蜂斗菜素和查尔酮衍生物抑制人神经母细胞瘤细胞增殖作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:神经母细胞瘤(Neuroblastoma, NB)是一种节后交感神经系统的胚胎性恶性肿瘤,为儿童最常见的颅外实体肿瘤之一。神经母细胞瘤在婴幼儿中的发病率及死亡率高,预后差。目前为止,尚未有十分行之有效的治疗方法。我们首次研究了蜂斗菜素(petasin)以及两种查尔酮类(Chal cones)新型化合物的抗人神经母细胞瘤细胞作用及其机制,为蜂斗菜素以及查尔酮类新型化合物开发用于神经母细胞瘤的预防和治疗提供初步的实验依据。
     方法:本论文利用SRB法检测药物作用肿瘤细胞后的细胞活性;流式细胞术检测细胞周期和凋亡;Hoechst33258染色法检测细胞凋亡;细胞计数法检测蜂斗菜素连续作用7days对SK-N-SH和SH-SY5Y细胞生长的影响,以及蜂斗菜素处理SK-N-SH和SH-SY5Y细胞72h撤去药物后细胞的生长情况;β-半乳糖苷酶染色实验观察蜂斗菜素对SK-N-SH细胞衰老的影响;蛋白免疫印迹法(western blot)检测蜂斗菜素处理SK-N-SH细胞不同时间后,对ERK1/2和MEK蛋白磷酸化水平的影响。实验中以顺铂为阳性对照药物。
     结果:蜂斗菜素对SK-N-SH, SH-SY5Y, SK-N-BE(2), SGC7901, SMMC7721,Ec9706和U251细胞均有不同程度的增殖抑制作用,其中对SK-N-SH细胞的增殖抑制作用最强,72h的IC50低至0.8μmol·L-1,并且这种抑制效应在一定范围内呈剂量和时间依赖性。蜂斗菜素使SK-N-SH细胞的周期阻滞于G1期,但不诱导其凋亡和衰老;蜂斗菜素处理SK-N-SH细胞72h后撤去药物,细胞的增殖能力和周期分布都恢复正常水平。而蜂斗菜素对SH-SY5Y细胞增殖抑制作用相对SK-N-SH细胞较弱(72h的IC50为25.5μmol·L-1),但可以诱导其发生凋亡,并且蜂斗菜素处理SH-SY5Y细胞72h后撤去药物,细胞的增殖能力没有恢复。进一步研究蜂斗菜素对SK-N-SH细胞的作用机制,我们还发现蜂斗菜素可以瞬时地下调SK-N-SH细胞的ERK1/2和MEK蛋白的磷酸化水平。同时,查尔酮类新型化合物A和B对SK-N-SH细胞均有不同程度的抑制作用,并且抑制效应在一定范围内呈剂量和时间依赖性。并且,化合物A使SK-N-SH细胞的周期阻滞于G1期,而化合物B则使SK-N-SH细胞的周期阻滞于G2M期。化合物A和B都可以诱导SK-N-SH细胞发生凋亡,并且两种化合物诱导SK-N-SH细胞凋亡后细胞核形态的变化不同。
     结论:蜂斗菜素能够有效地抑制SK-N-SH增殖,其作用机制可能与其阻滞SK-N-SH细胞的周期和下调ERK1/2和MEK蛋白的磷酸化水平有关;而蜂斗菜素抑制SH-SY5Y细胞的增殖,可能与其诱导SH-SY5Y细胞的凋亡有关。查尔酮类新型化合物A和B都能抑制SK-N-SH细胞增殖,作用机制可能与其改变SK-N-SH细胞周期分布和诱导细胞凋亡相关。
BACKGROUND&OBJECTIVE:Neuroblastoma is an embryonal malignancy of postganglionic sympathetic nervous system, one of the most common extracranial solid tumors in children. There is high morbidity and mortality of the tumor in infants and young children, with poor prognosis. So far, there is no effective way to improve this situation. We studied the effects of petasin and two novel compounds of chalcones on anti-human neuroblastoma and its mechanism, and provided preliminary experimental evidence for petasin and two novel compounds of chalcones using on the prevention and treatment of neuroblastoma.
