基于Mo_5Si_3难熔金属硅化物的合金化与复合化改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mo-Si系金属硅化物(Mo_5Si_3)具有高熔点、低密度、高强度和耐腐蚀性好等优良性能,在高温结构材料方面有着潜在的应用前景。但是,其室温脆性大、高温强度不足以及中温抗氧化性差等缺点阻碍了其实际应用。合金化和复合化是改善金属硅化物性能的常用方法。基于Mo_5Si_3和Nb_5Si_3互易置换合金化原理,分别采用电弧熔炼和热压烧结法制备了(Mo_(1-x)Nb_x)_5Si_3金属硅化物合金,并对其微观结构、力学性能及耐腐蚀性能进行了研究。基于原位复合化,研究了MoO_3-Si-Al、MoO_3-Mo-Si-Al及MoO_3-CuO-Mo-Si-Al体系的机械合金化过程、产物及合成机理;并结合热压烧结制备了Cu和Al_2O_3原位强韧化的Cu-Al_2O_3/Mo_5Si_3块体复合材料,系统研究了复合材料的力学性能、显微组织、耐磨损、抗氧化及强韧化机理。
     相比热压烧结,电弧熔炼法制备(Mo_(1-x)Nb_x)_5Si_3合金具有高的相对密度和显微硬度,但断裂韧性和抗压强度较低。两种方法制备的Mo_3Nb2Si3合金显微硬度、断裂韧性及抗压强度分别为1616.7HV、3.2 MPa·m1/2、1017MPa和1334.6HV、4.7MPa·m1/2、1637MPa。电弧熔炼法制备(Mo_(1-x)Nb_x)_5Si_3合金组织中形成了Mo_5Si_3/ MoSi2层片组织,并对层片结构形成机理及对合金性能的影响进行研究。随层片间距减小,合金显微硬度、断裂韧性和抗压强度提高。通过截线法对片层间距和片层密度进行计算,随退火时间延长层片间距先减小后增加,退火50h后, (Mo_(1-x)Nb_x)_5Si_3(X=0,0.2,0.4)合金层片间距分别为57.3μm、48.2μm和24.9μm。
     (Mo_(1-x)Nb_x)_5Si_3合金具有十分优异的耐HCl和H_2SO_4溶液腐蚀性能,其腐蚀失重比0Cr_(18)Ni_9不锈钢低100多倍。在较低电位下,合金表面的Mo形成MoO_2钝化膜,在较高电位下,MoO_2钝化膜形成H_4MoO_4而溶解破坏,同时,表面的Si形成SiO_2钝化膜,从而使合金表现出二次钝化现象。(Mo_(1-x)Nb_x)_5Si_3金属硅化物合金具有高的共价键组成,化学稳定性好,能够有效抵抗腐蚀溶液的侵蚀,提高了合金的耐蚀性。在NaOH溶液中,SiO_2保护膜与溶液中的NaOH反应生成Na_2SiO_4,破坏SiO_2保护膜的完整性,耐腐蚀性降低。
     以MoO_3-Si-Al为原料,机械球磨5h,原位合成了Al_2O_3-Mo_3Si/Mo_5Si_3复合粉体,反应以类似自蔓延高温合成的爆炸模式进行。球磨过程中优先发生MoO_3和Al之间的铝热反应,随后引发Mo-Si之间的一系列反应。以MoO_3-Mo-Si-Al为原料,通过控制原料中MoO_3和Al的含量,可制备不同Al_2O_3含量(质量比)的Al_2O_3/Mo_5Si_3复合粉体。20%Al_2O_3/Mo_5Si_3复合粉体具有最佳的反应特性及物相组成。球磨30h后,20%Al_2O_3/Mo_5Si_3复合粉体颗粒细小均匀,粒度在5μm以下,Al_2O_3和Mo_5Si_3的晶粒尺寸分别为29.9nm和42.7nm。1000℃退火1h后,复合粉体未发生物相转变,粉体具有较好的热稳定性。
     以MoO_3-CuO-Mo-Si-Al为原料,采用机械化学还原法结合热压烧结制备了Cu-20%Al_2O_3/Mo_5Si_3复合材料。复合材料组织均匀致密,随Cu含量增加,组织细化,烧结致密度提高。细小的Al_2O_3颗粒存在于复合材料的晶界和晶内,形成“内晶型”结构,强化基体;单质Cu具有好的塑韧性,固溶或弥散分布在基体材料之中,改善基体的键合特性及界面结合,阻止裂纹扩展,提高材料塑韧性。
     15%Cu-20%Al_2O_3/Mo_5Si_3复合材料具有最佳的综合力学性能,其显微硬度、抗压和抗弯强度及断裂韧性分别为1090HV、2160MPa、512MPa和7.33MPa·m1/2。Al_2O_3和Cu的引入,提高了Mo_5Si_3的中低温抗氧化性能,同时高温抗氧化性能不降低。复合材料具有好的循环氧化特性,其氧化动力学曲线近似呈抛物线规律。氧化过程由Si和O通过氧化膜的扩散速率决定,由于O的扩散速率低于Si的扩散速率,造成Si的选择氧化,在氧化膜中有单质的Mo残留。在低温下,Cu-20%Al_2O_3/Mo_5Si_3复合材料表面CuO与MoO_3反应生成流动性较好的Cu3Mo2O9和CuMoO4,提高了氧化膜的致密性;在较高温度下,由于Cu3Mo2O9和CuMoO4的熔融分解及助熔作用,使表面的SiO_2和Al_2O_3形成了致密的Al6Si2O13莫来石保护层。实验材料长时间循环氧化后,出现了不同程度氧化失效。Mo_5Si_3氧化失效主要是氧化膜表面在较大热应力下产生开裂;20%Al_2O_3/Mo_5Si_3复合材料表现为氧化层的局部剥落;Cu-20%Al_2O_3/Mo_5Si_3复合材料则主要是因为试样形状原因造成的边角处应力集中,引起试样边角处出现裂纹,加快材料氧化。
     Cu-20%Al_2O_3/Mo_5Si_3复合材料具有好的耐摩擦磨损性能,以Si3N4陶瓷球为摩擦副,复合材料具有低的摩擦系数和磨损率,少量Cu的引入改善了复合材料的界面结合及塑韧性,提高材料的摩擦性能。以GCr15轴承钢球为摩擦副,复合材料摩擦系数提高了近10倍,而磨损率却有所降低。20%Al_2O_3/Mo_5Si_3复合材料的磨损形式以磨粒磨损为主,同时伴有疲劳磨损和氧化磨损;加入Cu后,复合材料的磨损形式以粘着磨损和疲劳磨损为主。
The Mo-Si system metal silicides (Mo_5Si_3) are attractive materials in the field of high temperature structural applications for their high melting point, low density, excellent strength and corrosion resistance. However, the high brittleness at room temperature, insufficient strength at high temperature and oxidation resistance shortcomings hindered the actual applications. Alloying and compounding is common method to improve the performance of metal silicides. Based on reciprocity replacement alloying principle of Mo_5Si_3 and Nb_5Si_3, (Mo_(1-x)Nb_x)_5Si_3 silicide alloy was produced by arc-melting and hot-pressing sintering process, respectively. And the microstructure and mechanical properties and corrosion resistant properties have been studied. Based on the in-situ compounding principle, the paper studies mechanical alloying process, products and synthesis mechanism of MoO_3-Si-Al, MoO_3-Mo-Si-Al and MoO_3-CuO-Mo-Si-Al systematic. Combining the hot-pressing sintering technology, bulk composite of Cu-Al_2O_3/Mo_5Si_3 in situ toughening by Cu and Al_2O_3 was prepared. And the mechanical properties, microstructure, wear resistance, oxidation resistance and toughen mechanism of these composite materials have been investigated in detail.
