废电路板热解渣氧化制备活性炭及表征分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废电路板(简称PCB)的回收是一个相当复杂的过程。目前,国内外主要着重于对贵重金属回收的研究,但是关于非金属材料无害化和资源化的研究相对较少。从PCB的组成能够看出,树脂塑料等高分子材料占废PCB重量的30%左右,加上与树脂粘结在一起的玻璃纤维等增强材料,其重量达到电路板总重量60%以上。电路板的增强材料主要是玻璃纤维布,因此具有很高的回收利用价值。
     本研究利用微波在热解方面的优越性,根据活性炭的制备方法,在低真空条件下微波辐照热解废电路板,对热解后的热解渣用硝酸氧化改性制备活性炭,并对热解渣和活性炭进行表征分析和预测活性炭的应用,为废电路板非金属材料的资源化利用提供理论基础。
     微波真空辐照热解废电路板,热解渣用硝酸氧化改性制备活性炭,考察微波辐照时间、微波功率、电路板粒度大小、硝酸浸渍时间、硝酸浸渍浓度(质量分数)对活性炭吸附能力的影响,通过正交试验确定各因素对吸附性能的影响和最佳试验条件。试验表明:微波辐照时间、微波功率、电路板粒度大小、硝酸浸渍时间、硝酸浸渍浓度(质量分数)对活性炭吸附性能都有影响;对亚甲基蓝吸附值影响的主次顺序为:微波功率>硝酸浓度>粒度大小>硝酸浸渍时间>辐照时间,对碘吸附值影响的主次顺序为:微波功率>粒度大小>硝酸浸渍时间>辐照时间>硝酸浓度。分析各因素最佳水平顺序,既考虑亚甲基蓝吸附性能,又考虑碘吸附性能,可得到本试验条件下的最佳工艺为:微波辐照时间15min,微波功率633W,粒度大小1.5~2.0,硝酸浓度20%,浸渍时间16h,制得产品亚甲基蓝吸附值94.8mg/g,碘吸附值496.6mg/g。
     选取吸附性能最好的活性炭,即微波辐照时间15min,微波功率633W,粒度大小1.5~2.0,硝酸浓度20%,浸渍时间16h;用等离子发射光谱仪、X光电子能谱仪、傅里叶变换红外光谱仪及扫描电子显微镜(SEM-EDS)对热解渣和活性炭进行表征分析。分析结果表明:热解渣经过硝酸浸渍后制备的活性炭一方面金属含量大大减少,另一方面引进了含氧基团,—C—C,或芳香族和脂肪族化合物含量减少(由原来的90.71%变到86.05%,),而C—0含量则增大(由原来的5.01%变到13.95%,),且变化明显,而C=0基本上消失了;表面的氧以羟基、羰基、羧基和内酯基形式存在,其中羟基含量(286.23eV)的增幅较大,而内酯基(284.80eV)的含量则降低;活性炭的结构形态较热解渣更不规则,孔洞和孔隙的差异性则较小,表面明显被氧化,一些骨架被氧化,出现了部分塌陷和大小不等的孔洞,孔周边变得更加平滑。
     对该试验所制备的活性炭进行表征分析后,得出该活性炭的主要特征是碘吸附值和亚甲蓝吸附值(最佳活性炭产品碘吸附值496.6mg/g,亚甲基蓝吸附值94.8mg/g)并不理想,由此可以得出孔径和比表面积在吸附过程中不占优势,但是该活性炭引入了含氧官能团,增加了活性炭表面酸性基团的含量,减少了碱性基团的含量,从而提高活性炭的表面极性和亲水性。因此该活性炭用于液相吸附时,应占很大优势。结合本试验所产生的废水,废水中含有有价金属,在对废水的有价金属进行回收后,用该活性炭处理该试验所产生的废水应该是可行的;同时本试验所产生的热解气体可以作为城市煤气使用,热解液体可以作为燃料或者化工原料使用,都可以实现资源回收和环境保护的双重效果。
     本试验在工艺流程上有所创新,既回收了其中的有价金属,又回收了其中的非金属材料,技术上切实可行,所用的试剂少(仅用到硝酸)、工艺简单、成本低,具有经济和环境双重效益。
The recycling of printed circuit boards is a complex processing. Currently domestic and international countries developed vast research on the recycling of printed circuit board (PCB) particular emphasizing on more the metal recycling while less the nonmetal. It can be seen the composition of PCB which the macromolecule materials such as resin is about30%and plus the reinforcing material together with the fiber glass is about60%. The reinforcing material of PCB is mainly fiber glass which has high resource.