     METHODS:The antiproliferation effects of the compounds on tumor cells were detected by SRB assay. Cell cycle distributions were measured by flow cytometry. Cellular apoptosis was detected by Hoechst33258staining assay and flow cytometry. The growth of SK-N-SH and SH-SY5Y cells were established by cell counting, and the proliferation of SK-N-SH and SH-SY5Y cells following removal of petasin were established by the same method. Cell senescence of SK-N-SH was observed by β-galactosidase staining assay. The phosphorylation of ERK1/2and MEK of SK-N-SH was determined by western blot. The positive control of experiment is cisplatin.
     RESULTS:Petasin resulted in various degree inhibition of SK-N-SH, SH-SY5Y, SK-N-BE(2), SGC7901, SMMC7721, EC9706, and U251cells in a dose-and time-dependent manner within certain range. After treated with petasin, the cell cycle of SK-N-SH arrested in G1phase, and there was no apoptosis shown neither by Hoechst33258staining nor flow cytometry analysis. And petasin did not induce SK-N-SH cells senescence. The capacity of proliferation and cell cycle of SK-N-SH following removal of petasin had returned to normal levels. In correspond, there was apoptosis shown both by Hoechst33258staining and flow cytometry analysis in SH-SY5Y after treated with petasin. And the proliferation capacity of SH-SY5Y following removal of petasin had not returned to normal levels. In the end, western blot analysis observed that the phosphorylation of ERK1/2and MEK was decreased by pretreatment with petasin in transiently. At the same times, compound A and B resulted in various degree inhibitions of SK-N-SH cells in a dose-and time-dependent manner within certain range. After treated with compound A and B, the cell cycle of SK-N-SH were arrested in G1and G2M phase, respectively. And there was apoptosis shown both by Hoechst33258staining and flow cytometry analysis.
     CONCLUSION:Petasin can inhibit the proliferation of SK-N-SH and SH-SY5Y. Petasin-treated SK-N-SH cells just were inhibited the cell proliferation, the mechanism may be associated with down-regulation the phosphorylation of ERK1/2and MEK protein. Novel compounds of chalcones can inhibit the proliferation of SK-N-SH, and the mechanism may be related with changing cell cycle distribution and inducing apoptosis.
引文
[1]LAG R, Smith MA, Gurney JG. Cancer Incidence and Survival among Children and Adolescents:United States SEER Program 1975-1995[M]:Bethesda, MD:National Cancer Institute,1999
    [2]W.B. London RPC, K.K. Matthay ATL, R.C. Seeger HS, et al. Evidence for an Age Cutoff Greater Than 365 Days for Neuroblastoma Risk Group Stratification in the Children's Oncology Group[J]. J Clin Oncol,2005,23(27):6459-6465
    [3]Jun Li TDT, Jacqueline W. Miller PLA, L.Stewart S. Cancer Incidence Among Children and Adolescents in the United States,2001-2003[J]. pediatric,2008,121:1470-1477
    [4]Park JR, Eggert A, Caron H. Neuroblastoma:biology, prognosis, and treatment[J]. Pediatr Clin North Am,2008,55(1):97-120, x
    [5]Schwab M, Westermann F, Hero B, et al. Neuroblastoma:biology and molecular and chromosomal pathology[J]. Lancet Oncol,2003,4(8):472-480
    [6]Ishola TA, Chung DH. Neuroblastoma[J]. Surg Oncol,2007,16(3):149-156
    [7]Ambros PF, Ambros IM, Brodeur GM, et al. International consensus for neuroblastoma molecular diagnostics:report from the International Neuroblastoma Risk Group (INRG) Biology Committee[J]. Br J Cancer,2009,100(9):1471-1482
    [8]Davidoff AM. Neuroblastoma[J]. Semin Pediatr Surg,2012,21(1):2-14
