多不饱和脂肪酸乳状液体系氧化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多不饱和脂肪酸(Polyunsaturated Fatty Acid ,PUFA)乳状液体系在食品、保健品、化妆品、饲料以及药品中有重要的应用,虽然纯油脂的自动氧化历程已经比较清晰,但乳状液中油脂氧化的机理和影响因素与纯油脂不完全相同。目前国内外在PUFA乳状液体系氧化这一领域的研究多局限于乳状液界面特性、油滴的物理性质等与油脂氧化的相关性研究,而关于其氧化机理和氧化动力学方面的研究不多。本论文研究PUFA乳状液体系的氧化机制,对于控制乳状液中PUFA的氧化和促进PUFA在食品、药品等众多领域中的应用具有重要的理论研究价值和实用意义。
     食品、保健品或化妆品等的乳状液体系存在的环境主要有如下几种:一是产品装满于密封容器内,即一个无气相封闭体系,除了体系中存在的溶解氧之外,不再有外界氧补充;二是产品装在密封容器内,但乳状液上方有一定的空间,即一个存在有限外界氧补充的封闭体系(又分为搅拌和静置两种);三是产品存于敞开容器,外界氧的补充是无限的,且氧压是恒定的,这是一个恒表面氧压无限氧补偿的敞开体系(又分为搅拌和静置两种)。
     本论文主要针对上述各种环境,通过合理的假设,并综合考虑气液边界传质阻力、液中扩散、油水边界乳化剂膜边界层阻力、PUFA自催化氧化反应动力学,建立相应的扩散-氧化动力学模型,研究各种条件下乳状液中氧的传质和PUFA的氧化规律。运用Runge-Kutta法求解微分方程组,并用实验进行模型拟合验证。
     模型Ⅰ:研究了无外界氧补偿条件下密封体系乳状液中PUFA的氧化,由水油相间氧气扩散方程和油滴内PUFA氧化动力学方程组成。用数学方法得到无法用实验测定的乳化剂膜传质系数k0,为研究乳状液体系中PUFA的氧化提供了必要的方法。结果表明,该模型能较好地预测无外界氧补偿条件下乳状液中氧的扩散和PUFA的氧化规律。说明在无外界氧补偿条件下,乳状液中PUFA的氧化主要受控于乳化剂膜的传质阻力和油水相比表面积对氧扩散的影响。
     模型Ⅱ:研究了恒表面氧压搅拌式无限氧补偿条件下乳状液中PUFA的氧化,在模型Ⅰ的基础上,增加气液边界传质方程。结果表明,该模型能较好地预测乳化剂浓度、PUFA起始浓度等众多因素对乳状液中PUFA氧化的影响。乳化剂浓度降低,PUFA氧化加快;随着乳状液中PUFA起始浓度的增大,其氧化速率降低。环境温度和PUFA的结构与乳状液中PUFA的氧化不存在显著的相关性。在此基础上,将模型扩展到混合PUFA乳状液体系氧化,预测结果表明:乳状液中存在多种PUFA时,各自的氧化速率随其在混合体系中比例的增大而加快。
     模型Ⅲ:研究了搅拌式有限氧补偿条件下封闭体系乳状液中PUFA的氧化,该模型引入了动态乳化剂膜传质系数k0。该模型能较好地预测乳化剂类型、PUFA浓度和结构、氧压对乳状液体系中氧的扩散和PUFA氧化的影响。同时建立了用U型管压差计的压差读数直接表征氧浓度的快速方法。
     模型Ⅳ:研究了恒表面氧压静置式无限氧补偿条件下乳状液中PUFA氧化,采用特殊边界的偏微分方程组建立了液膜传质—液中扩散—乳化剂膜传质—PUFA自催化氧化动力学模型,通过非对称正交配置法处理特殊边界,得到了该偏微分方程组的数值解。结合数学模拟试验和实验值,确定了氧在水相中的扩散系数。该模型能较好地预测乳状液中PUFA浓度等因素对传质与氧化的影响。随着乳状液中PUFA起始浓度的增大,氧化速率下降;乳化剂浓度降低,在油滴表面形成的膜的厚度变薄,体系的k0增大,氧的液-液传质速率加快,水相平衡氧浓度下降,PUFA氧化加快;但两者对传质与氧化的影响程度均与液体深度相关:越靠近气液界面,影响越显著。
     本论文系统地研究了PUFA乳状液体系在多种条件下的氧化,综合考虑了乳化剂膜传质系数、气液界面液膜传质系数、水相主体扩散系数等多因素的共同作用,创新地建立了无外界氧补偿密封体系、恒表面氧压搅拌式无限氧补偿体系、搅拌式有限氧补偿密封体系和恒表面氧压静置式无限氧补偿体系乳状液中PUFA氧化的动力学模型,从而可以系统预测多种条件下乳化剂类型及浓度、PUFA结构及浓度、氧压、温度等与体系中氧的传质和PUFA氧化的关系。
     明确了乳状液中油脂的氧化为非均相反应,氧在气-液-液三相间的扩散,扩散传质对乳状液中油脂氧化的影响较体相油脂氧化反应中更为重要。通过四个氧化模型,表征了各种条件下PUFA乳状液体系从气体氧到气-液表面传质、到液体中的扩散行为、再到乳化剂膜的传质、直至最终自催化氧化反应的全过程。提出了乳状液中PUFA氧化的机制,即乳状液中PUFA氧化主要为传质所控制;且由气液界面氧的传质速率和水油界面氧的传质速率及水相扩散速率协同控制。
Emulsion system of polyunsaturated fatty acid (PUFA) has important appliance in food, health, cosmetic, feed and leechdom/drug. Autoxidation proceses of bulk lipid seems clear. However, the oxidation mechanism and factors that influence oxidation are appreciably different for lipid in emulsions than for bulk lipids. A number of reports have appeared in the literature concerning the relations between the interfacial characteristics of emulsion, droplet characteristics and lipid oxidation in emulsions, no general mathematical models for oxidation mechanism and dynamics, and have been presented yet to simulate these data. The studies on the oxidation of PUFA in emulsions were very important for the cortrol of oxidation of PUFA in emulsions and appliance in fields of food, and leechdom/drug theoretically and practically.
     There are some kinds of environment of emulsion system of food, health and cosmetic as follows: one is close system without gas-phase and without oxygen compensation from atmosphere. Two is close system with limited oxygen compensation (stirring and static state ). Three is open system with infinite oxygen compensation at constant surface oxygen pressure (stirring and static state).
