拮抗植物寄生线虫的细菌菌株筛选及其杀线虫相关基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物寄生线虫是世界范围内严重危害农业生产的重要病原生物之一,每年给全世界主要农作物生产造成的损失高达1250亿美元。植物寄生线虫地理分布和寄主范围非常广泛,并且多数生存在土壤中,因此给防治带来很大的困难。目前,常采用化学防治、改进栽培措施和使用抗性品种等来防治植物寄生线虫,但是都有其局限性。因此,植物寄生线虫的生物防治引起了人们越来越多的重视。芽孢杆菌是一类植物根围促生细菌,能够防治多种植物寄生线虫、真菌和细菌等病害。由于其生长快、易于培养且对线虫有较好的杀灭作用等特性,已成为生物防治线虫新的研究热点。在研究中发现大肠杆菌具有杀线虫的能力。大肠杆菌是分子生物学操作中常用的一类菌株,关于其具有杀线作用的研究还未见报道。本研究以芽孢杆菌和大肠杆菌为材料,对拮抗植物寄生线虫的两种细菌菌株进行了筛选,并对其杀线活性物质的性质、杀线相关基因进行了研究,还对这两种细菌的温室生防实验效果进行了评估。主要研究结果如下:
     1、选取2个枯草芽孢杆菌(Bacillus subtilis)菌株OKB105、69和2个解淀粉芽孢杆菌(Bacillus amyloliquefaciens)菌株FZB42、B3,经LANDY培养基发酵,离心后取培养滤液处理线虫,离体条件下测定4个菌株的培养滤液对植物寄生线虫水稻干尖线虫(Aphelenchoides besseyi)、马铃薯腐烂线虫(Ditylenchus detructor)、松材线虫(Bursaphelenchus xylophilus)和爪哇根结线虫(Meloidogyne javanica)的杀线率。结果显示:处理12h后观察,对水稻干尖线虫防效最佳的是B3菌株,杀线率达10.6%;对马铃薯腐烂线虫防效最佳的是OKB105菌株,杀线率达27.6%;对松材线虫防效最佳的是69菌株,杀线率达35.6%;对爪哇根结线虫防效最佳的是OKB105菌株,杀线率为100%。选择OKB105菌株和爪哇根结线虫作为进一步研究的对象,结果显示OKB105菌株培养滤液原液稀释至30%,处理60h杀线率仍为100%;OKB105菌株培养滤液原液还能抑制爪哇根结线虫的卵块孵化,抑制率为98.3%。温室生防实验显示:OKB105菌株处理的番茄苗与对照植株比较,单株鲜根重有显著性差异,单株卵块数则没有显著性差异。
     2、枯草芽孢杆菌(B.subtilis) OKB105菌株对爪哇根结线虫(M. jvanica)具有较高的杀线活性。本试验对OKB105菌株分泌的杀线活性物质的基本性质进行了研究。结果表明:该菌株产生的杀线活性物质是可随水分一同蒸发的非蛋白质类物质;分子量小于1kDa;该物质在4℃、-20℃下保存40d仍能保持杀线活性;对热不敏感;碱性条件下具有较高的杀线活性;极性强,正丁醇、氯仿、乙酸乙酯等有机溶剂不能将其活性物质从培养滤液中提取。
     3、对构建的枯草芽孢杆菌OKB105菌株突变体文库中的2000个突变体进行筛选,结果表明:1个突变体M1在72h时的杀线率为0%。反向PCR扩增结果表明M1菌株中的purL基因被破坏。purL基因编码甲酰甘氨脒核苷酸合成酶II(Phosphoribosylformylglycinamidine synthase II)在嘌呤生物合成途径中催化甲酰甘氨酰胺核苷酸合成甲酰甘氨脒核苷酸。构建两种质粒pMA5-purL和pUC18-purL对M1突变体进行活性回复,结果证明purL基因在OKB105菌株的杀线活性中起着非常重要的作用。这也是首次报道purL基因影响枯草芽孢杆菌的杀线活性。M1菌株不仅能通过功能互补来回复杀线活性,而且在含有5-氨基咪唑-4-甲酰胺核苷酸(5-aminoimidazole-4-carboxamide riboside,AICAR)或腺嘌呤(Adenine)和硫胺(Thiamine)的LANDY培养基中发酵后,其杀线活性也能回复。结果显示purL基因是通过调控嘌呤生物合成中的一些代谢中间产物来影响OKB105菌株的杀线活性。此外,purL基因还影响M1菌株的培养性状。
     4、从实验中选出六个大肠杆菌(Escherichia coli)菌株用LANDY培养基发酵,离心后取培养滤液处理线虫,离体条件下测定菌株的培养滤液原液对爪哇根结线虫(M.javanica)的杀线率。结果显示:处理12h后观察,6株大肠杆菌的杀线率都为100%,并且都能使线虫虫体内部结构发生改变,但是线虫虫体内部结构出现变化的时间不一致。以BL21菌株作为进一步研究的对象。结果显示BL21菌株培养滤液原液稀释至20%,处理36h杀线率仍为100%。对其分泌的杀线活性物质的基本性质进行了初步研究。结果表明:该菌株产生的杀线活性物质可随水分一同蒸发;4℃、-25℃下保存90d仍能保持杀线活性;对热不敏感;在一定的酸性范围内具有较高的杀线活性。BL21菌株培养滤液还能抑制爪哇根结线虫的卵块孵化,抑制率为98.9%。温室生防实验显示:处理组番茄苗与对照组番茄苗相比,单株鲜根重和单株卵块数都有显著性差异。
     5、为了找到BL21菌株的杀线虫相关基因,利用Tn5转座子构建了大肠杆菌BL21菌株的突变体文库。对该文库的5000个突变体进行筛选,结果表明:2个突变体M12、M13在72h时的杀线率为0%,14个突变体能延缓线虫虫体的变化。研究结果表明这16个突变体都是通过改变酸性环境来影响其杀线活性。采用TAIL-PCR技术对这16个突变体Tn5转座子插入的杀线相关基因进行了鉴定。确定的7个突变体M2、M4、 M5、M7、M9、M10、M12的Tn5转座子插入的基因分别是cysH、serA、metC、pyrD、 ilvC、purA、carB,其余的9个突变体没有获得结果。
Plant-parasitic nematodes, known as one of the important plant pathogens, caused huge damage to many economically crops. The annual loss in agriculture caused by plant-parasitic nematodes amounted to$125billion worldwide. It is difficult to control plant-parasitic nematodes because of their wide geographic distribution and host range, and most of them living in the soil. Currently, several methods, such as chemical control, cultivation measures and resistant cultivar, have been used to control plant-parasitic nematodes. But those control methods have led to limited success. Biocontrol of plant-parasitic nematodes has therefore given rise to vast attention. Bacillus spp, one kind of plant growth-promoting rhizobacteria(PGPR), can control nematode, fungal, bacterial, and other disease. Bacillus spp. controlling the nematodes has become a new hotspot for its fast growth, easily culturing, having a good effect on nematodes. Escherichia spp, one type of strains used in molecular biology in the lab, is not been reported that they are able to act against nematodes. The present work includes:screening of two types of bacteria antagonistic against plant-parasitic nematodes; characterizing the property of nematicidal activity substances respectively produced by OKB105and BL21; identifying the nematicidal-related genes; assessing control efficacy in the greenhouse experiment. The results obtained as below:
     1. Bacillus strains OKB105,69, FZB42and B3were selected to ferment in the LANDY culture medium. The results had showed that the LANDY ferment filtrates of Bacillus strains OKB105,69, and B3all had the nematicidal activity toward A. besseyi, D. detructor, B. xylophilus and M. javanica, and the strain FZB42had the antagonistic activity toward other three nematodes except A. besseyi. The highest mortality at12hours, which were obtained from four optimum treatments A. besseyis/B3, D. detructor/OKB105, B. xylophilu169and M. javanica/OKB105,were10.6%,27.6%,35.6%and100%, respectively. The M. javanica/OKB105treatment was used for the further study. Low dilution culture filtrates of OKB105also showed a strong effect on M. javanica. The mortality rates of the nematodes tested after incubation for60h in30%culture filtrates were100%. The culture filtrates of OKB105could also inhibit the eggs of M. javanica hatching and the inhibition rate was98.3%. The greenhouse experiments showed that the fresh root weight/per plant had significant difference at the0.01levels, but the number of egg masses/per plant had no significant difference at the0.05levels, compared with the control.
     2. Bacillus subtilis strain OKB105had high nematicidal activity to M. jvanica. In order to isolate and purify the nematicidal components, the elementary characteristics of the nematicidal active substances had been studied in our experiment. The results demonstrated that the nematicidal active ingredients from the culture filtrates of OKB105were nonprotein, and had thermophilic, psychrotolerant and strong polar characteristics, and could be evaporated with water but not extracted by the organic solvent, such as ethyl acetate, chloroform, normal butanol. The molecular weight of the nematicidal ingredients was less than1000Da. pH could affect its nematicidal activity. It had strong nematicidal activity at the alkalinity condition.
     3. To identify the nematicidal-related genes,2000mutants of OKB105were screened. Mutant M1had eliminated the nematicidal activity compared with the original strain OKB105at72h. The inverse PCR result had showed that the purL gene of M1mutant was disrupted by transposon TnYLB-1. To restore the function of the purL gene, two plasmids pMA5-purL and pUC18-purL were constructed and transformed into M1mutant. The two complementation of the M1mutant showed the same activity with the original strain OKB105. Those results indicated that the purL gene of OKB105played a key role in the nematicidal activity. This was the first report that the purL gene affected the nematicidal activity of Bacillus subtilis strain OKB105. The purL gene encodes the5-phosphoribos-ylformylglycinamidine synthase Ⅱ, which involves in the purine biosythesis pathway. Interestingly, when M1mutant growed in LANDY medium supplemented with ademine and thiamin or5-aminoimidazole-4-carboxamide riboside, the culture filtrates were also restored the same nematicidal activity. We concluded that the purL gene regulated the biosythesis of the intermediates in purine synthesis pathway to affect the nematicidal activity of Bacillus subtilis strian OKB105. And the purL gene also affected the culture characteristics of the M1mutant.