    [9]Kushner BH, Cheung NK. Induction for high-risk neuroblastoma[J]. Pediatr Blood Cancer, 2007,49(3):221-223
    [10]Maris JM. Recent advances in neuroblastoma[J]. N Engl J Med,2010,362(23):2202-2211
    [11]Lipton RB, Gobel H, Einhaupl KM, et al. Petasites hybridus root (butterbur) is an effective preventive treatment for migraine[J]. Neurology,2004,63(12):2240-2244
    [12]Horak S, Koschak A, Stuppner H, et al. Use-dependent block of voltage-gated Cav2.1 Ca2+ channels by petasins and eudesmol isomers[J]. J Pharmacol Exp Ther,2009,330(1):220-226
    [13]Kan SF, Yu CH, Wu CI, and Wang PS. Mechanism of S-petasin-induced apoptosis in androgen-independent prostate cancer cells[A]. ln.SSR:Program and Abstract of the 38th Annual Meeting of the Society for the Study of Reproduction, Quebec, Canada,24-27 July. (Poster Session, Program# W210)
    [14]郑洪伟,牛新文,朱君,等.查尔酮类化合物生物活性研究进展[J].中国新药杂志,2007,(18):1445-1449
    [15]金磊,闫聪彦,甘淋玲,等.查尔酮类化合物生物活性研究新进展[J].中国生化药物杂志,2010,(05):358-361
    [16]De Vincenzo R, Ferlini C, Distefano M, et al. In vitro evaluation of newly developed chalcone analogues in human cancer cells[J]. Cancer Chemother Pharmacol, 2000,46(4):305-312
    [17]Boumendjel A, Ronot X, Boutonnat J. Chalcones derivatives acting as cell cycle blockers: potential anti cancer drugs?[J]. Curr Drug Targets,2009,10(4):363-371
    [18]Huang DM, Shen YC, Wu C, et al. Investigation of extrinsic and intrinsic apoptosis pathways of new clerodane diterpenoids in human prostate cancer PC-3 cells[J]. Eur J Pharmacol,2004,503(1-3):17-24
    [19]Houghton P, Fang R, Techatanawat I, et al. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity [J]. Methods,2007,42(4):377-387
    [20]Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence:the senescence-associated beta-galactosidase assay[J]. Methods Mol Biol,2007,371:21-31
    [21]Debacq-Chainiaux F, Erusalimsky JD, Campisi J, et al. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo[J]. Nat Protoc,2009,4(12):1798-1806
    [22]Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging[J]. Cell, 2007,130(2):223-233.
    [23]Hornsby PJ. Senescence as an anticancer mechanism[J]. J Clin Oncol, 2007,25(14):1852-1857
    [24]Wu TS, Kao MS, Wu PL, et al. The bakkenolides from the root of Petasites formosanus and their cytotoxicity[J]. Chem Pharm Bull (Tokyo),1999,47(3):375-382
    [25]张福金.毛裂蜂斗菜中蜂斗菜总内酯的制备及生物活性研究[D].[硕士学位论文].上海:第二军医大学,2009
    [26]Molinari M. Cell cycle checkpoints and their inactivation in human cancer [J]. Cell Prolif, 2000,33(5):261-274
    [27]Murray AW. Recycling the cell cycle:cyclins revisited[J]. Cell,2004,116(2):221-234
    [28]Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death[J]. Cancer Cell,2005,8(1):7-12
    [29]Bold RJ, Termuhlen PM, McConkey DJ. Apoptosis, cancer and cancer therapy[J]. Surg Oncol,1997,6(3):133-142
    [30]Pasetto LM, D'Andrea MR, Brandes AA, et al. The development of platinum compounds and their possible combination [J]. Crit Rev Oncol Hematol,2006,60(1):59-75
    [31]Tao Q, Lv B, Qiao B, et al. Immortalization of ameloblastoma cells via reactivation of telomerase function:Phenotypic and molecular characteristics[J]. Oral Oncol, 2009,45(12):e239-244
    [32]Wang YN, Wu W, Chen HC, et al. Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation[J]. J Dermatol Sci, 2010,58(1):19-27
    [33]Zhong W, Zou G, Gu J, et al. L-arginine attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells[J]. Diabetes Res Clin Pract,2010,89(1):38-45
    [34]胡兵,沈克平,安红梅.细胞衰老与肿瘤治疗及中医肾理论[J].中国中医药信息杂志,2008,(05):8-9