     This paper combining the superiority of the microwave and pyrolysis and according to the preparation of activated carbon, investigated the preparation and characterization of activated carbon modified by nitric acid from solid residues of PCB with microwave vacuum pyrolysis. which, in order to provide for theoretical basis recycling PCB.
     The effect on microwave time, microwave power, particle size, nitric acid concentrate and soak time on the adsorption properties of the activated carbon were discussed. Adopting different analysis, its result shown, the sequence of methylene blue were:microwave power>nitric acid concentrate>particle size>soak time>microwave time, the sequence of iodine were:microwave power>particle size>soak time>microwave time>nitric acid concentrate. Analyzing the best horizontal of each factor while considering the value of methylene blue and iodine, it could be gained the optimized experimental conditions were microwave time15min, microwave power633W, particle size1.5-2.0, nitric acid concentrate20%, and soak time16h and the value of methylene blue, iodine were94.8mg/g and496.6mg/g, respectively.
     The characterization of the optimized activated carbon was studied. The surface features of the optimized activated carbon were studied in virtue of ICP,XPS,FTIR and SEM. The results showed that the surface oxygen content increased (from5.01%to13.95%, respectively), while the metal contact and—C—C or the compounds of aromatic and aliphatic decreased obviously(from90.71%to86.05%, respectively)and the C=O species disappeared on the surface of the activated carbon; The functional groups on the activated carbon surface,such as carboxyl, phenol hydroxyl, lactonic and hydroxyl group, which the hydroxyl content increased obviously, while lactonic content decreased; The structure and morphology of the activated carbon is more irregular, while the differ of the holes and pores is smaller; The surface of activated carbon is oxidized significantly, some of which is subsidence and formed holes of varying size, while the around hole becomes smooth.
     It obtained the features of activated carbon was that the value of methylene blue and iodine were not ideal (the optimized activated carbon of the value of methylene blue and iodine were94.8mg/g and496.6mg/g.),which can be drawn the pore diameter and specific surface area during the adsorption process was not dominant, but the oxygen functional groups of activated carbon, increasing the content of the surface acidic groups, reducing the content of alkali groups, so improving the surface polarity and hydrophilicity of the activated carbon. Therefore, the activated carbon would attribute to the great advantage of the liquid phase adsorption. In this experiment, The activated carbon treating the wastewater recycling of the valuable metals is feasible; At the same time, the pyrolysis products from PCB which the gases could be used as coal gas applied in the city; the liquid is well engineering material for making chemical; It can achieved the dual effect of recovering resource and environmental protection.
     The treatment process of this experiment is innovative,which not noly recycled the metals,but also recycled the nonmetals.It can generated the economic and environmental benefits because of technoically practicable, less reagents(only to nitric acid),simply process and low cost.
引文
[1]国家环境保护总局.国家环境保护总局关于报废电子电器产品环境管理情况的通报[R].北京:国家环境保护总局,2002
    [2]李芝华,任冬燕,郑子樵,等.聚氨酯改性TDE — 85/MeTHPA环氧树脂体系的结构表征[J].中南大学学报:自然科学版,2007,38(3):399-403.
    L1 Zhi—hua, REN Dong-yan, ZHENG Zi-qiao, et al. Structural identification of PU—modified TDE-85/MeTHPA epoxy resin[J]Journal of Central South University:Science and Technology,2007,38(3):399-403.
