目标检测与定位研究[J].工程地球物理学报,2009,6(3):326-331.
    [70]吴永清,何林生.地质雷达在公路隧道的应用.广东公路交通,1998,增刊.
    [71]薛建,曾昭发,王者江等.隧道掘进中掌子面前方岩石结构的超前预报,长春科技大学学报,2000,30(1):87一89.
    [72]赵宇,李天斌.探地雷达在隧道地质灾害探测中的应用[J].第三届全国岩土与工程学术大会论文集,622-626.
    [73]杨天春,周勇,李好.超前探测中探地雷达应用与结果的处理分析[J].工程地质学报,2010,18(6):971-975.
    [74] Sheng Chen,Jiahua Shu,Qiaosen Ll,et al.Application of Integrated Geological Prediction in Expressway Tunnel[J].Proceedings of the Second IITA International Conference on Geoscience ad Remote Sensing,Aug,2010,1:540-543.
    [75] Anne Lalagüe,Inge Hoff. Determination of space behind pre-cast concrete elements in tunnels using GPR[J].Proceedings of the 13th International Conference on Ground Penetrating Radar (GPR),June,2010,1-5.
    [76] Liu Xiao-zhou,Sun Qiao,Liu Peng,et al.The application of Ground Penetrating Radar in advanced prediction of tunnel[J].Proceedings of the Second International Conference on Mechanic Automation and Control Engineering(MACE),July,2011,2676-2679.
    [77] Qu Haifeng,Liu Zhigang,Zhu Hehua.Technique of synthetic geologic prediction ahead in tunnel informational construction[J].Chinese Journal of Rock Mechanics and Engineering, 2006,25(6):1246-1251.
    [78]钟世航,孙宏志,王荣,等.隧道掌子面前方地质预报的进展[J].隧道建设,2007,27(4):7-11.
    [79]钟世航,孙宏志,王荣,等.隧道掌子面前方地质预报的现状与发展之路[J].工程地球物理学报,2007,4(3)180-185.
    [80]李嘉,郭成超,王复明,等.探地雷达应用概述[J].地球物理学进展,2007,22(2):629-637.
    [81]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [82]邓世坤.探地雷达野外工作参数选择的基本原则[J].工程地球物理学报,2005, 2(5):323-329.
    [83]刘立业,粟毅,刘克成,等.一种新型探地雷达天线的FDTD分析[J].电子与信息学报,2006,28(4):654-657.
    [84]范国新,陈平.探地雷达原理设计思想及其实现[J].电波科学学报,1992,7(3):1-20.
    [85] Daniels D J. Affordable GPR technology[J].Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar,2005,15-20.
    [86]赵永辉,吴健生,万明浩.不同地下介质条件下探地雷达的探测深度问题分析[J].电波科学学报,2003,18(2):220-224.
    [87]刘淑华,杨康.超宽带亚纳秒级脉冲形成方式的探讨与实践[J].沈阳工业学院学报,2003,22(4):17-19.
    [88]刘文生,高守信.雪崩电路及其应用[J].电子测量技术,1983(1):42-49.
    [89]邢静媛,刘丽莉.大幅度纳秒脉冲发生器[J].核电子学与探测技术, 1995,15(2):123-124.
    [90]于东海.雪崩晶体管产生窄脉冲用于探地雷达[J].东南大学学报, 1996,26(2):121-123.
    [91]刘进元,山冰.半宽度为300ps超快高压电脉冲的产生与研究[J].电子学报,1999, 27(8):133-134.
    [92] Amitabh Chatterjee,Kanad Mallik,S.M.Oak.The Principle of Operation of The Avalanche Transistor-based Marx Bank Circuit:A New Perspective[J].Review of Scientific Instruments,1998,69(5):2166-2170.
    [93]梁步阁,陈小娟,朱畅,等.超宽带雷达实验系统中大功率纳秒级脉冲源的研制[J].微波学报,2005,21(1):26-30.
    [94]吴建斌,田茂.一种超宽带窄脉冲信号发生器的设计[J].电子测量技术,2007,30(6):198~200.