     4. The LANDY ferment filtrates of Escherichia strains TOP10, JM109, DH5α, BL21, Rosseta and K88all showed the nematicidal effects, killing100%M. javanica, and made the body of nematodes change. But the time of the body variation was different. The strain BL21was used for the further study. Low dilution culture filtrates of BL21also showed a strong effect on M. javanica. The mortality rates of the nematodes tested after incubation for36hours in20%culture filtrates were100%. The elementary characteristics of the nematicidal substance of BL21had been studied in our lab. The results demonstrated that the active ingredients from the culture filtrates were thermophilic, psychrotolerant and could be evaporated with water. pH could affect its nematicidal activity. It had strong nematicidal activity at a certain acid condition. The culture filtrates of BL21could also inhibit the eggs of M. javanica hatching and the inhibition rate was98.9%. The greenhouse experiments showed that fresh root weight/per plant at the0.01levels and the number of egg masses/per plant at the0.05levels was significant difference, compared with the control.
     5. In order to identify the nematicidal-related genes, a mutant library of Escherichia coli BL21(DE3) was constructed by using Tn5transposon. The nematicidal proterties of5000mutants were evalated and2mutants M12, M13were unable to kill the root-knot nematodes M. javanica in72hours,14mutant could delay the body variation of the nematodes. The results showed that the nematicidal activity of16mutants was affected by changing their acidic environments. Hermal asymmetric interlaced PCR (TAIL-PCR) was adopted to verify16mutants screened from the Tn5inserted library of the strain BL21based on nematicidal assay. The results revealed that the inserted genes of7mutans M2, M4, M5, M7, M9, M10, M12were confirmed, which were cysH、serA、metC、pyrD、 ilvC、purA、 carB genes, and the other9mutants couldnot get the results.
引文
1. Aballav A, Ausube F M.2002. Caenorhabditis elegans as a host or the study of host-pathogen interactions. Curr Opin Microbiol,5:97-101.
    2. Ahren D, Tholander M, Fekete C, et al.2005. Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiol, 151:789-803.
    3. Aldrichj B R.1970. Biological control of Fusariun roseum f.sp. dianthi by Bacillus subtilis. Plant Disease Reporter,54:446-448.
    4. Ali N I, Siddiqui I A, Shaukat S S, et al.2002. Nematicidal activity of some strains of Pseudomonas spp. Soil Biology & Biochemistry,34:1051-1058.
    5. Ana M Buendia-Clavena, Ahmed Moussaid, F Javier Ollero, et al.2003. A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide Microbiology,149:1807-1818.
    6. Anand Ruchi, Hoskins Aaron A, Bennett Eric M, et al.2004. A model for the Bacillus subtilis formylglycinamide ribonucleotide amidotransferase multiprotein complex. Biochemistry,43: 10343-10352.
    7. Atibalentja N, Noel G R, Domier L L.2000. Phylogenetic position of the North American isolates of Pasteuria that parasitizes the soybean cyst nematodes, Heterodera glycines, as inferred from 16S rDNA sequence analysis. Int J Syst Evol Micr,50:605-613.
    8. Azevedo J L, Maccheroni W Jr, Pereira J O, et al.2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic J Biotechnol,3:40-65.
    9. Azmi M I.1997. Studies on biotic potential and predation efficiency of Iotonchus monhystera (mononchida: Nematoda). Indian Journal of Nematology,27(2):222-232.
    10. Baker R.1985. Biological control of plant pathogens:definitions. Orlando, Academic Press.
    11. Barker J O.1988. Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology,78:1466-1469.
    12. Barker K R.2003. Perspectives on plant and soil nematology. Annu Rev Phytopathol,41:1-25.
    13. Barker KR, Carter CC, Sasser JN.1985. An advanced treatise on Meloidogyne. Raleigh: North Carolina State University Graphics,2:69-78.
    14. Barron G L, Thorn R G.1987. Destruction of nematodes by species of Postreatus. Can J Bot, 65:774-77.
    15. Benedek L M.1962. Nematode pest of hops (Ditylenchus destructor Thorne). Magyar. mezOgazd, 17:12.
    16. Benizri E, Baudoin E, Guckert A.2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology,11(5):557-574.
    17. Bilgrami A L,1992. Resistance and susceptibility of prey nematodes to predation and srtike rate of the predators, Mononchus aquaticus, Dorylaimus stagnalis and Aquatides thornei. Fundamental and Applied Nematology,15(3):265-270.