    [3]Zong Gao, Jiangzhi Li, Hong c. Zhang. Printed circuit board recycling:A state—of—art survey. IEEE Transaction on Electronic Packaging Manufacturing,2004:27(1):33-42
    [4]杨若明。环境中有毒有害化学物质的污染与监测。北京:中央名族大学出版社,2004.4-20
    [5]HAMERS T, KAMSTRA J H, SONNEVELD E, et al. In vitro profiling of the endocrine disrupting potency of bronfinated flame retardants[J]. Toxicological Science,2006,92(1): 157-173.
    [6]CANESI L, LORUSSO I C, CIAECI C, et al. Effects of the brominated flame retardant tetrabromobisphenol — A(TBBPA)On cell signaling and function of mytilus hemocytes involvement of MAP kinases and protein kinase[J]. Aquat Toxicol,2005,75(3):277-287.
    [7]BARONTIN1 F, MARSANICH K, PETARCA L, et al. Thermal degradation and decomposition products of electronic boards containing BFRs[J]. Industrial and Engineering Chemistry Research,2005,22(12):4186-199.
    [8]LUDA M P, BALABANOVICH A I, CAMINO G. Thermal decomposition of fire retardant brominated epoxy resins[J]. Journal of Analytical and Applied Pyrolysis,2002,65(1): 25-40.
    [9]FEDERICA B, VALEIRO C. Formation of hydrogen bromide and organobromineted compounds in the thermal degradation of electronic boards[J]. Journal of Analytical and Applied Pyrolysis,2006,77(1):41-55.
    [10]BALABANOVICH A I, HORNUNG A, MERZ D. The effects of a curing agent on the thermal degradation of fire retardant brominated epoxy resins[J]. Polymer Degradation and Satabiligy,2004,12(2):713-723.
    [11]彭绍洪,陈烈强,甘舸等.废旧电路板真空热解[J].化工学报,2006,57(11):2720 —2726. PENG Shaohong, CHEN Lieqiang, GAN Ge, et al. Vacuum pyrolysis of waste printed circuit boards[J]. Journal of Chemical Industry and Engineering,2006,57(11): 2720-2726.
    [12]LAI Yichieh, lEE Wenjhy, LI Hsingwang, et al. Inhibition of polybrominated dibenzo— P — dioxin and dibenzofuran formation from the pyrolysis of printed circuit boards[J]. Environmental Science,2007,41(2):957-962.
    [13]白庆中,王晖,韩洁,等.世界废弃印刷电路板的机械处理技术现状[J].环境污染治理技术与设备,2001,2(1):84-89.
    Bai Qing—zhong, Wang Hui, Han Jie, et al. The status of technology and research of mechanical recycling of printed circuit board scrap[J]. Techniques Equipments for Environment Pollution and Control,2001,2(1):84—89. (in Chinese)
    [14]刘辉,王同华,谭瑞淀.废印刷电路板资源化处理技术研究进展[J].环境科学与技术,2009,05(32):93-95
    [15]李沐,姚强.热解技术在废旧印刷电路板处理及资源化中的应用[J].环境污染治理技术与设备,2006,7(4):108-109
    [16]彭绍洪.废旧电路板的热解及热解油制备酚醛树脂的工艺研究[D].博士学位论文.华南理工大学,2006
    [17]WILLIAM J, HALL P, WILLIAMS T. Separation and recovery of materials from scrap printed circuit boards[J]. Resources, Conservation and Recycling,2007.51(3):691—709.
    [18]LI J, Lu H Z。 GUO J, et al. Recycle Technology for recovering resources and products from waste printed circuit boards [J]. Environ Science Technology,2007,41(6):1995—2000.
    [19]DASA, VIDYADHARA, MEHROTRA S P. A novel flow sheet for the recovery of metal values from waste printed circuit boards[J].