    [35]李伟.顺铂诱导肿瘤细胞衰老相关新基因的筛选及功能鉴定[D].[博士学位论文].武汉:华中科技大学,2009
    [36]Cagnol S, Chambard JC. ERK and cell death:mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence[J]. FEBS J,2010,277(1):2-21
    [37]Chang F, Steelman LS, Lee JT, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors:potential targeting for therapeutic intervention [J]. Leukemia,2003,17(7):1263-1293
    [38]Thompson N, Lyons J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery[J]. Curr Opin Pharmacol,2005,5(4):350-356
    [39]Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer[J]. Oncogene,2007,26(22):3291-3310
    [40]Yap JL, Worlikar S, MacKerell AD Jr, et al. Small-molecule inhibitors of the ERK signaling pathway:Towards novel anticancer therapeutics [J]. ChemMedChem,2011,6(1):38-48
    [41]Nakamura C, Kawasaki N, Miyataka H, et al. Synthesis and biological activities of fluorinated chalcone derivatives[J]. Bioorg Med Chem,2002,10(3):699-706
    [42]赵乐晶,石玉,刘巍,等.新型查尔酮类化合物的合成及其抗肿瘤活性[J].中国药物化学杂志,2010,(03):161-165
    [43]Tabata K, Motani K, Takayanagi N, et al. Xanthoangelol, a major chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma and leukemia cells[J]. Biol Pharm Bull,2005,28(8):1404-1407
    [44]Nishimura R, Tabata K, Arakawa M, et al. Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma[J]. Biol Pharm Bull, 2007,30(10):1878-1883
    [45]Ong CS, Tran E, Nguyen TT, et al. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions[J]. Oncol Rep,2004,11(3):727-733
    [46]Agarwal C, Singh RP, Dhanalakshmi S, et al. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells[J]. Oncogene,2003,22(51):8271-8282
    [47]Oki T, Sowa Y, Hirose T, et al. Genistein induces Gadd45 gene and G2/M cell cycle arrest in the DU145 human prostate cancer cell line[J]. FEBS Lett,2004,577(1-2):55-59
    [48]Wang W, VanAlstyne PC, Irons KA, et al. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines[J]. Nutr Cancer, 2004,48(1):106-114
    [49]Takagaki N, Sowa Y, Oki T, et al. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway[J]. Int J Oncol,2005,26(1):185-189
    [1]Clavien PA, Rudiger HA, Selzner M. Mechanism of hepatocyte death after ischemia: apoptosis versus necrosis[J]. Hepatology,2001,33(6):1555-1557
    [2]Bold RJ, Termuhlen PM, McConkey DJ. Apoptosis, cancer and cancer therapy[J]. Surg Oncol,1997,6(3):133-142
    [3]Morselli E, Galluzzi L, Kepp O, et al. Anti-and pro-tumor functions of autophagy[J]. Biochim Biophys Acta,2009,1793(9):1524-1532
    [4]Chao MP, Majeti R, Weissman IL. Programmed cell removal:a new obstacle in the road to developing cancer[J]. Nat Rev Cancer,2012,12(1):58-67
    [5]Zornig M, Hueber A, Baum W, et al. Apoptosis regulators and their role in tumorigenesisfJ]. Biochim Biophys Acta,2001,1551(2):F1-37
    [6]Clarke PG. Developmental cell death:morphological diversity and multiple mechanisms[J]. Anat Embryol (Berl),1990,181(3):195-213
    [7]Clarke PG, Clarke S. Nineteenth century research on naturally occurring cell death and related phenomena[J]. Anat Embryol (Berl),1996,193(2):81-99
    [8]Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol,2005,1(2):112-119
    [9]He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell,2009,137(6):1100-1111
    [10]Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis[J]. Science,2009,325(5938):332-336
    [11]Golstein P, Kroemer G. Cell death by necrosis:towards a molecular definition[J]. Trends Biochem Sci,2007,32(1):37-43
    [12]Bowne WB,Sookraj KA, Vishnevetsky M, et al. The penetratin sequence in the anticancer PNC-28 peptide causes tumor cell necrosis rather than apoptosis of human pancreatic cancer cells[J]. Ann Surg Oncol,2008,15(12):3588-3600