     Models of diffusion-oxidation were established by logical assumptions and considering the mass transfer resistance of gas-liquid boundary, the diffusion in liquid , the mass transfer resistance of boundary layer from emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA compositely in this paper. The oxidation rule of PUFA in emulsions was studied. Differential equations are numerically solved by Runge-Kutta method. The model was verified by comparing the predictions of the model to the experimental data.
     Model: The oxidation of PUFA in emulsion without oxygen compensation from atmosphere was studied. The equations are composed of oxygen diffusion and PUFA oxidation in droplet. Mass transfer coefficient of emulsifier membrane k0 was obtained by mathematics experiment. The results indicated that the model is consistent well with the oxygen diffusion and linoleic acid oxidation in emulsion, and showed that the oxid- ation of PUFA in emulsion without oxygen compensation from atmosphere was controled by mass transfer resistance from emulsifier membrane and the specific surface area of oil phase to aqueous phase. ModelⅡ: The oxidation of PUFA in emulsion with stirring and infinite oxygen compensation at constant surface oxygen pressure was studied. An mass tranfer equation of gas-liquid boundary was added based on modelⅠ. The results showed good applicibility in the prediction of the effect of emulsifier concentration, structure and concentrations of PUFA etc on the oxidation of PUFA in emulsions. Decreasing emulsifier concentration , or initial concentration of PUFA led to an increase in total oxidation of PUFA . Temperature and structure of PUFA had little effect on oxidation of PUFA. Another model of oxidation of PUFAs in their mixed system was established. The results indicated that the oxidation of one of PUFA was promoted as its content in the mixture increased.
     ModelⅢ: The oxidation of PUFA in emulsion with stirring and limited oxygen compensation was studied. Dynamic mass tranfer coefficient of emulsifier membrane k0 was induucted. This model showed good applicibility in the prediction of the effect of emulsifier type, structure and concentration of PUFA, oxygen press on the diffusivity of oxygen and oxidation of PUFA in emulsion. A rapid check way of oxygen was established by press difference of U-shape manometer.
     ModelⅣ: The oxidation of PUFA in emulsion with static state and infinite oxygen compensation was studied. A diffusion-oxidation model with partial differential equation (PDE) was established by consider- ing the mass transfer and autocatalytic-type autoxidation of PUFA synthetically. Complex boundary was deal with distinguishingly and the PDE were numerically solved by orthogonal collocation method of dissymmetry. The oxygen diffusivity of liquid-phase was obtained by mathematics simulation and experimental data. The model showed good applicibility in the prediction of effect of concentration of PUFA etc on the oxidation of PUFA in emulsion.