    [20]周文贤,陈烈强,关国强,黄华杰.废旧电路板与碳酸钙共热解脱卤的研究[J].环境工程学报.3(1):170-174
    [21]丘克强、吴倩、湛志华.废弃电路板环氧树脂真空热解及产物分析[J].中南大学学报(自然科学版),2009,40(05):1210-1215
    [22]Chen k S,Chen H C,Wu C H,Chou Y M. Kinetic of thermal and oxidative decomposition of printed circuit boards. J.Environ.Eng-ASCE,1999(3):277-283
    [23]Sun Lushi(孙路石),Lu Jidong (陆继东),Wang Shijie(王时杰),Zhang Juan(张娟),Zhou Hu (周琥).Experimental research on pyrolysis characteristics of printed circuit board wastes. Journal of Chemical Industry and Engineering (China)(化工学报),2003,54(3):408-412
    [24]Blazso M,Czegeny Z,Csoma C. Pyrolysis and debromination of flame retarded polymers of electronic scarp studied by analytical pyrolysis J.Anal.Appl.Pyrolysis,2002(64):249-261
    [25]金翠,李爱民,张丹.采用热解技术从废电路板中回收资源[C].第五届全国环境化学大会(2009):220
    [26]谭瑞淀,王同华,谭素霞,等.微波辐照热解废印刷电路板产物的分析研究[J].环境污染与防治,2006,28(8):599—601_Tan Rui-dian, Wang Tong-hua, Tan Su—xia, et al. Products from microwave heating of waste printed circuit boards[J]. Environmental Pollution& Control,2006,28(8):599—601. (in Chinese)
    [27]J.P Wiaux, J.P.Waefler. Recycling zinc batteries:Ane-conomical challenge in consumer waste management.Journal of Power Sources,1995,57:61-65
    [28]陈波.废旧印刷电路板的热解脱溴实验研究[D].清华大学,动力工程及工程热物理2008
    [29]谭瑞淀.微波处理废印刷电路板的基础研究[D].大连:大连理工大学,2007
    [30]王同华,谭瑞淀,曲新春等.微波资源化处理废印刷电路板技术的研究[J]第七章,环境保护相关领域研究进展。2189-2192
    [31]Lein Tangea,Dieter Drohmann. Waste electrical and electronic equipment plastics with brominated flame retardants e from legislation to separate treatment e thermal processes [JJ.Polymer Degradation and Stability.2005,88(1):35-40
    [32]孙路石.废弃印刷线路板的热解机理及产物回收利用的实验研究:[博士学位论文].武汉:华中科技大学,2004
    [33]李沐,连续回转式热解处理废旧印刷电路版的实验及机理研究,[硕士学位论文],北京:清华大学,2006
    [34]赵厚银.废弃印刷电路板的热解实验及溴元素的分布研究:[博士后研究报告].北京:清华大学,2006
    [35]王清.从电路板废料中回收苯酚和异丙基苯酚.山东科学,2000,13(3):57-60
    [36]C.Vasile,M.A.Brebu,M.Totolin,J.Karayildirim,H.Darie. Feedstock Recycling from the printed circuit boards of used computers.Energy & Fuels,2008,22(3),1658-1665
    [37]Busselle L D, Moore T A, Shoemaker J M, Allred R E. Separation processes and economic evaluation of tertiary recycling of electronic scrap[J]. Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment.1997,115-120
    [38]蓝嗣国,殷惠民.废旧干电池的几种综合利用方法.环境科学动态,2000,(4):30-33
    [39]Kennerley J. R, Kelly R.M.,Fenwiek N. J., Picketing S. J., Rudd C. D. The characterisation and reuse of lass fibres recycled from scrap composites by the action of a fluidised bed process[J]Composites Part A.1998,29(7):839-845.
    [40]Ikuta Y, M. Iji, Ayukawa D., Shibano S. A pyrolysis—based technology for useful materials from IC package molding resin waste[A]. IEEE International Symposium on Electronics and the Environment[C],1996,124-129
    [41]RonDagani. Chemical and Engineering News,1997,75(6):26 — 33.
    [42]刘成,高乃云,黄廷林.活性炭的表面化学改性研究进展[J].净水技术,2005(24):50-52
    [43]闵恩泽,吴巍.绿色化学与化工[M].北京:化学工业出版社,2000:65—66.
    [44]立本英机,安部郁夫.活性炭材料的应用技术[M].高尚愚,译.南京:东南大学出版社,2002:6-7.
    [45]范延臻,王宝贞.活性炭材料表面化学[J].煤炭转化,2000,23(4):26-30.