    [13]Adler V, Bowne W, Kamran I, et al. Two peptides derived from ras-p21 induce either phenotypic reversion or tumor cell necrosis of ras-transformed human cancer cells[J]. Cancer Chemother Pharmacol,2008,62(3):491-498
    [14]Takada E, Hata K, Mizuguchi J. c-Jun-NH2-terminal kinase potentiates apoptotic cell death in response to carboplatin in B lymphoma cells[J]. Cancer Chemother Pharmacol, 2008,62(4):569-576
    [15]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer,1972,26(4):239-257
    [16]Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease:a new skin for the old ceremony?[J]. Biochem Biophys Res Commun,1999,266(3):699-717
    [17]Vejux A, Lizard G. Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis[J]. Mol Aspects Med,2009,30(3):153-170
    [18]Hu G, Mancl ME, Barnes BJ. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death[J]. Cancer Res, 2005,65(16):7403-7412
    [19]Roos WP, Kaina B. DNA damage-induced cell death by apoptosis[J]. Trends Mol Med, 2006,12(9):440-450
    [20]Zornig M, Hueber A, Baum W, et al. Apoptosis regulators and their role in tumorigenesis[J]. Biochim Biophys Acta,2001,1551(2):F1-37
    [21]Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs[J]. J Biol Chem,2005,280(34):30384-30391
    [22]Pasetto LM, D'Andrea MR, Brandes AA, et al. The development of platinum compounds and their possible combination[J]. Crit Rev Oncol Hematol,2006,60(1):59-75
    [23]Liu Y, Xing H, Han X, et al. Apoptosis of HeLa cells induced by cisplatin and its mechanism[J]. J Huazhong Univ Sci Technolog Med Sci,2008,28(2):197-199
    [24]王淑华,李小薇,陈亚琼,等NF-κB抑制剂增敏卡铂对卵巢癌细胞毒性作用的机制研究[J].肿瘤学杂志,2010,(11):837-841
    [25]王晓慧,雷军强,杨永秀,等.卡铂诱导卵巢癌细胞株OVCA_3凋亡中p63及p53基因mRNA的变化[J].兰州大学学报(医学版),2010,(04):7-10
    [26]杨玉白,王红梅caspase-8在卡铂诱导人食管鳞癌细胞凋亡中的作用研究[J].中国当代医药,2011,(20):11-13
    [27]Reimer T, Herrnring C, Koczan D, et al. FasL:Fas ratio--a prognostic factor in breast carcinomas[J]. Cancer Res,2000,60(4):822-828
    [28]Nagarkatti N, Davis BA. Tamoxifen induces apoptosis in Fas+ tumor cells by upregulating the expression of Fas ligand[J]. Cancer Chemother Pharmacol,2003,51(4):284-290
    [29]Yildiz R, Benekli M, Buyukberber S, et al. The effect of bevacizumab on serum soluble FAS/FASL and TRAIL and its receptors (DR4 and DR5) in metastatic colorectal cancer [J]. J Cancer Res Clin Oncol,2010,136(10):1471-1476
    [30]Nagarkatti N, Davis BA. Tamoxifen induces apoptosis in Fas+tumor cells by upregulating the expression of Fas ligand[J]. Cancer Chemother Pharmacol,2003,51(4):284-290
    [31]Fukazawa T, Fujiwara T, Morimoto Y, et al. Differential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild-type p53 gene transfer in human cancer cells[J]. Oncogene,1999,18(13):2189-2199
    [32]Huang DM, Shen YC, Wu C, et al. Investigation of extrinsic and intrinsic apoptosis pathways of new clerodane diterpenoids in human prostate cancer PC-3 cells[J]. Eur J Pharmacol,2004,503(1-3):17-24
    [33]Panigrahi AR, Pinder SE, Chan SY, et al. The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome[J]. J Pathol,2004,204(1):93-100
    [34]LoPiccolo J, Blumenthal GM, Bernstein WB, et al. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations [J]. Drug Resist Updat, 2008,11(1-2):32-50
    [35]Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer[J]. Biochim Biophys Acta,2009,1793(9):1516-1523
    [36]Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis[J]. Cancer Cell,2006,10(1):51-64