     Oxidation of PUFA in emulsion systems for some kinds of condition were studied roundly in this paper. By considering the mass transfer resistance of gas-liquid boundary, the resistance of boundary layer from emulsifier membrane, diffusivity of liquid-phase and the autocatalytic-type autoxidation reaction of PUFA compositely, four kinetics models of diffusion-oxidation were established with innovation. these four models were based on system with closed without oxygen compensation from atmosphere, or agitating and infinite oxygen compensation at constant surface oxygen pressure, or agitating and limited oxygen compensation, or static state and infinite oxygen compensation at constant surface oxygen pressure. and which showed good applicibility in the prediction of effect of emulsifier type and concentration, PUFA structure and concentration, oxygen pressure, and temperature on oxygen distributing and PUFA oxidation in emulsions for some conditions roundly.
     It is confirmed that the oxidation of PUFA in emulsions is heterogeneous reaction, oxygen diffusion during gas-liquid-liquid , and the effect of diffusivity on oxidation of PUFA is more important for lipid in emulsions than for bulk lipids. The process of oxygen diffusion and oxidation of PUFA was expressed completely by four models. Oxidation mechanism of PUFA in emulsions was that the oxidation is controled by mass transfer mainly, which is cooperated with three kind of mass transfer.
引文
1.荆忠胜.表面活性剂概论[M].北京:中国轻工业出版社,1999. 233-235
    2. Fritsch CW. Lipid oxidation–the other dimensions [J].Inform, 1994, (5): 423-436
    3. Coupland JN, McClements DJ. Lipid oxidation in food emulsions[J]. Trends in Food Science & Technology March, 1996, (7): 83-91
    4. Halliwell B, Murcia MA,Chirico S,et al. Free radicals and antioxidants in food and in vivo:What they do and how they work[J].Crit.Rev.Food.Sci, 1995,35:7-20
    5.孙艺红,胡大一.N-3多聚不饱和脂肪酸与心脏性猝死[J].中国心血管病研究杂志,2003,1(1): 9-12.
    6.黄涛,黄开勋.不饱和脂肪酸修饰胰岛素的降糖活性及抗酶解作用[J].中国生化药物杂志,2005,26(2):65-67
    7.孙咏虹.李雅慧,闫骞.N-3多不饱和脂肪酸与免疫细胞功能[J].临床荟萃,2003,18(19): 1135-1137.
    8. Fritsch CW. Lipid oxidation–the other dimensions [J].Inform, 1994, (5): 423-436
    9. Halliwell B, Murcia MA,Chirico S,et al. Free radicals and antioxidants in food and in vivo:What they do and how they work[J].Crit.Rev.Food.Sci, 1995,35:7-20
    10. Frankel EN. Lipid oxidation. Dundee, Scontland; The Oil Press,1998. 300
    11. Andreo AL, Doval MM, Romero AM, et al. Influence of heating time and oxygen availability on lipid oxidation in meat emulsions[J]. Eur. J. Lipid Sci. Technol., 2003, 105 : 207-213
    12. Nuchi CD, Hernandez P, McClements DJ, et al. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions[J]. J. Agric. Food Chem., 2002, 50: 5445-5449
    13. Frankel EN. Lipid oxidation. Dundee, Scontland; The Oil Press.1998, 300
    14. McClements DJ, Decker EA. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems [J]. Journal of Food Science, 2000, 65(8): 1270–1282
    15. Mei L, Decker EA, McClements DJ. Evidence of iron association with emulsion droplets and its impact on lipid oxidation[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 5072-5077
    16. Spiteller P, Spiteller G. Strong dependence of the lipid peroxidation product spectrum whether Fe2+/O2 or Fe3+/O2 is used as oxidant [J]. Biochimica et Biophysica Acta 1998, 1392: 23–40
    17. Nawar WW. Lipids[C]. In: Fennema OR, eds. Food Chemistry, 3nded. New York: Marcel Dekker, 1996. 225-319
    18. Shahidi F, Wanasundara UN. Methods of measuring oxidative rancidity of fats and oils[C]. In: Akoh CC Min DB, eds. Food lipids: chemistry,nutrition and biotechnology. New York: Marcel Dekker, 1998. 377-396
    19. Wang XH,OhshimaT,Ushio H, Koizumi C. Proportion of geometrival hydroperoxide isomers generated by radical oxidation of methyl linoleate in homogeneous solution and in aqueous emulsion[J]. Liqids, 1999, 34: 675–679
    20. Yoshida Y, Niki E. Oxidation of methyl linoleate in aqueous dispersions induced by copper and iron[J]. Arch. Biochem. Biophys. 1992, 295:107-114
    21. Kobayashi H, Yoshida M, Miyashita K. Comparative study of the product components of lipid oxidation in aqueous and organic systems [J]. Chemistry and Physics of Lipids 2003,126: 111–120
    22. Miyashita K, Nara E, Ota T. Oxidation stability of polyunsaturated fatty acids in aqueous solution [J]. Biosci.Biotech.Biochem. 1993, 57:1638–1640
    23. Miyashita K, Nara E, Ota T. Oxidation stability of free fatty acids mixtures from soybean, linseed and sardine oils in an aqueous solution[J]. Biosci.Biotech.Biochem. 1994, 60: 315–318
    24. Coupland JN, Zhu Z, Wan H, et al.Droplet composition affects the rate of oxidation of emulsified ethyl lionleate[J]. J Am Oil Chem Soc. 1996, 73:795-801.