    [95] Lestari A A,Yarovoy A G,Ligthart L P.An Efficient Ultra-Wideband Bow-Tie Antenna[J]. Proceedings of 31st European Microwave Conference,Sept,2001,1-4.
    [96] Lee Kwan-Ho,Venkatarayalu N V,Chen Chi-chih.Numerical modeling development for characterizing complex GPR problems[J].Proceedings of 9th International Conference on Ground Penetrating Radar,SPIE,May,2002,4758:652-656.
    [97] A Rubio Bretones,C Moreno de Jong van Coevorden,M Femandez Pantoja,et al.A design of broadband thin-wire antennas for GPR applications[J].Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar,May,2005,143-146.
    [98] A A Lestari,D Yulian,Liarto,A B Suksmono,et al.Improved Bow-Tie Antenna for Pulse Radiation and Its Implementation in a GPR Survey[J].Proceedings of 4th International Workshop on Advanced Ground Penetrating Radar,June,2007,197-202.
    [99] Bingheng Wu,Yicai Ji,Guangyou Fang.Analysis of GPR UWB Half-Ellipse Antennas With Different Heights of Backed Cavity Above Ground[J].IEEE Antennas and Wireless Propagation Letters,Vol 9,2010,130-133.
    [100]曾昭发,刘四新,王者江,薛建.探地雷达方法原理及应用[M].北京:科学出版社,2006.
    [101]范国新,陈平.探地雷达原理设计思想及其实现[J].电波科学学报,1992,7(3):1-20.
    [102] Daniels D J. Affordable GPR technology[J].Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar,2005,15-20.
    [103]赵永辉,吴健生,万明浩.不同地下介质条件下探地雷达的探测深度问题分析[J].电波科学学报,2003,18(2):220-224.
    [104] Topp G C, Davis J L, Annan A P.Electronmagnetic determination of soil water content:Measurements in Coaxial transmission Line,Water Resources research, 1980,vol,16(3):574-582.
    [105]王可可.隧道地质超前预报探地雷达发射与采集技术研究[D].长春:吉林大学,2009.
    [106]程勇,周月臣,程崇虎.一种超宽带脉冲信号发生器的设计[J].通信学报,2005,26(10):112-115.
    [107]邹爱民,程德福,王可可,等.隧道地质超前预报探地雷达脉冲源的设计[J].吉林大学学报信息科学版,2008,26(5):454-458.
    [108]梁步阁,朱畅,张光甫,等.高功率全固态微波纳秒级脉冲源的设计与应用[J].国防科技大学学报,2004,26(6):38-43.
    [109]王郴,王春和,付有民.探地雷达系统中双极性脉冲发生器的设计[J].微波学报,2008,24(增刊):183-185.
    [110] Cerny Petr. Optimization of UWB Dipole Feeding Circuits[J].Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP),April,2010, 1-4.
    [111]周蔚红,何建国,周东明.一种新型探地天线的优化设计[J].电波科学学报,2004,19(3):71-373.
    [112] Xue Ni Low,Zhi Ning Chen,Terence S P See.A UWB Dipole Antenna With Enhanced Impedance and Gain Performance[J].IEEE Transactions on Antennas and Propagation,2009,57(10):2959-2966.
    [113]刘立业,粟毅,毛均杰.具有屏蔽腔和吸波材料的探地雷达天线的FDTD分析[J].电波科学学报,2006,21(3):422-427.
    [114]郭晨,刘策,张安学.探地雷达超宽带背腔蝶形天线设计与实现[J].电波科学学报,2010,25(2):221-226.
    [115] D Uduwawala.Gaussian Vs Differentiated Gaussian as the Input Pulse for Ground Penetrating Radar Applications[J].Proceedings of Second International Conference onIndustrial and Information System,ICIIS2007,Sri Lanka,199-202.
    [116]刘培国,刘克成,何建国,等.一种新型超宽带平面天线的FDTD分析[J].电子学报,2000,28(6):86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700