     Comparing with the alloys prepared by hot-pressing sintering method, (Mo_(1-x)Nb_x)_5Si_3 alloys prepared by arc-melting have higher relative density and micro-hardness, low fracture toughness and compressive strength. Micro-hardness, fracture toughness and compressive strength of Mo_3Nb2Si3 alloy were 1616.7 HV, 3.2 MPa·m1/2, 1017MPa and 1334.6 HV, 4.7MPa·m1/2, 1637MPa, respectively. Lamellar organization of Mo_5Si_3/ MoSi2 formed in alloy organization of (Mo_(1-x)Nb_x)_5Si_3 alloys. The formation mechanism of lamellar organization and the effect of lamellar on mechanical properties were studied. With the reducing of distance between layers, micro-hardness, fracture toughness and compressive strength increased. Through the method of section line, layer distances and layer densities were calculated. The results showed that with the annealing time prolong, at first the layer distances reduced, and then increased. The layer distances of (Mo_(1-x)Nb_x)_5Si_3(X=0,0.2,0.4) alloys were 57.3μm、48.2μm and 24.9μm after annealing for 50h.
     (Mo_(1-x)Nb_x)_5Si_3 alloy has very excellent corrosion resistance in HCl and H2SO4 solution. And its corrosion weightlessness is 100 times lower than 0Cr18Ni9 stainless steel. In low voltage, Mo in alloy surface forms MoO_2 passivation coating. While in high voltage, MoO_2 passivation coating forms H4MoO4 and dissolves, and the same time, the Si in the surface forms a stable SiO_2 passivation coating, thus making alloy show second passivation phenomenon. Metal silicide alloys of (Mo_(1-x)Nb_x)_5Si_3 have high covalent bond and chemical stability, are able to effectively resist solution corrosion and improve the corrosion resistance of alloy. In NaOH solution, SiO_2 preservative reacts with NaOH in the solution and produces Na2SiO4, damaging the integrity of SiO_2 preservative, and so reduce the corrosion resistance of (Mo_(1-x)Nb_x)_5Si_3 metal silicides alloy.
     Al_2O_3-Mo_3Si/Mo_5Si_3 composite powders were synthesized by mechanical milling for 5h using MoO_3-Si-Al powders as raw materials. The reaction is similar with explosion mode of self-propagation high temperature synthesis. The first reaction was thermite reaction of MoO_3 and Al in the milling process, Then a series of reactions between Mo-Si have been triggered. Using MoO_3-Mo-Si-Al as raw material can prepare Al_2O_3/Mo_5Si_3 composite powders with different Al_2O_3 content (mass ratio) by means of controlling the contents of MoO_3 and Al. 20%Al_2O_3/Mo_5Si_3 composite powder has the best response characteristics. Composite powder particles are small and uniform with particle size less than 5μm after ball milling for 30h. The grain size of Al_2O_3 and Mo_5Si_3 are 29.9nm and 42.7nm, respectively. Composite powders no phase transformation take place after annealing for 1h at 1000℃and composite powders has good thermal stability.
     Cu-20%Al_2O_3/Mo_5Si_3 composite materials are in-situ synthesized by using MoO_3-CuO-Mo-Si-Al as raw material, combining mechanical chemical reduction method with hot pressing sintering technique. The structure of composite is uniform and compact. With the increase of Cu content, the microstructure becomes fine and sintering density becomes higher. Fine Al_2O_3 particles exist in grain boundary and within the crystal of composite materials, forming intragranular particles, strengthening the matrix. Elemental Cu with good plastic toughness disperses distribution in matrix materials, improving the interface combination among matrix, preventing crack propagation, increasing plastic deformation ability. Composite material 15%Cu-20%Al_2O_3/Mo_5Si_3 have the best comprehensive mechanical performance, its micro-hardness, compressive and flexural strength and fracture toughness are 1090HV, 2160MPa, 512MPa and 7.33MPa?m1/2, respectively.