    25. Coupland JN, McClements DJ. Droplet composition affects the rate of oxidation of emulsified ethyl lionleate: Supporting evidence[J]. J Am Oil Chem Soc. 1996, 73:1207
    26. Marcuse R, Fredricksson PO. Fat oxidation at low oxygen pressure.Ⅰ.Kinetic studies on the rate of fat oxidation in emulsions [J]. J Am Oil Chem Soc. 1968, 45: 400-407
    27. Marcuse R, Fredricksson PO. Fat oxidation at low oxygen pressure.Ⅱ.Kinetic studies on the rate of fat oxidation in emulsions in the presence of antioxidants [J]. J Am Oil Chem Soc. 1969, 46: 262-268
    28. Hiemenz PC, Rajagopalan R.Principles of colloid and surface chemistry [M]. New York: Marcel Dekker. 1997:650
    29. Hunter RJ. Introduction to modern colloid science[M].Oxford Science Publications, 1993.
    30. Mei L, McClements DJ, Wu J, et al. Ironcatalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl [J]. Food Chemistry. 1998, 61(3): 307-312
    31. Mancuso, JR, McClements DJ, & Decker EA. The effects of surfactant type, pH, and chelators on theoxidation of salmon oil-in-water emulsions [J]. Journal of Agricultural and Food Chemistry, 1999, 47(10): 4112–4116
    32. Mancuso, JR, McClements DJ, & Decker EA. Abillity of iron to primote surfactant peroxide decomposition and oxidize alpha-tocopherol [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 4146–4149
    33. Chen G.. Interaction decay of nonionic surfactants at water surfaces[J]. Chemical Physics Letters , 2003,376: 758–760
    34. Chaiyasit W, Silvestre MPC, McClements DJ, et al. Ability of surfactant hydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions[J]. J. Agric. Food Chem., 2000, 48: 3077-3080
    35. Silvesre MPC, Chaiyasit W, Brannan RG, et al. Abillity of surfactant head group size th alter lipid and antioxidant oxidation in oil-in-water emulsions [J]. Journal of Agricultural and Food Chemistry, 2000, 48: 2057-2061
    36. Donnelly JL, Decker EA, McClements DJ.Iron-catalyzed of Menhaden oil as affected by emulsifiers [J]. J Food Sci, 1998, 63: 997-1000.
    37. Kabalanov AS, Shchukin E D. (1992) Ostwald Ripening Theory: Application to Fluorocarbon Emulsion Stability [J]. in Adv. Colloidfmul. Sci. 1992, 38: 69-97
    38.马友光,汪晓红,成弘等.表面活性剂对气液传质的影响[J].化工学报,1998, 49(3): 358-361
    39. Chen ZY, Nawar WW. The role of amino acids in the autoxidation of milk fat [J]. J Am Oil Chem Soc, 1991, 68: 47–50
    40. Fomuso LB, Corredig M, & Akoh CC. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions [J].Journal of Agricultural and Food Chemistry, 2002, 50(10): 2957–2961
    41. Osborn, HT, & Akoh, CC. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions [J]. Food Chemistry,2004, 84: 451– 456
    42. Lema?ska K, Szymuslak H, Tyrakowska B,et al. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones [J]. Free Radical Biology & Medicine, 2001, 31(7): 869-881
    43. Tong LM, Sasaki S, McClements, DJ, & Decker, EA. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey[J]. Journal of Agricultural and Food Chemistry, 2000, 48(5): 1473–1478
    44. Fomuso L B, Corredigm M, Akoh C C. Effect of Emulsifier on Oxidation Properties of Fish Oil-Based Structured Lipid Emulsions [J]. Journal of Agricultural and Food Chemistry, 2002, 50(10): 2957-2961
    45. Young-Je Cho, McClements DJ, and Eric A Decker. Ability of Surfactant Micelles to Alter the Physical Location and Reactivity of Iron in Oil-in-Water Emulsion [J]. J Agric Food Chem. 2002, 50: 5704–5710.