    18. Bird D M, Opperman C H, Davies K G.2003. Interaction between bacteria and plant-parasitic nematodes:now and then. Int J Parasitol,33:1269-1276.
    19. Bloemberg G V, Lugtenberg B J.2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology,4(4):343-350.
    20. Bottjer K P, Bone L W, Sarjeet S G.1985. Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Experimental Parasitology,60:239-244.
    21. Bravo A.1997. Phylogenic relationship of Bacillus thuringiensis endotoxin family protein and their functional domains. J Bacteriol,179:2793-2801.
    22. Breton Yoann Le, Mohapatra Nrusingh Prasad, Haldenwang W G..2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Applied and Environmental Microbiology,2(1):327-333.
    23. Bugr R W, Miller B M, Baker E E, et al.1979. Avermectines, a new family of potent anthelminic agents:producting organisms and fermentations. Antimicrob Agents Chemother,15:361-367.
    24. CAB Ibternational.1999. Crop protection compendium. Global Module (CD). Wallingford, UK: CAB International.
    25. Cassidy G H.1931. Some Mononchs of Hawii. Hawaii Plant Rec,35:305-339.
    26. Chahal V P S, Chahal P P K.1991. Control of Meloidogyne incognita with Bacillus thuringiensis. Developments in Plant and Soil Science,45(4):677-680.
    27. Chang J H, Jonathan M Urbach, Terry F Law, et al.2005. A high-throughput, near-saturating screen for type Ⅲ effector genes from Pseudomonas syringae. Proc Natl Acad Sci,102:2549-2554.
    28. Charles L, Carbone I, Davis K G, et al.2005. Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. J Bacteriol,187:5700-5708.
    29. Charles L.2005. Phylogenetic studies of Pasteuria penetrans looking at the evolutionary history of housekeeping genes and collagenlike motif sequences. MSc thesis, North Carolina State University, Raleigh, NC.
    30. Chen Z X, Dickson D W.1998. Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol,30:313-340.
    31. Cohn E, Mordechai M,1974. Experiment in suppressing citrus nematode. Nematol Mediterr, 2:43-53.
    32. Compant S, Duffy B, Nowak J, et al.2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbial, 71:4951-4959.
    33. Coomans A, Eyualem A, Van de Velde MC.1996. Position of pharyngeal gland outlets in monhysteridae (nemata). J Nematol,28(2):169-76.
    34. Cox G N, Kusch M, Edgar R S.1981. Cuticle of Caenorhabditis elegans:its isolation and partial characterization. J Cell Biol,90:7-17.
    35. Crickmore N, Zeigler D R, Feitelson J, et al.1998. Review of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev,62:807-813.
    36. Cronin D, Moenne-Loccoz Y, Fenton A, et al.1997. Role of 2,4-diacetylphloroglucinol in theinteraction of the biocontrol Pseudomonas strain Fl 13 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol,63:1357-1361.
    37. Darw in A J.2005. Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol,7(2):135-149.
    38. Das T K, Mukhopadhyaya M C.1990. Preliminary observations on the population fluctuations of some plant parasitic, predatory and free-living nematodes in cultivated soils and grassland. India Journal of Nematology,20(1):108-111.
    39. Davide R D.1988. Biocon controls nematodes biologically. Biotechology,5:772.
    40. Davies K G, Opperman C H.2006. A potential role for collagen in the attachment of Pasteuria penetrans to nematode cuticle. Multitrophic Interactions in the Soil, IOBC/wprs Bulletin, Vol.29 (Raaijmakers J M & Sikora R A, eds), pp.11-16.
    41. Davies K G.2005. Interactions between nematodes and microorganisms:bridging ecological and molecular approaches. Adv Appl Microbiol,57:53-78.
    42. De Ley IT, De Ley P, Vierstraete A, et al.2002. Phylogenetic analyses of Meloidogyne small subunit rDNA. J Nematol,34(4):319-27.
    43. Doncaster C C, Hooper D J.1961. Nematodes attacked by protozoa and tardigrades. Nematologica, 6:333-335.
    44. Dong L Q, Zhang K Q.2006. Microbial control of plant-parasitic nematodes:a five-party interaction. Plant Soil,288:31-45.
    45. Duponnois R, Ba A M, Mateille T.1999. Beneficial effects of Enterbacter cloacae and Pseudomonas mendocina for biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematol,1:95-101.
    46. Dwinell I D.1993. First report of pinewood nematode (Bursaphelenchus xylophilus) in Mexico. Plant Disease,77(8):846.
    47. Ebert D, Rainey P, Embley T M, et al. 1996. Development, life cycle, ultrastructure and phylogenetic position of Pas teuria ranosa Metchnikoff 1888:rediscovery of an obligate endoparasite of Daphnia magna Straus. Philos Trans R Soc Lond, B351:1689-1701.
    48. Elizabeth A B, Handelsman J O.1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Letters,171:1-9.
    49. El-Nagdi WMA, Youssef MMA.2004. Soaking faba bean seed in some bio-agent as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. J Pest Sci, 77:75-78.