     The introduction of Al_2O_3 and Cu improves the antioxidative properties of Mo_5Si_3 in middle and low-temperature and matain good oxidation resistance in high temperature. Composites materials have good circulation oxidation characteristics, and its oxidation dynamic curves approximately show a parabola rule. CuO in the surface of Cu-20%Al_2O_3/Mo_5Si_3 composites reacts with MoO_3 and produces Cu3Mo2O9 and CuMoO4 with better liquidity, thus improving the compactness of the oxide film. SiO_2 and Al_2O_3 in surface forms rigid and compact Al6Si2O13 mullite protective cover because of Cu3Mo2O9 and CuMoO4 fusion decomposition and fluxing action in higher temperature. Oxidation failure appears in experimental materials after cycle oxidation for a long time. Mo_5Si_3 oxidation failure is because oxidation film surface crazes in bigger thermal stress, 20%Al_2O_3/Mo_5Si_3 shows local oxide layer flaking. While Cu-20%Al_2O_3/Mo_5Si_3 is mainly because stress concentration in the corners caused by sample shape, causing crackle in the corners and accelerating material oxidation.
     Composite material with good resistance to frictional wear, composite materials has low coefficient of friction and wear rate using Si_3N_4 ceramics ball for friction pair. Adding a few content of Cu to composite materials can improve the interface bond and plastic toughness, enhancing the friction properties of materials. Using GCr15 bearing steel ball as friction pair, coefficient of friction of composite materials has increased nearly 10 times, and wear rate reduces. The wear form of 20%Al_2O_3/Mo_5Si_3 composite gives priority to particle attrition, at the same time with fatigue wear and oxidative wear; after join in Cu, the wear form of composite material are primarily adhesion wear and fatigue wear.
引文
[1]张德尧.硅化物高温结构材料的主要进展.稀有金属快报,2001,(3):17-18
    [2]陈国良,林均品.有序金属间化合物结构材料物理金属学基础.北京:冶金工业出版社,1999,10-11
    [3]Chen K.C, Allen S M, Livingston J D. Factors affecting the room- temperature mechanical properties of TiCr2-base Laves phase alloys. Materials Science and Engineering A, 1998, 242(1-2): 162-173
    [4]Shah D M, Berczik D, Anton D L, et al. Appraisal of other silicides as structural materials. Materials Science and Engineering A, 1992,155(2):45-57
    [5]Vasudévan A K, Petrovic J J. A comparative overview of molybdenum disilicide composites. Materials Science and Engineering A, 1992,155(1-2):1-17
    [6]张永刚,韩雅芳,陈国良等.金属间化合物结构材料.北京:国防工业出版社. 2001,2-4
    [7]孙康宁.金属间化合物/陶瓷基复合材料.机械工业出版社, 2003
    [8] Koch C C. Intermetallic matrix composites prepared by mechanical Alloying-a review, Materials Science and Engineering A,1998, 244(1):39–48
    [9] Qingyi Lu, Junqing Hu, Kaibin Tang. Benzene-thermal co-reduction reaction for nanocry-stalline intermetallics FeSi and NiAl. Solid State Ionics, 1999,124(3):317-321
    [10] Schneeweiss O, Pizurova N, Jiraskova Y, et al. Fe3Si surface coating on SiFe steel, Journal of Magnetism and Magnetic Materials,2000,215-216:115-117
    [11]范润华,边绣房,尹衍生. Fe3Al金属间化合物研究.山东科学,1997.10(1):6-7
    [12]仲增墉,叶恒强.金属间化合物.国防工业出版社, 1992
    [13]陈国良.金属间化合物结构材料研究现状与发展.材料导报,2000,14(9):1-5
    [14]林栋梁.高温有序金属间化合物研究的新进展.上海交通大学学报,1998, 32(2):96-108
    [15]彭超群,黄伯云,贺跃辉,等. Ni-Al系、Fe-Al系和Ti-Al系金属间化合物研究进展.特种铸造及有色合金,2001,(6):27-29
    [16]汤文明,唐红军,郑治祥,等. Fe-Al金属间化合物基复合材料的研究进展.中国有色金属学报,2003,13(4):811-826
    [17]刑占平,韩雅芳.金属间化合物熔铸工艺的发展及应用.材料导报, 2000,14(3):26-27
    [18] Stoloff N S. Iron aluminides: present status and future properties. Materials Science and Engineering A,1998,258(1-2):1-14
    [19] Liu C T, George E P, Maziasz P J, et al. Recent advances in iron aluminide alloys: deformation, fracture and alloy design. Materials Science and Engineering A,1998,258(1-2):84-98
    [20] McKamey C G, DeVan J H, Tortorell P F, et al. A review of recent developments in Fe3Al-based alloys, Journal of Materials Research, 1991,6(8):1779-1805
    [21] Liu C T, Stringer J, Mundy J N, et al. Order intermetallic alloys: an assessment. Intermetallics, 1997,5(8):579-596
    [22]邹欣伟.热压合成Me-Mo-Si(Me=Cu,Co,Ni)系金属/金属硅化物复相合金的研究:[兰州理工大学硕士学位论文].兰州:兰州理工大学材料科学与工程学院, 2008
    [23] Yamauchi A, Yoshimi K, Kurokawa K, et al, Synthesis of Mo-Si-B in situ composites hy mechanical alloying. Journal of Alloys and Compounds, 2007, 434(31):420-423