    46. 8 Mei, L., McClements, D., Decker, E. A. Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets. Journal of Agricultural and Food Chemistry, 1999, 47(6): 2267-2273
    47. Sims RJ, Fioriti J, & Trumbetas, J. Effects of sugars and sugar alcohols on autoxidation of saffwer oil in emulsions [J]. Journal of the American Oil Chemists’Society, 1979, 56(8): 742–745
    48. Sims RJ. Oxidation of fats in food products [J].Inform 5:1020-1028
    49. Rooze Jp, Frankel EN, Kinsella JE. Enzymic and autoxidation of lipids in low fat foods: model of linoleic acid in emulsified hexadecane [J]. Food Chem.1994, 50(1): 33-38
    50.王志,王世昌.乳状液制备新工艺——膜乳化过程实验研究[J].膜科学与技术,1999,19(4):23-26
    51. Tong LM, Sasaki S, McClements, DJ, & Decker, EA. Antioxidant activity of whey in a salmon oil emulsion [J]. Journal Food science, Submitted, 2000
    52. Gu YS, Regnier L., McClements DJ.Influence of environmental stresses on stability of oil-in-wateremulsionscontaining droplets stabilized byβ-lactoglobulin–ι-carrageenan membranes[J]. Journal of Colloid and Interface Science, 2005,286: 551–558
    53. Alamed J, McClements DJ, Decker EA. Influence of heat processing and calcium ions on the ability of EDTA to inhibit lipid oxidation in oil-in-water emulsions containing omega-3 fatty acids [J]. Food Chemistry, 2006,95(4) 585-590
    54. Matsumuraa Y, Egamia M, Satakea C, et al. Inhibitory effects of peptide-bound polysaccharides on lipid oxidation in emulsions [J]. Food Chemistry 2003, 83: 107–119
    55. Ponginebbi L, Nawar WW, Chinachoti P. Oxidation of linolein acid in emulsions: Effect of substrate, emulsifer, and suger concentration[J]. J Am Oil Chem Soc, 1999, 76: 131-138
    56. Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion [J]. Journal of Agricultural and Food Chemistry, 1992, 40: 945-948
    57. Yamauchi R, Sugiura T, Kato K, et al. Effect of sugers and suger analogs on autoxidation of methyl linoleate and saffower oil [J]. Agric. Biol.Chem. 1982, 46: 2997-3002
    58. Frankel EN, Huang SW, Kanner J, et al. Interfacial phenomena in the evaluation of antioxidants-bulk oils vs emulsions [J]. J Ag Food Chem., 1994, 42: 1054-1059
    59. Frankel EN, Huang SW, Aeschbach R, et al. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol and rosmarinic acid, in bulk oil and oil-in-water emulsion[J]. J Ag Food Chem., 1996, 44: 131-135
    60. Frankel EN, Huang SW, Aeschbach R, et al. Evaluation of antioxidant activity of a rosemary extract, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsions[J]. J Sci Food Ag.,1996, 72:201-208
    61. Hopia A, Huang SW, Schwarz K, et al. Effects of different lipid systems on antioxidant activity of rosemary constituents carnosol and carnosic acid with and without R-tocopherol[J]. J. Agric. Food Chem., 1996, 44: 2030-2036
    62. Pekkarinen SS, Stockmann H, et al., Antioxidant Activity and Partitioning of Phenolic Acids in Bulk and Emulsified Methyl Linoleate[J]. J. Agric. Food Chem. 1999, 47: 3036-3043
    63. Huang SW, Hopia A, Schwarz K. et al. Antioxidant activity of carnosic acid and methyl carnosate in bulk oils and oil-in-water emulsions [J]. J Ag Food Chem., 1996, 44: 2951-2956
    64. Fang JG , Lu M, Chen ZH, et al. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles[J]. Chem. Eur. J., 2002, 18(8): 4191-4198
    65. Zhou B, Miao Q, Yang L, et al. Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles[J]. Chem. Eur. J., 2005, (11): 680– 691
    66. Chaiyasit W, McClements DJ, & Decker E. The Relationship between the Physicochemical Properties of Antioxidants and Their Ability to Inhibit Lipid Oxidation in Bulk Oil and Oil-in-Water Emulsions[J]. J. Agric. Food Chem., 2005, 53: 4982-4988