    50. Endo B Y.1979. The ultrastructure and distribution of an intracellular bacterium-like microorganism in tissues of larvae of the soybean cyst nematode, Heterodera glycines. J Ultrastruct Res,67:1-14.
    51. Esser R P, Sobers E K.1964. Natural enemies of nematodes. Soil Crop Sci. Soc Fla Proc, 24:326-352.
    52. Evans K, Trudgill D L, Webster J M.1993. Plant parasitic nematodes in temperate agriculture. UK: CAB International.
    53. Foot M A, Wood F H.1982. Potato rot nematode, Ditylenchus destructor (Nematoda: Tylenchuidae), infecting hops in New Zealand. J Exp Agr,10:443-446.
    54. Georgis R, Poinar G O.1983. Effect of soil texture on the distribution and infectivity of Neoaplectana glaseri (Nematoda:Steinernematidae). J Nematol,15(3):329-32.
    55. Gierl A, Saedler H.1992. Plant-transposable elements and gene tagging. Plant Mol Biol,19:3.
    56. Goryshin IY, Reznikoff WS.1998. Tn5 in vitro transposition. J Biol Chem,273:7367.
    57. Guerout-Fleury A M, Frandsen N, Stragier P.1996. Plasmids for ectopic integration in Bacillus subtilis. Gene,180:57-61.
    58. Guo J H, Qi H Y, Guo Y H, et al.2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control,29:66-72.
    59. Guo R J, Liu X Z, Yang H W.1996. Study for application of rhizobacteria to control plant-parasitic nematode. Chinese Bio Control,12:134-137.
    60. Haapa S, Taira S, Heikkinen E, et al.1999. An efficient and accurate integration of mini-Mu transposons in vitro:a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res,27:2777.
    61. Hallmann J, Faupel A, Krachel A, et al.2002. Occurrence and biocontrol potential of potato-associated bacteria. Nematol,4:285.
    62. Hallmann J, Quadt-Hallmann A, Mahaffee W F, et al.1997. Bacterial endophytes in agricultural crops. Can J Microbiol,43:895-914.
    63. Hallmann J, Rodriguez-Kabana R, Kloepper J W.1999. Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem,31:551-560.
    64. Hallmann J.2001. Plant interactions with endophytic bacteria. Biotic interactions in plant-pathogen interactions (Jeger MJ & Spence NJ, eds), pp.87-119. CAB International, Wallingford, UK.
    65. Handelsman J, Stabb E V.1996. Biocontrol of soil-borne plant pathogens. The plant cell. 8:1855-1869.
    66. Harakava R, Gabriel D W.2003. Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization. Appl Environ Microbiol,69:1315-1319.
    67. Hasky-Gunther K, Hoffmann-Hergarten S, Sikora R A.1998. Resistance against the potato cyst nematode Globodera paltida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundamental and applied nematology,21(5):511-517.
    68. Hayes F.2003. Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet,37:3-29.
    69. Hensel M, Holden D W.1996. Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiol,142:1049-1058.
    70. Hensel M, Shea J E, Gleeson C, et al.1995. Simultaneous identification of bacterial virulence genes by negative selection. Science,269:400-403.
    71. Hofte H, Whiteley H R.1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev, 53(2):242-255.
    72. Hoskins Aaron A, Anand Ruchi, Ealick Steven E.2004. The formylglycinamide ribonucleotide amidotransferase complex from Bacillus subtilis:metabolite-mediated complex formation. Biochemistry,43:10314-10327.
    73. Hu K, Li J, Webster J M.1995. Mortality of plant-parasitic nematodes caused by bacterial (Xenorhabdus spp. and Photorhabdus luminescens) culture media. J Nematol,27:502-503.
    74. Hu K, Li J, Webster J M.1996.3,5-Dihydroxy-4-isopropylstilbene:a selective nematicidal compound from culture filtrate of Photorhabdus luminescens. Can J Plant Pathol,18:104.
    75. Hu K, Li J, Webster J M.1997. Quantitative analysis of a bacteria-derived antibiotic in nematode-infected insects using HPLC-UVand TLC-UV methods. J Chromatogr B,703:177-183.
    76. Hu K, Li J, Webster J M.1999. Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathohenic nematodes. Nematol,1:457-469.
    77. Huang X W, Tian B Y, Niu Q H, et al.2005. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystal can serve as a pathogenic factor in infection of nematodes. Res Microbiol,156:719-727.
    78. Huffman D L, Bischof L J, Griffitts J S, et al.2004. Pore worm: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. Int J Microbiol,293:599-607.
    79. Hunt D J.1993. Aphelenchida, Longidoridae and Trichodoridae, their systematics and blonomics. Wallingford, UK:CAB Internat ional.
    80. Hunt O J, Griffin D, Murray J J, et al.1971. The effects of root-knot nematode on bacterial wilt in tobacoo. Phytopathol,61:256-259.