    [24]马勤,康沫狂.高温结构硅化物研究的新进展.材料工程,1997,(7):3-6
    [25]马勤,阎秉钧,康沫狂,等.金属硅化物的应用与发展.稀有金属材料与工程,1999, 28(1):10-13
    [26] Misra A, Petrovic J J, Mitchell T E. Microstructures and Mechanical Properties of a Mo3Si-Mo5Si3 Composite. Scripta Materialia, 1999, 40(2):191-196
    [27]徐强,张幸红,韩杰才,等.先进高温材料的研究现状和展望.固体火箭技术,2002,25(3):51-55
    [28] Stoloff N S, Liu C T, Deevi S C. Emerging applications of intermetallics. Intermetallics. 2000, 8(9-11):1313-1320
    [29] Petrovic J J, Vasudevan A K. Key developments in high temperature structural silicides. Materials and Science Engineering A, 1999,261(1-2):1-5
    [30] Taharu T, Kazuhisa S, Michiru S, et al. Effects of substitution of Al for Si on the lattice variations and thermal expansion of Mo(Si,Al)2. Intermetallics,2004, 12(1):33-41
    [31] Peng L M, Wang J H, Li H, et al. Processing and mechanical properties of multiphase composites hased on Mo-Si-Al-C system. Journal of Alloys and Compounds, 2006,420(1-2):77-82
    [32] Jehanno P. Assessment of the high temperature deformationg hehavior of molyhdenum silicide alloys.Materials and Science Engineering A, 2007,431 (2):562-567
    [33] Munog-Morris M A, Morris D G. Microstructure and mechanical behaviour of a Fe-Ni-Al alloy. Materials science and Engineering A,2007,444(1-2):236-241
    [34] Golovin I S. Anelastion relaxation in ternary Fe-Al-Me alloys:Me=Co,Cr,Ge,Mn,Nb,Si,Ta,Ti,Zr. Materials and Science Engineering A,2006,442(1-2):92-98.
    [35] Prakash U, Sauthoff G. Structure and property of Fe-Al-Ti intermetallic alloys. Intermetallics, 2001,9(2):107-112
    [36] Merabtine R, Devaud-Rzepski J, Trichet M F, et al.Two-phase intermetallic alloy Ni3(Al,Si):microstructure and mechanical properties. Intermetallics, 2001,9(12): 1015-1020
    [37] Shibuya S, Kaneno Y, Tsuda H, et al. Microstructure evolution of dual mult-phase intermetallic alloys composed of geometrically close packed Ni3X(X:Al and V) type structures. Intermetallics, 2007,15(3):338-348
    [38] Ohira K, Kaneno Y, Tsuda H, et al. Further invesitigation on phase relation and microstructures in Ni3Ti-Ni3Nb pseudo-ternary alloy system. Intermetallics,2006, 14(4):367-376
    [39] Tomihisa K, Kaneno Y, Takasug T. Phase relation and microstructure in Ni3Al-Ni3Ti-Ni3Nb pseudo-ternary alloy system. Intermetallics,2002,10(3):247-254
    [40]聂小武,鲁世强,王克鲁,等. Laves相铬化物高温抗氧化性能的研究进展.金属热处理,2006,31(9):30-33
    [41]Koch C C. Intermetallic matrix composites prepared by mechanical Alloying-a review, Materials Science and Engineering A,1998,244(1):39–48
    [42]唐思文,张厚安,刘心宇. La2O3对Mo5Si3/MoSi2复合材料的改性研究.中国稀土学报,2007,25(2):195-200
    [43] Chen K C, Allen S M, Livingston J D. Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys. Materials Science and Engineering A, 1998, 242(1-2):162-173
    [44] Shah D M, Berczik D, Anton D L, et al. Appraisal of other silicides as structural materials. Materials Science and Engineering A,1992,155(1-2):45-57
    [45]李爱民,董维芳,孙康宁.金属间化合物的研究现状及其最新发展趋势.现代技术陶瓷, 2004,100(2):27-31
    [46] AOKI A, IZUMI O. Improvement in room temperature ductility of the L12 type intermetallic Ni3Al by boron addition. Nippon Kinzoku Grakkaishi,1979, 43(5):1190-1196
    [47]李云峰. Fe-Al系化合物合金的制备与组织性能研究:[兰州理工大学硕士学位论文].兰州:兰州理工大学材料科学与工程学院, 2004,1-2
    [48]Heron A J, Schaffer G B. Mechanical alloying of MoSi2 with ternary alloying elements. Materials Science and Engineering A, 2003, 359(1-2):319-325
    [49]Natesan K, Deevi S C. Oxidation behavior of molybdenum silicides and theircomposites. Intermetallics,2000,8(9-11):1147-1158
    [50]Erik S. Mechanical properties of Mo5Si3 intermetallics as a function of composition. Materials Characterization,2005,55(4-5):402–411
    [51]Takasugi T, Kumar K S, Liu C T, et al. Microstructure and mechanical properties of two-phase Cr–Cr2Nb, Cr–Cr2Zr and Cr–Cr2(Nb,Zr) alloys. Materials Science and Engineering A,1999, 260(1-2):108–123
    [52]Petrovic J J, Vasudévan A K, Key developments in high temperature structural silicides. Materials Science and Engineering A,1999,261(1-2):1-15
    [53] Yuan L, Wang H M. Corrosion behaviors of a-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy in NaCl solution. Electrochimica Acta, 2008,54(2):421–429