    67. Huang SW, Hopia A, Schwarz K. et al. Antioxidant activity of R-tocopherol and trolox in different lipid substrates: Bulk oils vs oil-in-water emulsions[J]. J. Agric. Food Chem., 1996, 44:444-452
    68. Gramlich G, Zhang JY, and WM. Increased Antioxidant Reactivity of Vitamin C at Low pH in Model Membranes, J. AM. Chem. Soc. 2002, 124: 11252–11253
    69. Rietjens IMCM, Boersma MG, Haan LD,et al. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids[J]. Environmental Toxicology and Pharmacology, 2002, 11: 321–333
    70. Chen JH, Ho CH. Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds [J]. J. Agric. Food Chem. 1997, 45: 2374~2378
    71. Ozilgen S, ?zilgen M. Kinetic model of lipid oxidation in foods [J]. Journal of Food Science, 1990,55: 498–501
    72. Adachi S, Ishiguro T, &Matsuno R. Autoxidation kinetics for fatty acids and their esters [J]. Journal of the American Oil Chemists’Society. 1995, 72(5): 547–551
    73. Adachi S, Ishiguro T, &Matsuno R. Thermal analysis of autoxidation of ethyl esters of n-3 and n-6 fatty acids. Food Science and Technology [J]. International, 1995, 1(1): 1–4
    74. Yoshii H, Furuta T, Itoh T, et al. Kinetic analysis of the autoxidation of ethyl eicosapentaenoate at different oxygen levels [J]. Bioscience, Biotechnology and Biochemistry, 1999, 63(3): 662–665
    75. Minemoto Y, Adachi S, Matsuno R. Autoxidation of linoleic acid encapsulated with a polysaccharides of differing weight ratio [J]. Bioscience, Biotechnology and Biochemistry, 1999, 63(5): 866-869
    76. Ishido E, Minemoto Y, Adachi S, et al. Heterogeneity during autoxidation of linoleic acid encapsulated with a polysaccharide [J]. Journal of Food Engineering 2003, 59: 237–243
    77. Gieseg SP, Esterbauer H, FEBS Lett. 1994,343: 188–194
    78. Ramos P, Gieseg, SP, Schuster B, Esterbauer H, J. Lipid Res., 1995, 36: 2113–2128
    79. Pinchuk I, Schnitzer E, Lichtenberg D. Kinetic analysis of copper-induced peroxidation of LDL[J]. Biochimica et Biophysica Acta, 1998,1389: 155–172
    80. Vazquez G, Antorrena G, Navaza JM. Estimation of the turbulence induced by the Marangoni effect at agas-liquid interface[J]. Int Chem Eng. 1990, 30(2): 228-235.
    81. Golovin AA. Madd transfer under interfacial turbulence kinetic regularities[J]. Chem Eng Sci.1992, 47(8): 2069-2080.
    82.天津大学化工原理教研室编.化工原理(第一版)[M].天津:天津科学技术出版社.1987:78-92
    83.戚以政,汪叔雄.生化反应动力学与反应器(第2版)[M].北京:化学工业出版社,1999: 296-297
    84.马友光,白鹏,余国琮.气液传质理论研究进展[J].化学工程. 1996, 24(6): 7-12
    85.周建伟,韩相明,黄艳琴,等.几种传质膜模型的比较[J].平原大学学报.1999,16(2):31-32
    86.谭天恩,金一中,骆有寿编著.传质一反应工程(第一版)[M].杭州:浙江大学出版.1990:33-49
    87. Jaime B. Principles and Modern Applications of Mass Transfer Operations[M]. John Wiley &Sons, Inc. 2002
    88. Jaime O W. Fluid Mechanics for Chemical Engineers [M]. Prentice Hall PTR, 1999
    89. William JT. Introduction to Transport Phenomena [M]. Prentice Hall, 2000
    90.林成,周明,许春建,等.分散第二液相对增强气液传质的研究进展[J].化学工程, 2000, 28(2): 23~28
    91.林成,周明,许春建.气液液三相体系的二维非均相传质模型与求解[J].化工学报, 1999, 50(4): 469-476
    1 McClements, D. J., Decker, E. A. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems[J]. Journal of Food Science, 2000, 65: 1270-1282
    2 Akoh, C. C., oussata, C. O. Characterization and oxidative stability of enzymatically produced fish and canola oil-based structured lipids[J]. Journal of the American Oil Chemists’Society, 2001, 78(1): 25-30
    3 Fomuso, L. B., & Akoh, C. C. Enzymatic modification of triolein: incorporation of caproic and butyric acids to produce reduced-calorie structured lipids[J]. Journal of American Oil Chemists’Society, 1996, 74(3): 269-272