    [46]解强,张香兰,李兰廷,等.活性炭孔结构调节:理论、方法与实践[J].新型炭材料,2005,20(2):8-10.
    [47]TENG H, TIEN S, HsU LY. Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon,1998,36(9):1387.
    [48]Haque K E. Microwave energy for mineral treatment processes - a brief review [J]. International journal of Mineral Processing,1999,57(1):1-24.
    [49]HU Z H, VANSAN E F. Chemical activation of elutrilithe producin carbon— aluminosilicate composite adsorbent[J]. Carbon,1995,33:1293.
    [50]刘洪波,张红波,伍恢和,等.石油焦基高比表面积活性炭的制备[J].炭素技术,1997(4):15.
    [51]吴新华,活性炭的生产原理与设计[M].北京:中国林业出版社,1994.15—17
    [52]EVANS M J, HAI. HOP E, MAC DONALD J A F. The production of chemically—activated carbon[J]. Carbon,1999,37:269.
    [53]中国林业科学研究院林产化学工业研究所.国外活性炭[M].北京:中国林业出版社,1984,27.
    [54]魏娜,赵乃勤,贾威,王哲仁,韩森.活性炭的制备及应用研究进展[J].炭素技术,2003,3:30-33
    [55]王曾辉。高晋生.碳素材料[M].上海:华东化工学院出版社。1991.224.
    [56]MAC DO NGALD J A F, QUINN D F. Carbon adsorbents for natural gas storage[J]. Fuel, 1997。 77(1):61.
    [57]王桂芳,包明峰,韩泽志.活性炭对水中重金属离子去除效果的研究[J].环境保护科学,2004,30(2):26—29.
    [58]袁文辉,叶振华.高性能活性炭的制备及性能研究[J].天然气化工,1997,22(3):30-33.
    [59]DE RUITER ERNEST. Activated charcoal and its manufacture:Germany, DE19860661. [P]. 2000.
    [60]黄伟,贾艳秋,孙盛凯。活性炭及其改性研究进展[J].化学工业与工程,2006,27(5):39-44.
    [61]厉悦,李湘洲,刘敏.改性活性炭的表面特性及其对苯酚的吸附性能[J].林产化工通讯,2004,5:14-17.
    [62]李毅鹏.活性炭的表面化学与表面改性[J].西北煤炭,2004,2(4):9.10.
    [63]Lahaye J. The chemistry of carbon surface[J]. Fuel,1998,77(6):543—547.
    [64]范延臻,王宝贞,王琳.改性活性炭对有机物的吸附性能[J].环境化学,2001,20(5):444-448.
    [65]罗永义等.活性炭对铅镉镍钻离子的吸附机理探讨[J].华西医大学报,1995,26(3):322-325.
    [66]邓先伦,蒋剑春,应浩等.竹炭制活性炭的研究[J].林产化工通讯,2004,38(5):27-29.
    [67]李开喜,吕春祥,凌立成.活性炭纤维的脱硫性能[J].燃料化学学报,2002,30(1):89.96.
    [68]马蓉,张丽芳,张双全等.太西无烟煤制备微孔活性炭的试验研究[J],新型炭材料,2004,19(1):58—59.
    [69]刘军利,古可隆,高温处理对活性炭孔隙结构的影响。林产化学与工业,1999,19(3):37-40.
    [70]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,3(0),24.25.
    [71]Vinke P Van Verbee. M, Voskamp A F et al. Modification of the Surfaces of Gas-Activated Carbon and a Chemically Activated Carbon with HN03. Carbon,1994,32(4):675—686
    [72]Morwski A W, Inagaki M. of trihalomethanes from Water[J]. Application of Modified Synthetic Carbon for Adsorption. Desalination,1997,114:23—27.
    [73]孙冶荣,范延臻,王宝贞.改性GAC及ACF去除水中有机污染物的静态研究[J].哈尔滨建 筑大学学报,2000,33(4):46-49.