    [54] Dong L X, Wang H M. Microstructure and corrosion properties of laser-melted deposited Ti2Ni3Si/NiTi intermetallic alloy. Journal of Alloys and Compounds, 2008,465(1-2):83–89
    [55] Xue Y, Wang H M. Microstructure and properties of Ti–Co–Si ternary intermetallic alloys. Journal of Alloys and Compounds, 2008,464(1-2):138–145
    [56] Yuan L, Wang H M. Corrosion properties of a Cr13Ni5Si2-based metal silicide alloy. Intermetallics,2008,16(9):1149–1155
    [57] Xue Y, Wang H M. Microstructure and wear resistance of laser deposited Ti3Co2Si–Ti5Si3–TiCo multiphase intermetallic alloy. Materials Letters, 2008,62(17-18): 3091–3094
    [58] Xu Y W, Wang H M. Oxidation behavior ofγ-Ni/Mo2Ni3Si ternary metal silicide alloy. Journal of Alloys and Compounds, 2008,457(1-2):239–243
    [59] Qu H P, Wang H M. Microstructure and mechanical properties of laser melting depositedγ-TiAl intermetallic alloys. Materials Science and Engineering A, 2007, 466(1-2):187–194
    [60] Gui Y L, Wang H M. Microstructure and dry sliding wear resistance of Moss-toughened Mo2Ni3Si metal silicide alloys. International Journal of Refractory Metals and Hard Materials, 2007,25(2):433–439
    [61] Xu Y W, Wang H M. Room-temperature dry sliding wear behavior ofγ-Ni/Mo2Ni3Si metal silicide“in situ”composites. Journal of Alloys and Compounds, 2007,440(1-2):101–107
    [62] Fang Y L, Wang H M. High-temperature sliding wear resistance of a ductile metal-toughened Cr13Ni5Si2 ternary metal silicide alloy. Journal of Alloys and Compounds, 2007,433(1-2):114–119
    [63] Yin Y X, Wang H M. High-temperature wear behaviors of a laser melted Cuss/(Cr5Si3–CrSi) metal silicide alloy. Materials Science and Engineering A, 2007,452–453:746–750
    [64] Yin Y X, Wang H M. Microstructure and wear properties of laser clad Cuss/Cr5Si3 metal silicide composite coatings. Applied Surface Science, 2006,253(3):1584–1589
    [65] Fang Y L, Tang H B, Wang H M. A wear resistant ductile metal-toughened Cr13Ni5Si2 ternary metal silicide alloy. Intermetallics, 2006,14(7):750–758
    [66]Wang H M, Cao F, Cai L X, et al. Microstructure and tribological properties of laser clad Ti2Ni3Si/NiTi intermetallic coatings. Acta Materialia, 2003,51(3):6319-6327
    [67]Liu Y F, Zhao H Y, Wang H M. Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 composite coating. Chinese Journal of materials Research, 2002,16(3):313-318
    [68] Jiang P, Zhang J J, Yu L G, et al. Wear-resistant Ti5Si3/Ti composite coatings by laser surface alloying, Rare Metal Materiales and Engineering, 2000,29(4):269-274
    [69]赵海云,王华明.激光熔覆过渡金属硅化物Laves相增强高温耐磨抗氧化涂层组织与性能研究.应用激光, 2002,22(2):89-92
    [70]Duan G, Wang H M. High-temperature wear resistance a laser cladγ/Cr3Si metal silicide composite coating. Scripta Materialia, 2002,46(1-2):107-111
    [71]易丹青,杜若昕,曹昱. M5Si3型硅化物的研究及相关的物理冶金学问题.金属学报,2001,37 (11):1121-1130
    [72]杨晓华,吕涛,丁华东.金属间化合物的增韧机理.稀有金属材料与工程,1996,25(4):1-4
    [73]刘应超,刘志国. Mo-Si-B合金的制备及性能研究现状.金属功能材料,2009,16(3):56-61
    [74]Vikas B, Andrew J T, Matthew J K, et al, Mocrostructure and oxidation hehavior of Nb-Mo-Si-B alloys. Intermetallics,2006,14(1):24-32
    [75]Mitra R, Srivastava A K, Eswara Prasad N, et al. Microstructure and mechanical hehaviour of reaction hot pressed multiphase Mo-Si-B and Mo-Si-B-Al intermetallic alloys. Intermetallics, 2006,14(12):1461-1471
    [76] Dimiduk D M, Park J S. Mo-Si-B Alloys Developing a Revolutionnary Turhine-Engine Material.MRs Bulletin 2003,28(9):639-64
    [77]Liu C T, Stiegler J O, Froes F H. Metals Handbook Tenthed. American Society for Metals, 1990, 13(5):929-931
    [78]Geng J, Tsakiropoulos P, Shao G S. A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites. Intermetallics,2007,15(1): 69-76
    [79] Sekido N, Kimura Y, Miura S, et al.Microstructure development of unidirdectionally solidified (Nb)/Nb3Si entectic alloys.Materials Science and Engineering A, 2007,444(1-2):51-57
    [80]罗民,陈焕铭,王怀昌. Nb-Al系金属间化合物及其复合材料研究进展.中国有色金属学报,2011,21(1):72-78
    [81]Grujicic M, Tangrila S. Effcect of iron additions on structure of Laves phases in Nb-Cr-Fe alloys. Materials Science and Engineering A, 1993,160(1):37-38