    [37]Hu YL, Delay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma[J]. Cancer Res, 2012,72(7):1773-1783
    [38]Pattingre S, Levine B. Bcl-2 inhibition of autophagy:a new route to cancer?[J]. Cancer Res, 2006,66(6):2885-2888
    [39]Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma[J]. J Clin Invest,2007,117(2):326-336
    [40]Maclean KH, Dorsey FC, Cleveland JL, et al. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis[J]. J Clin Invest,2008,118(1):79-88
    [41]Moretti L, Yang ES, Kim KW, et al. Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy[J]. Drug Resist Updat,2007,10(4-5):135-143
    [42]Li CY, Wang EQ, Cheng Y, et al. Oridonin:An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics [J]. Int J Biochem Cell Biol, 2011,43(5):701-704
    [43]Liu JJ, Lin M, Yu JY, et al. Targeting apoptotic and autophagic pathways for cancer therapeutics[J]. Cancer Lett,2011,300(2):105-114
    [44]Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death[J]. Proc Natl Acad Sci U S A,2000,97(26):14376-14381
    [45]Sperandio S, Poksay K, de Belle I, et al. Paraptosis:mediation by MAP kinases and inhibition by AIP-1/Alix[J]. Cell Death Differ,2004,11(10):1066-1075
    [46]Tome ME, Baker AF, Powis G, et al. Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth[J]. Cancer Res, 2001,61(6):2766-2773
    [47]Butler R, Mitchell SH, Tindall DJ, et al. Nonapoptotic cell death associated with S-phase arrest of prostate cancer cells via the peroxisome proliferator-activated receptor gamma ligand,15-deoxy-deltal2,14-prostaglandin J2[J]. Cell Growth Differ,2000,11(1):49-61
    [48]Li B, Zhao J, Wang CZ, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53[J]. Cancer Lett, 2011,301 (2):185-192
    [49]Trump BF, Berezesky IK, Chang SH, et al. The pathways of cell death:oncosis, apoptosis, and necrosis[J]. Toxicol Pathol,1997,25(1):82-88
    [50]Suarez Y, Gonzalez L, Cuadrado A, et al. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells[J]. Mol Cancer Ther, 2003,2(9):863-872
    [51]杨振方,王若明,赵高峰,等.人结直肠腺癌组织中细胞胀亡及碱性成纤维细胞生长因子测定[J].郑州大学学报(医学版),2006,(02):313-315
    [52]申严,黄瑾,郑晓滨,等.人外周血T淋巴细胞凋亡与胀亡研究及地塞米松的诱导作用[J].现代生物医学进展,2009,(03):478-481
    [53]杨美春,方刚,张奕梅,等.莪术油注射液致人卵巢癌SKOV_3细胞胀亡形态变化研究[J].实用药物与临床,2009,(01):1-3
    [54]申严,黄瑾,郑晓滨,等.人外周血T淋巴细胞凋亡与胀亡研究及氨茶碱的诱导作用[J].现代生物医学进展,2010,(03):462-465
    [55]杜冀晖,马镇坚,李佳璇,等.青蒿琥酯通过活性氧损伤机制诱导胰腺癌细胞发生胀亡性死亡[J].中国癌症杂志,2008,(06):410-414
    [56]Harraz MM, Dawson TM, Dawson VL. Advances in neuronal cell death 2007[J]. Stroke, 2008,39(2):286-288
    [57]Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF:a key event in parthanatos[J]. Exp Neurol,2009,218(2):193-202
    [58]Wang Y, Kim NS, Haince JF, et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos)[J]. Sci Signal, 2011,4(167):ra20
    [59]Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion[J]. Cell,2007,131(5):966-979
    [60]Xia P, Wang S, Guo Z, et al. Emperipolesis, entosis and beyond:dance with fate[J]. Cell Res,2008,18(7):705-707
    [61]Qian Y, Shi Y. Natural killer cells go inside:entosis versus cannibalism[J]. Cell Res, 2009,19(12):1320-1321
    [62]Yang YQ, Li JC. Progress of research in cell-in-cell phenomena[J]. Anat Rec (Hoboken), 2012,295(3):372-377
    [63]Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways[J]. Nat Cell Biol, 2001,3(11):E255-263
    [64]Xu K, Tavernarakis N, Driscoll M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum[J]. Neuron, 2001,31(6):957-971
    [65]Halliwell B. A super way to kill cancer cells?[J]. Nat Med,2000,6(10):1105-1106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700