    81. Huntchinson M T, Streu H T.1960. Tardigrades attacking nematodes. Nematologica,5:149.
    82. Hwang S F, Chakravarty P.1992. Potential for the integrated control of Rhizoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. Z PflKrankh PflSchutz,99:626-636.
    83. Ibrahim AAM, Al Hazmi AS, A1 Yahya FA, et al.1999. Damage potential and reproduction of Heterodera avenae on wheat and barley under Saudi field conditions. Nematology, 1(6):625-630.
    84. Idriss Elsorra E, Makarewicz Oliwia, Farouk Abdelazim, et al.2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology,148:2097-2109.
    85. Ignoffo C M, Dropkin V H.1977. Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus, and protozoan by an ultraviolet light source. Journal of the Kansas Entomological Society,50(3):394-3981.
    86. Inserra R N, Davis D W,1983. Hypoaspis nr.aculeifer: a mite predacious on root-knot and cyst nematodes. J Nematol,15:324-325.
    87. Insunza V, Alstrom S, Eriksson K B.2002. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil,241:271-278.
    88. Ioannis O, Demetra P.2004. A novel non-chemical nematicide for the control of root-knot nematodes. Applied Soil Ecology,26(1):69-79.
    89. Jacq V A, Fortuner R.1979. Biological control of rice nematodes using sulphate reducing bacteria. Revue Nematol,2:41-50.
    90. Jairajpuri M S, Khan W U.1986. Predatory nematodes (Mononchida) with special reference to India. New Delhi: Associate Publishing Company.
    91. Jatala P, Kaltenbach R, Bocangel M.1979. Biological control of Meloidogyne incognita acrita and Globodera pallida on potatoes. J Nematol,11:303.
    92. Jayakumar J, Ramakrishnan S, Rajendran G. 2002. Biocontrol of reniform nematode, Rotylenchulus reniformis through Pseudomonas fluorescent. Pesttol,26:45-46.
    93. Jiang X, Hao D L, Li Q C, et al.2006. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell,125:1347-1360.
    94. Jonasson Per, Liljeqvist Sissela, Nygren Per-Ake, et al.2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichai coli. Biotechnol. APPI. Biochem, 35:91-105.
    95. Jones B L, Waele D.1988. First report of Ditylenchus destructor in pod and seeds of peanut. Plant Disease,72:453.
    96. Kerry B R.2000. Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol,38:423-441.
    97. Khan M R, Kounsar K, Hamid A.2002. Effect of certain rhizobacteria and antagonistic fungi on root-nodulation and root-knot nematode disease of green gram. Nematologia Mediterranea, 31:85-89.
    98. Kloepper J W, Rodriguez-Kabana R, Mclnroy J A.1991. Analysis of population and physiological characterization of microorganisms in rhizosphere of plant with antagonistic properties to phytopathogenic nematodes. Plant Soil,136:95-102.
    99. Krebs B, Hoeding B, Kuebart S, et al.1998. Use of Bacillus subtilis as biocontrol agent. I. activities and characterization of Bacillus subtilis strains. Zeitschrift Pflanzenkrankh Pflanzenschutz, 105:181-197.
    100. Kronstad J W, Schnepf H E, Whiteley H R.1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol,154(1):419-428.
    101. Kwok O C H, Plattner R, Weisleder D, et al.1992. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J Chem Ecol,18 (2):127-1361.
    102. Lewis J A, Papavizas G C.1980. Integrated control of rhizoctonia fruit rot of cucumber. Phytopathology,70(2):85.
    103. Li B, Xie GL, Soad A, et al.2005. Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria. J Zhejiang Univ Sci,6B:496-501.
    104. Lian L H, Tian B Y, Yang J K, et al.2007. Proteases from bacillus:a new insight to understand the complex interaction between rhizobacteria and nematode groups in the soil. Lett Appl Microbiol, 45:262-269.
    105. Liang P, Pardee A B.1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,257:967-971.
    106. Liharska T B, Hontelez J, Kammen Ab van, et al.1997. Molecular mapping around the centromere of tomato chromosome 6 using irradiation-induced deletions. Theoretical and Applied Genetics, 95(5-6):969-974.
    107. Liu Yongfeng, Chen Zhiyi, Ng T B, et al.2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides,28:553-559.
    108. Loon L C, Bakker, Pieterse C M.1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology,36:453-483.
    109. Lu Guang-Tao, Xie Jia-Ri, Chen Lei, et al.2009. Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and fullvirulence. Microbiology,155:1602-1612.
    110. Mahdy M, Hallmann J, Sikora R A.2001. Influence of plant species on the biological control activity of the antagonistic rhizobacterium Rhizobiumetli strain G12 toward the root-knot nematode Meloidogyne incognita. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet,66:655-662.
    111. Mai W F, Abawi G S.1987. Interactions among root-knot nematodes and fusarium wilt fungi on host plants. Annual Review of Phytopathology,25:317-338.