    [82]何玉定.合金元素对Laves相TiCr2力学性能的影响.中国有色金属学报,1998,8 (4):569-572
    [83] Celis P B, Kaqawa E, Ishizaki K, et al. Design and production of the Zr3Ti2Si3 itermetallic compound. Materials Research, 1999,6(10):2077-2083
    [84] Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics.Acta Materialia, 2000,48:307-322
    [85] Milenkovic S. Effect of the growth parameters on the Ni-Ni3Si eutectic mircoslructure. Journal of Crystal Growth, 2002,237-239:95-100
    [86] Dutra A T, Ferrandini P L, Caram R, et al. Mircrostructure and mechanical hehavior of in situ Ni-Ni3Si composite. Journal of alloys and compounds, 2007,432(1-2):167-171
    [87]马勤,郭鑫.金属间化合物基叠层复合材料研究进展.材料导报,2007,6(21)6:66-69
    [88]邹欣伟,马勤,贾建刚.Laves相高温结构硅化物的研究进展.材料导报,2008,22(5):85-87
    [89]叶长青,姜传海,周健威,等.Mo3Si-Mo5Si3共晶硅化物的氧化.上海交通大学学报,2004,38(7):1148-1151
    [90] Mitra R, Rao V R. Effect of small aluminum additions on microstructure and mechanical properties of molybdenum di-silicide. Intermetallics,1999,7(2):213-232
    [91]马勤.非平衡法ZrO2增强MoSi2基复合材料的研究: [西北工业大学博士学位论文].西安:西北工业大学材料科学与工程学院,1998,2
    [92] Tiwari R, Herman H, Sampath S. Vacuum plasma spraying of MoSi2 and its composites. Materials Science and Engineering A,1992,155(1-2):95-100
    [93] Unal O. Dislocations and plastic deformation in molybdenum disilicide. Journal of the American Creamic Society,1990,73(6):1752-1757
    [94] Tanaka K, Inui H, Yamaguchi M, et al. Directional atomic bonds in MoSi2 and other transition-metal disilicides with the C11b, C40 and C54 structures. MaterialsScience and Engineering A, 1999,261(15):158-164
    [95]金云学,张二林.自蔓延合成技术及原位自生复合材料.哈尔滨:哈尔滨工业大学出版社,2002
    [96]杨海波. Mo-Si系金属间化合物的显微组织及其机械性能:[上海交通大学博士学位论文].上海:上海交通大学材料科学与工程学院,2005,9
    [97] Anton D L, Shah D M. Intermetallic Matrix Composites. Materials Research Society Symposium Proceeding. 1991,213(2):733-739
    [98] Vahldiek F W, Mersol S A. Phase relations and substructure in single-crystal MoSi2. Journal of the Less Common Metals, 1968,15(2):165-176
    [99]彭拯.机械合金化热压烧结制备新型(Mo,Cr)5Si3高温结构材料探索:[东北大学硕士学位论文].沈阳:东北大学材料科学与工程学院, 2003
    [100]Umakoshi Y, Nakano T, Yanagisawa E, et al. Effect of alloying elements on anomalous strengthening of NbSi2-based silicides with C40 structure. Materials Science and Engineering A,1997,239-240:102-108
    [101] Nakano T,Nakai Y, Umakoshi Y. Microstructure and high-temperature strength in MoSi2/ NbSi2 duplex silicides. Intermetallics,1998(6):715-722.
    [102] Sun L, Pan J S, Liu Y J. An improvement in processing and fabrication of SiC-whisker- reinforced MoSi2 composites. Journal of Materials Science Letters, 2001,20(15):1421-1423
    [103] CHAKRABORTY A, KAMAT S V, MITRA R. Effect of MoSi2 and Nb reinforcements on mechanical properties of Al2O3 matrix composites. Journal of Materials Science, 2000, 35(15):3827-3835
    [104] Schwarz R B, Srinivasan S R, Petrovic J J, et al. Synthesis of molybdenum disilicide by mechanical alloying. Materials Science and Engineering A, 1992,155(1-2):75-83
    [105]Anton D L, Shah D M. High temperature evaluation of topologically close packed intermetallics. Materials Science and Engineering A, 1992,153(1-2):410-415
    [106]Lai Z H, Yi D Q, Li C H. Precipitation of Mo9FeSi6 in MoSi2. Scripta Metallurgica, 1994,31(7):815-818
    [107]Eason P D, Ross E N, Dempere L A, et al. Processing, Microstructure and Mechanical Properties of Mo Silicides and Their Composites. Transactions of Nonferrous Metals Society of China,1999,9(suppl.1):1-12
    [108] Akinc M, Meyer M K, Kramer M J, et al. Boron-doped molybdenum silicides for structural applications. Materials Science and Engineering A, 1999,261(1-2):16-23
    [109] Meyer M K, Kramer M J, Akinc M. Compressive creep behavior of Mo5Si3 withthe addition of boron. Intermetallics, 1996,4(4):273-281
    [110]Supatarawanich V, Johnson D R, Liu C T. Oxidation behavior of multiphase Mo–Si–B alloys. Intermetallics, 2004,12(7-9):721-725
    [111] Chou T C, Nieh T G. New observations of MoSi2 pest at 500°C. Scripta Metallurgicaet Materialia, 1992,26(10):1637-1642
    [112] Mckamey C G, Tortorelli P F, DeVan J H, et al. A study of pest oxidation in polycrystalline MoSi2. Journal of Materials Research, 1992,7(10):2747-2755.