    4 Mancuso, J. R., McClements, D. J., Decker, E. A. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry, 1999, 47(10): 4112-4116
    5 Mei, L., McClements, D., Decker, E. A. Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets. Journal of Agricultural and Food Chemistry, 1999, 47(6): 2267-2273
    6 Osborn, H. T. Akoh, C. C.. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions[J]. Food Chemistry 2004, 84: 451-456
    7 GB/T5009.37-2003食用植物油卫生标准的分析方法[S]. 2003.8
    8 GB5538-85植物油脂检验油脂酸败试验及过氧化值测定法[S]. 1985.11
    9 Young-Je Cho, McClements, D. J., Decker, E. A. Ability of Surfactant Micelles To Alter the Physical Location and Reactivity of Iron in Oil-in-Water Emulsion [J]. J Agric Food Chem. 2002, 50: 5704-~5710
    10 Sims, R. J., Fioriti, J., Trumbetas, J. Effects of sugars and sugar alcohols on autoxidation of saffwer oil in emulsions [J]. Journal of the American Oil Chemists’Society, 1979, 56(8): 742-745
    11 Sims, R. J. Oxidation of fats in food products [J]. Inform 5:1020-1028
    12 Rooze, J. P., Frankel, E. N., Kinsella, J. E. Enzymic and autoxidation of lipids in low fat foods: model of linoleic acid in emulsified hexadecane [J]. Food Chem.1994, 50(1): 33-38
    1.汤兵,王向德等.乳状液膜扩散-反应双控制过程传递机理数学模型研究[J].水处理技术,1999,25(3):137–143
    2. S Adachi, T Ishiguro, &R Matsuno. Autoxidation kinetics for fatty acids and their esters[J]. Journal of the American Oil Chemists’Society, 1995, 72(5): 547– 551
    3. H Yoshii, T Furuta, T Itoh, et al. Kinetic analysis of the autoxidation of ethyl eicosapentaenoate at different oxygen levels[J]. Bioscience, Biotechnology and Biochemistry, 1999,63: 662– 665
    4. Ishido E, Minemoto Y, Adachi S, et al. Heterogeneity during autoxidation of linoleic acid encapsulated with a polysaccharide [J]. Journal of Food Engineering 2003, 59: 237–243
    5. Osborn, HT, & Akoh, CC. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions [J]. Food Chemistry,2004, 84: 451– 456
    6.吴纯洁,蒲旭峰,赵朝伟.气相色谱法测定红花籽油中亚油酸的含量[J].华西医学杂志,2002, 17(5): 28–32
    7.宋兆基,徐流美等. MATLAB 6.5在科学计算中的应用[M].北京:清华大学出版社, 2005
    8. McClements DJ, & Decker EA. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems [J]. Journal of Food Science, 2000, 65(8): 1270–1282
    9. Mei L, McClements DJ, Wu J, & Decker EA. Ironcatalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl [J]. Food Chemistry. 1998, 61(3): 307–312
    10. Mancuso, JR, McClements DJ, & Decker EA. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry,1999, 47(10): 4112–4116
    11. Fomuso LB, Corredig M, & Akoh CC. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions [J].Journal of Agricultural and Food Chemistry, 2002, 50(10): 2957–2961
    1.戚以政,汪叔雄.生化反应动力学与反应器(第2版)[M].北京:化学工业出版社,1999
    2.汤兵,王向德等.乳状液膜扩散-反应双控制过程传递机理数学模型研究[J].水处理技术,1999,25(3):137–143
    3. Adachi S, Ishiguro T, & Matsuno R. Autoxidation kinetics for fatty acids and their esters [J]. Journal of the American Oil Chemists’Society, 1995, 72(5): 547–551
    4. Yoshii H, Furuta T, Itoh T, et al. Kinetic analysis of the autoxidation of ethyl eicosapentaenoate at different oxygen levels [J]. Bioscience, Biotechnology and Biochemistry, 1999,63: 662–665
    5. Ishido E, Minemoto Y, Adachi S, et al. Heterogeneity during autoxidation of linoleic acid encapsulated with a polysaccharide [J]. Journal of Food Engineering 2003, 59: 237–243
    6.罗和安,胡蓉蓉,刘平乐,等.自由界面气液传质系数的旋涡作用模型[J].化工学报,2002,53(11):1164–1168
    7.宋兆基,徐流美主编. MATLAB 6.5在科学计算中的应用[M].北京:清华大学出版社, 2005