    112. Mankau R, Imbriani J L.1978. Studies on the mite Lasioseius scapulatus: a predator on soil nematodes. Nematropica,8:15.
    113. Mankau R, Wu Xiuying.1985.Effects of the nematode-trapping fungus, Monasrosporium ellisosporium on Meloidogyne incognita populations in field soil. Revue Nematol,8(2):147-153.
    114. Mankau R.1980. Biological control of nematode pests by natural enemies. Ann. Rev. Phytopathol, 18:415-440.
    115. Marra A, Asundi J, Bartilson M, et al.2002. Differential fluorescence induction analysis of Streptococcus pneuumoniae indentifies genes involved in pathogenesis infect immmun. Infection and Immunity,70(3):1422-1433.
    116. Marroquin L D,Elyassnia D, Griffitts J S, et al.2000. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genet, 155:1693-1699.
    117. McClintock B.1951. Chromosome organization and gene expression. Cold Spring Harbor Symp Quant Biol,16(3):13-17.
    118. Mclnory J A, Kloepper J W.1995. Survey of indeginous bacterial endophytes from cotton and sweet corn. Plant Soil,173:337-342.
    119. Mellgren E M, Kloek A P, Kunkel B N.2009. Mqo, atricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv.tomato strain DC3000 on Arabidopsis thaliana. J Bacteriol,191(9):3132-3141.
    120. Mena J, Pimentel E.2002. Corynebacterium pauronetabolum strain C-924 on nematodes. Nematol, 4:287.
    121. Meyer S L F, Roberts D P, Chitwood D J, et al.2001. Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica,31:75-86.
    122. Meyer S L R 2003. United States department of agriculture-agricultural research service research programs on microbes for management of plant-parasitic nematodes. Pest Manag Sci,59:665-670.
    123. Miller T W, Charet L, Cole D J, et al.1979. Avermectines, a new family of potent anthelminic agents: isolation and chromatographic properties. Antimicrob Agents Chemother,15:368-371.
    124. Molinaris M.1997. Interactions between resistna ttomato cvs and Meloidogyne spp. in virto. Nematologica Mediterrnaea,25(1):63-71.
    125. Mootz Henning D, Finking Robert, Marahiel Mohamed A.2001.4-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis.The Journal of Biological Chemistry,40:37289-37298.
    126. Morton C O, Hirsch P R, Kerry B R.2004. Infection of plant-parasitic nematodes by nematophagous fungi-a review of the application of molecular biology to understand infection processes and to improve biological control. Nematol,6:161-170.
    127. Motsinger R, Crawford J, Thompson S.1976. Nematode survey of peanut and cotton in southwest Gorgia. Peanut Sci,3:72-74.
    128. Moyne A L, Cleveland T E, Tuzun S.2004. Molecular characterization and analysis of operon encoding the antifungal lipopeptide Bacillomycin D. FEMS Microbiol Lett,234:43-49.
    129. Munif A, Hallmann J, Sikora RA.2000. Evaluation of the biocontrol activity of endophytic bacteria from tomato against Meloidogyne incognita. Mededelingen Faculteit Landbouwkundige, Universiteit Gent,65:471-480.
    130. Nakano Michiko M, Marahiel Mohamed A, Zuber Peter.1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. Journal of Bacteriology,12:5662-5668.
    131. Neipp P W, Becker J O.1999. Evaluation of biocontrol activity of rhizobacteria from Beta vulgaris against Heterodera schachtii. J Nematol,31:54-61.
    132. Nian Hongjuan, Zhang Jie, Song Fuping, et al.2007. Isolation of transponson mutant and characterization of genes involved in biofilm formation by Psedomonsa fluorescens. Arch Micriobiol,188(3):205-213.
    133. Niu Q H, Huang XW, Tian B Y, et al.2005. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl Microbiol Biotechnol,69:722-730.
    134. Obagwu J, Korsten L.2003. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology and Technology, 28(1):187-194.
    135. Ogawa H, Fukushima K, Sasaki I, et al.2000. Identification of genes involved in mucosal defense and inflammation associated with normal enteric bacteria. Am J Physiol Gastrointest Liver Physiol, 279:492-499.
    136. Oka Yuji, Koltai Hinanit, Bar-Eyal Meira, et al.2000. New strategies for the control of plant-parasitic nematodes. Pest Management Science,56:983-988.
    137. Ongena M, Jacques P.2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trend Microbiol,16:115-125.
    138. Oostendorp M, Sikora R A.1989. Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Revue Nenzatol, 12(1):77-83.
    139. Oostendorp M, Sikora R A.1990. In-vitro interrelationships between rhizosphere bacteria and Heterodeta schachtii. Revue nematol,13:269-274.
    140. Park Y J, Song E S, Kim Y T, et al.2007. Analysis of virulence and growth of a purine auxotrophic mutant Xanthomonas oryzae pathovar oryzae. FEMS Microbiol Lett,276(1):55-59.