    [113]王德志,刘心宇,左铁镛. MoSi2-Mo5Si3复合材料的低温氧化行为.稀有金属材料与工程,2002,31(1):48-51
    [114]颜建辉,李益民,张厚安,等. La2O3-Mo5Si3/MoSi2复合材料的力学性能和高温氧化行为.中国有色金属学报,2006,16(10):1730-1735
    [115]Chang Y A. Oxidation of Molybdenum Disilicide.Journal of Materials Science,1969, 4(7):19-41
    [116]Meyer M K, Akinc M. Oxidation behavior of Modified Mo5Si3 at 800~1300℃. Journal of American Ceramic Society, 1996,79(4):938-944
    [117] Brach M, Medri V, Bellosi A. Corrosion of pressureless sintered ZrB2–MoSi2 composite in H2SO4 aqueous solution. Journal of the European Ceramic Society, 2007,27(2-3):1357–1360
    [118] Gonzalez-Rodriguez J G, Rosales I, Casales M. Corrosion performance of molybdenum silicides in acid solutions. Materials Science and Engineering A, 2004,371(1-2):217–221
    [119] Hawk J A, Alman D E, Stoloff N S. Abrasive wear behavior of MoSi2-Nb composites. Scripta Metallurgica et Materialia, 1994,31(4):473-478
    [120]张厚安,刘心宇,陈平,等.稀土和Mo5Si3强韧化MoSi2材料的磨粒磨损特性.中国有色金属学报,2002,12(1):136-139
    [121]Yen B K, Aizawa T, Kihara J. Synthesis and formation mechanisms of molybdenum silicides by mechanical alloying. Materials Science and Engineering A,1996,220(1-2):8-14
    [122]Schwarz R B, Srinivasan S R, Petrovic J J, et al. Synthesis of molybdenum disilicide by mechanical alloying. Materials Science and Engineering A,1992,155(1-2):75-83
    [123]Henager C H, Brimhall J L, Hirth J P. Synthesis of a MoSi2-SiC Composite in situ Using a Solid State Displacement Reaction. Materials Science and Engineering A,1992,155(1-2):109-114
    [124]Cook J, Khan A, Lee E, et al. Oxidation of MoSi2-based composites. MaterialsScience and Engineering A,1992,155(1-2):183-198
    [125]Shon I J, Mnnir Z A. Synthesis of MoSi2-xNb and MoSi2-yZrO2 composites by the field-activated combustion method. Materials Science and Engineering A, 1995,202(1-2):256-261
    [126]Hebsur M G, Nathal M V. Structure intermetallics. The Minerals,Metals and Materials Society,1997:12:949-958
    [127]Bewlay B P, Sutliff J A, Jackson M R, et al. Microstructural and Crystallographic Relationships in Directionally Solidified Nb-Cr2Nb and Cr-Cr2Nb Eutectics, Acta Metallurgica et Materialia,1994, 42(8):2869-2878
    [128]Bewlay B P, Lipsitt H A, Jackson M R. Solidification processing of high temperature intermetallic eutectic-based alloys. Materials Science and Engineering A, 1995, 192-193(2): 534-543
    [129]Przybylowicz J. Laser cladding and erosive wear of Co–Mo–Cr–Si coatings. Surface and Coatings Technology, 2000,125(1-3):13-18
    [130]Lu X D, Wang H M. Dry sliding wear behavior of laser clad Mo2Ni3Si/NiSi metal silicide composite coatings.Thin Solid Films, 2005,472(1-2) :297-301
    [131]牛伟,孙荣禄.钛合金激光熔覆的研究现状与发展趋势.材料导报, 2006,20(7):58-61
    [132]Lu X D, Wang H M. High-temperature phase stability and tribological properties of laser clad Mo2Ni3Si/NiSi metal silicide coatings. Acta Materialia, 2004,52 (18):5419–5426
    [133]Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science, 2001, 46(1-2): 1-184
    [134]尹衍升,李嘉,谭训彦.机械合金化+加压烧结制备Fe3Al金属间化合物.粉末冶金技术, 2004,22(3):151-155
    [135]米格兰比.材料科学与技术丛书(第6卷).材料的塑性变形与断裂.北京:科学出版社,1998,175-176
    [136]Zhu S M, Makoto T, Kazushi S. Characterization of Fe3Al base intermetallic alloys fabricated by mechanical alloying and HIP consolidation. Materials Science and Engineering A, 2000,292(1):83-89
    [137]王兴庆,吕海波.粉末冶金法制取Fe3Al金属间化合物的研究.上海大学学报(自然科学版),2000,6(6):510-515
    [138]鲁世强,黄伯云,贺跃辉.机械合金化对Laves相Cr2Nb固相热反应合成的影响.航空学报,2003,24(6):568-572
    [139]何玉定,曲选辉,黄伯云.机械活化热压合成Laves相TiCr2及其力学性能的研究.稀有金属,2003,(3):303-306
    [140]Suzuki Y, Sekino T, Niihara K. Effects of ZrO2 Addition on Microstructure and Mechanical Properties of MoSi2. Scrip Metallet Mater,1995;33(11):69~74.
    [141]曹昱,易丹青,殷磊,等. Er对Mo5Si3基合金组织与性能的影响.稀有金属材料与工程, 2004, 33 (11):1170-1173
    [142] Perdrix F, Trichet M F, Bonnentien J L, et al. Relationships between interstitial content, microstructure and mechanical properties in fully lamellar Ti-48Al alloys,with special reference to carbon.Intermetallics,2001,9(9):807-815.
    [143] Maloy S A, Mitchell T E, Heuer A H. High temperature plastic anisotropy in MoSi2 single crystals[J]. Acta Metallurgica Materialia,1995,43(2):657-668.