    8. Miyashita K, Nara E,Ota T. Oxidation stability of polyunsaturated fatty acids in aqueous solution[J]. Biosci.Biotech.Biochem. 1993, 57:1638–1640
    9. Miyashita K, Nara E, Ota T. Oxidation stability of free fatty acids mixtures from soybean,linseed and sardine oils in an aqueous solution[J]. Biosci.Biotech.Biochem. 1994, 60: 315–318
    10. Kobayashi H, Yoshida M, Miyashita K. Comparative study of the product components of lipid oxidation in aqueous and organic systems[J]. Chemistry and Physics of Lipids 2003, 126: 111–120
    11. Ishido E, Minemoto Y, Adachi S, et al. Kinetic expression for the oxidation of linoleic and arachidoic acid esters in their mixed system[J]. Biosci.Biotech.Biochem. 2002, 66(1):73–77
    1.戚以政,汪叔雄.生化反应动力学与反应器[M].第2版.北京:化学工业出版社,1999
    2.汤兵,王向德,万印华等.乳状液膜扩散-反应双控制过程传递机理数学模型研究[J].水处理技术,1999,25(3):137–143
    3. Adachi S, Ishiguro T, & Matsuno R. Autoxidation kinetics for fatty acids and their esters [J]. Journal of the American Oil Chemists’Society, 1995, 72(5): 547-551
    4. Yoshii H, Furuta T, Itoh T, et al. Kinetic analysis of the autoxidation of ethyl eicosapentaenoate at different oxygen levels [J]. Bioscience, Biotechnology and Biochemistry, 1999,63(4): 662~665
    5. Ishido E, Minemoto Y, Adachi S, et al. Heterogeneity during autoxidation of linoleic acid encapsulated with a polysaccharide [J]. Journal of Food Engineering 2003, 59: 237–243
    6.贾绍义,柴诚敬主编.化工传质与分离过程[M].北京:化学工业出版社,2001
    7. Mulder M H V , Franken T , Smolders C A. Preferential sorption versus preferential permeability in pervaporation [J ] . J Membr Sci ,1985 ,22 :155-173
    8. Neel J . Fundamental aspects of pervaporation , Regional course in membrane processes[ R] . Tempus European Project J EP 4720 - 92/ 1 ,1993
    9. Chen F R ,Chen H F. A diffusion model of the pervaporation separation of ethylene glycol - water mixtures through crosslinked poly (vinyl alcohol) membrane [J]. J Membrane Science ,1998 ,139 :201-209
    10.罗和安,胡蓉蓉,刘平乐等.自由界面气液传质系数的旋涡作用模型[J].化工学报,2002,53(11):1164-1168
    11.宋兆基,徐流美主编. MATLAB 6.5在科学计算中的应用[M].北京:清华大学出版社, 2005
    12.钟秦,俞马宏.化工数值计算[M].北京:化学工业出版社,2003
    1.戚以政,汪叔雄.生化反应动力学与反应器(第2版)[M].北京:化学工业出版社,1999
    2.汤兵,王向德等.乳状液膜扩散-反应双控制过程传递机理数学模型研究[J].水处理技术,1999,25(3):137–143
    3. Adachi S, Ishiguro T, & Matsuno R. Autoxidation kinetics for fatty acids and their esters [J]. Journal of the American Oil Chemists’Society, 1995, 72(5): 547–551
    4. Yoshii H, Furuta T, Itoh T, et al. Kinetic analysis of the autoxidation of ethyl eicosapentaenoate at different oxygen levels [J]. Bioscience, Biotechnology and Biochemistry, 1999,63: 662–665
    5. Ishido E, Minemoto Y, Adachi S, et al. Heterogeneity during autoxidation of linoleic acid encapsulated with a polysaccharide [J]. Journal of Food Engineering 2003, 59: 237–243
    6.黄华江.实用化工计算机模拟[M].北京:化学工业出版社,2004:132-148
    7.潘亚明,朱鹤孙.化学与化工中的数学方法[M].北京:北京理工大学出版社,1993
    8.宋兆基,徐流美主编. MATLAB 6.5在科学计算中的应用[M].北京:清华大学出版社, 2005
    9.李荣华.偏微分方程数值解法[M].北京:高等教育出版社,2005
    10.张建侯,许继恩.化工过程分析与计算机模拟[M].北京:化学工业出版社,1989:227-238
    11.罗和安,胡蓉蓉,刘平乐等.自由界面气液传质系数的旋涡作用模型[J].化工学报,2002,53(11):1164-1168
    
    1. Fritsch CW. Lipid oxidation–the other dimensions [J].Inform, 1994, (5): 423-436
    2. Halliwell B, Murcia MA,Chirico S,et al. Free radicals and antioxidants in food and in vivo:What they do and how they work[J].Crit.Rev.Food.Sci, 1995,35:7-20
    3. Frankel EN. Lipid oxidation. Dundee, Scontland; The Oil Press,1998. 300p
    4.唐有棋.化学动力学和反应器原理[M].北京:科学出版社,1978
    5.顾良荧.合成脂肪酸化学及工艺学(上)[M].北京:轻工业出版社,1984. 356-359,364-372
    6. R T莫里森,R N博伊德.有机化学[M].北京:科学出版社,1980. 16-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700