    [74]贾伟峰,段华波,侯坤,等.废电路板非金属材料再生利用技术现状分析[J].环境科学与技术,2010,33(02):196-200
    [75]王卓雅,温雪峰,赵跃民.电子废弃物资源化现状及处理技术[J].能源与环境护,2004,18(5):19—22Wang Zhuoya,Wen Xuefeng,Zhao Yuerain.Preliminary discussion on current status and recycling technology of electronic scarp reutilization [J].Energy Environmental Protection,2004,18(5):19—22.(in Chinese)
    [76]Yu Fei,Ruan Roger,Deng Shaobo, et al. Microwave pyrolysis of biomass [C]. ASABE 2006.
    [77]刘辉,王同华,谭瑞淀,等.微波辅助控制热解废电路板的研究[J].压电与声光,2008,30(02):203-205
    [78]王鹏.环境微波化学技术.北京:化学工业出版社,2003
    [79]彭金辉,张利波,张世敏,等.微波加热烟杆活性炭制备微孔活性炭的研究[J].材料科学与工程学报,2006,24(1):57—61.
    [80]Gong Guozhuo,Xie Qiang,Zheng Yanfeng,et al.Regulation of Pore Size Distribution in Coal —based ActivatedCarbon[J].NewCarbonMaterials,2009,24(2):141—146.
    [81]陈晨,林性贻,于政锡,等.硝酸处理活性炭对醋酸乙烯催化活性的影响[J].石油化工,2004,32(11):1204-1207
    [82]吴开金,官新宇,官九红,等.硝酸改性对活性炭吸附性能的影响[J].福建林业科技,2009,36(04):35-37
    [83]Jansen R J J, Bekkum H Van. XPS of nitrogen-containing functional groups on activated carbon[J]. Carbon,1995,33(8):1021-1027
    [84]G S Vicente, P A Fernando, DV Carlos Javier et al. Carbon,1999,37(10):1517-1528.
    [85]艾艳玲,李铁虎,冀勇斌.微波加热与传统加热制备高比表面活性炭的对比研究[J].西北工业大学学报,2009,27(4):528-530
    [86]江霞,蒋文举,朱晓帆.微波加热对活性炭表面基团及吸附性能的影响[J].林产化学与工业,2003,23(1):39-42.
    [87]Joong S N, James A [J]. Carbon,1990,28(5):675~682
    [88]庄新国,杨裕生,杨冬平,等.表面宫能团对活性炭性能的影响[J].电池,2003,33(4):199—202. Zhuang Xinguo, Yang Yusheng, Yang Dongping, et al. Effect of surface functional groups on the promperties of activated carbon[J]. Battery,2003,33(4):199 —202(in Chinese).
    [89]Li Y H. Lee G. W, Gullett B K[J]. Fuel,2003,82:451-457
    [90]卢敬科.改性活性炭的制备及其吸附重金属性能的研究[D].浙江工业大学.2009
    [91]杨明平,付勇坚,黄念东.硝酸氧化改性活性炭处理含铬废水的研究[J].湖南科技大学化学化工学院,41-45
    [92]Mofina—Sabio, Maxl G Q. Effects of acidic treatment On the pore and surface properties of Nicatalyst supported on activated carbon[J]. Carbon,1998,36(3):283—292.
    [93]范延臻,王宝贞,王琳,余敏.改性活性炭的表面特性及其对金属离子的吸附性能[J].环境化学,2001,20(5):438-442
    [94]余梅芳,胡晓斌,倪生良.化学改性活性炭对Cu2+吸附性能的研究[J].湖州师范学院学报,2006,28(2):43-45
    [95]徐寿昌.有机化学.北京:高等教育出版社,1993.260-261
    [96]罗锦英,罗津晶.改性活性炭的制备及其对气态汞的吸附研究[J].炭素技术,2009,5(28):1-6
    [97]刘守杰,李永光,余玉奇.活性炭性质对其吸附水中硝基苯性能的影响[J].环境科学与管理,2007,32(8):108-112
    [98]杜媛,王成杨,时志强,郭春雨.表面含氧官能团对活性炭电化学性能的影响[J].天津大学学报,2006,39(12):1480-1484
    [99]Zhang S, Forssberg E. Intelligent liberation and classification of electronic scrap [J]. Powder Technology,1999,105:295-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700