    [144]杨海波.Mo-Si系金属硅化物的组织与机械性能研究:[上海交通大学博士论文].上海:上海交通大学材料科学与工程学院, 2005
    [145] Xu J, Zhou C H, Jiang S Y. Investigation on corrosion behavior of sputter-deposited nanocrystalline (MoxCr1?x)5Si3 films by double cathode glow plasma. Intermetallics, 2010,18(8):1669-1675
    [146] Herranen M, Delblanc Bauer A, Carlsson J O, et al. Corrosion properties of thin molybdenum silicide films. Surface and Coatings Technology, 1997,96(2-3):245-254
    [147] Michael M, Klaus H, Lorenz S. High temperature corrosion of MoSi2-HfO2 composites in coal slag. Journal of Physics and Chemistry of Solids, 2005, 66(2-4):509-512
    [148] Brach M, Medri V, Bellosi A. Corrosion of pressureless sintered ZrB2–MoSi2 composite in H2SO4 aqueous solution. Journal of the European Ceramic Society, 2007,27(2-3):1357–1360
    [149] Manish P, Subramanyuam J, Bhanu Prasad V V. Synthesis and mechanical properties of nanocrystalline MoSi2–SiC composite. Scripta Materialia, 2008, 58(3):211–214
    [150] Yeh C L, Chen W H. Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites. Journal of Alloys and Compounds, 2007,438(1-2):165–170
    [151]Misra A, Petrovic J J, Mitchell T E. Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite. Scripta Materialia,1998,40(2):191-196
    [152]颜建辉,张厚安,唐思文,等.La2O3-Mo5Si3/MoSi2复合材料的高温氧化行为.中国稀土学报,2006,24(5):551-555
    [153] Yang H B, Li W, Shan A D, et al. The effect of lamellar structure in Mo5Si3–MoSi2 alloy refined by annealing on the Vickers hardness at room temperature. Journal of Alloys and Compounds, 2005, 392(1-2): 87-92
    [154]傅晓伟,杨王明,张来启,等.原位合成MoSi2-SiC复合材料的组织缺陷.北京科技大学学报,2001,23(3):249-252
    [155] Guo Z Q, Blugan G, Graule T, et al. The effect of different sintering additives on the electrical and oxidation properties of Si3N4–MoSi2 composites. Journal of the European Ceramic Society,2007,27(5):21-53
    [156] Zakeri M, Yazdani-Rad R, Enayati M H, et al. Synthesis of MoSi2–Al2O3 nanocomposite by mechanical alloying. Materials Science and Engineering A, 2006,430(1-2):185-188
    [157]Zakeri M, Yazdani-Rad R, Enayati M H, et al. Mechanochemical reduction of MoO3/SiO2 powder mixtures by Al and carbon for the synthesis of nanocrystalline MoSi2. Journal of Alloys and Compounds, 2007,430(1-2):170-174
    [158] Hu Q D, Luo P, Qiao D, et al. Self-propagation high-temperature synthesis and casting of Cu–MoSi2 composite. Journal of Alloys and Compounds, 2008,464 (2):157-162
    [159] Hiroyasu F, Yukitomi U. Thermodynamic properties of molybdenum silicides by molten electrolyte EMF measurements. Journal of Alloys and Compounds, 2007,441(1-2):168-174
    [160]Maric R, Ishihara K N, Shingu P H. structural changes during low energy ball milling in the Al-Ni system. Journal of Materials Science letters, 1996,15(1-2): 1180-1184
    [161]柳林,秦勇.球磨能量对Mo-Si混合粉末机械合金化的影响.金属学报,1996,32 (4):423-428
    [162]徐强,张幸红,韩杰才,等.铜含量对燃烧合成TiB2-Cu基金属陶瓷组织和性能的影响.材料科学与工艺,2005,13(1):16-20
    [163]尹延西,王华明.激光熔覆Cuss/Cr5Si3金属硅化物复合涂层组织及耐磨性的研究.摩擦学学报,2006,26(3):214-217
    [164]李静. Fe3Al基复合摩擦材料的制备与研究:[山东大学博士学位论文].济南:山东大学材料科学与工程学院, 2004
    [165] Knudsen F P. Dependence of the mechanical properties of brittle polycrystalline specimens on porosity and grain size. Journal of The American Chemical Society, 1959,25(11):261-269
    [166]Meyer M K, Akinc M. Boron doped Molybdenum Silicide and Products. Journal of The American Chemical Society, 1966,79(2):938-945
    [167]李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001,36
    [168]彭可.合金化和纳米复合化制备(Mo,W)Si2-SiC材料及其性能研究:[中南大学博士学位论文].长沙:中南大学材料科学与工程学院, 2008
    [169]天津大学物理化学教研室编.物理化学.北京:高等教育出版社,1985,3
    [170] Matucha K H著,丁道运等译.非铁合金的结构与性能(第8卷).北京:科学出版社, 1999
    [171]徐亚伟,王华明.激光熔化沉积γ/Mo2Ni3Si金属硅化物合金的腐蚀行为.稀有金属材料与工程,2007,36(4):660-664
    [172]张景德. Fe-Al/Al2O3功能梯度涂层制备及其热机械行为与性能研究:[山东大学博士学位论文].济南:山东大学材料科学与工程学院, 2002
    [173]Severin D, Dorsch S. Friction mechanism in industrial brakes. Wear,2001, 249(9):771-779
    [174]Kato K. Wear in relation to friction-a review. Wear,2000,241(2):151-157
    [175]全永昕.工程摩擦学.杭州:浙江大学出版社, 1994
    [176]郑庆林.摩擦学原理.北京:高等教育出版社, 1994
    [177]Deuis R L, Subramanian C, Yellup M J. Abrasive wear of aluminium composites-a review. Wear,1996,201(1-2):132-144
    [178] Rainforth W M. Microstructural evolution at the worn surface: a comparation of ceramics. Wear,2000,245(1-2):162-177
    [179]万怡灶,王玉林,成国祥,等. Al2O3/铜合金复合材料的磨损特性研究.材料工程,1997,(11):6-8
    [180] Alman D E, Hawk J A. The abrasive wear of sintered titanium matrix-ceramic particle reinforced composites. Wear,1999,225(1):629-639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700