    141. Paul V J, Frautschy S, Fenical W, et al.1981. Antibiotics in microbial ecology: isolation and structure assignment of several new antibacterial compounds from the insect-symbiotic bacteria Xenorhabdus spp. J Chem Ecol,7:589-597.
    142. Perry Roland N, Moens Maurice.2006. Plant Nematode.CABI.
    143. Pgordon B, Paul D H, Tim C E, et al.2001. Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Psedomonsa fluorescens. Can J Microbiol,47:294-301.
    144. Pierson III LS, Thomashow L S.1992. Cloning and heterologous expressing of hephenazine biosynthetic locus from Psedomonsa aureofaciens 38-40. Mol. Plant Microbe Interact,5:330-339.
    145. Prasad S V, Tilak B R, Gollakota K G.1972. Role of Bacillus thuringiensis on the larval survivability and egg hatching of Meloidigyne spp. the causative agent of root-knot disease. Journal of Invertebrate Pathology,20:377-3781.
    146. Preston J F, Dickson D W, Maruniak J E, et al.2003. Pasteuria spp: systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. J Nematol,35:198-207.
    147. Racke J, Sikora R A.1992. Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida. Soil Biol Biochem,24:521-526.
    148. Rahaman P K, Ahmad I.1995. Commuinity analysis of predatory nematode species from Aligarh soils. India Nematolog Mediterr,23:57-60.
    149. Ramamoorthy V, Viswanathan R, Raguchander T, et al.2001. Induction by systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20:1-11.
    150. Riggis R D, Wrather J A.1992. Biology and management of the soybean cyst nematode. St Paul, MN:APS Press.
    151. Rodgers P B.1993. Potential of biopesticides in agriculture. Pesticide science,39:117-1291.
    152. Rodriguez-Kabana R.1986. Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol,18:524-526.
    153. Rovira A D, Sands D C.1977. Fluorescent pseudomonas-a residual component in the soil microflora. J Appl Bacteriol,34:253-259.
    154. Rumbos L, Sikora R A, Nienhaus F.1977. Richettsia-like organisms in Xiphinema index Thorne & Allen found associated with yellow disease of grapevines. Z Pflanzenkr Pflanzenschutz,84:40-43.
    155. Sasser J N, Freckman D W.1987. A world perspective on nematology:the role of the society. Vistas on nematology. Society of Nematologists, Hyatttsville, Mariland, In:D.W.Dickson, J.A.V.A (ed.),7-14.
    156. Sasser JN.1983. The international Meloidogyne project-its goals and accomplishments. Anmal Review Phytopathology, (21):271-288.
    157. Saxild Hans H, Per Nygaard.2000. The yexA gene product is required for phosphoribosylformylglycinamidine synthetase activity in Bacillus subtilis. Microbiology, 146:807-814.
    158. Sayre R M.1971. Biotic influences in soil environment. Plant-Parasitic Nematodes 1. New York Academic:235-266.
    159. Schmhz V B, Burgermeiter W, Breasch H.1998. Molecular genetic classification of Central European Meloidogyne chitwoodi and M. fallax populations. Nachrichtenbl Deut Pflanzenschutzd, 50(12):310-317.
    160. Schneider S M, Rosskopf E N, Leesch J G, et al.2003. Research on alternatives to methyl bromide: pre-plant and post-harvest. Pest Manag Sci,59:814-826.
    161. Schnepf H E, Whiteley H R.1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. P. Natl. Acad. Sci. USA,78(5): 2893-2879.
    162. Sharma R D.1971. Studies on the plant-parasitic nematode Tylenchorhynchus dubius. Meded Landboawhogesch Wageningen,71:150.
    163. Sharma S B, Prince N S, Bridge J.1997. The past, present and future of plant nematology in International Agricultural Research Centres. Nematological Abstracts,66:119-142.
    164. Shepherd A M, Clark S A.1973. An intracellular microorganism associated with tissues of Heterodera spp. Nematologica,19:31-34.
    165. Shepherd J A, Barker K R.1993. Subtropical and tropical agriculture. UK:CAB International.
    166. Shoda M.2000. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering, 89(6):515-521.
    167. Siddiqui I A, Haas D, Heeb S.2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol,71:5646-5649.
    168. Siddiqui I A, Shaukat S S.2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite 2,4-diacetylphloroglucinol. Soil Biol Biochem,35:1615-1623.
    169. Siddiqui Z A, Mahmood I.1999. Role of bacteria in the management of plant parasitic nematodes. Bioresource Technol,69:167-179.
    170. Siddiqui Z A.2005. PGPR: Biocontrol and Biofertilization. Printed in the Netherlands.
    171. Sikora R A, Hoffmann-Hergarten S.1993. Biological control of plant parasitic nematodes with plant-health promoting rhizobacteria. Biologically based technology (Lumsden PD &Vaugh JL, eds), pp:166-172. ACS Symposium series, USA.
    172. Sikora R A.1988. Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microogranisms. Med. Fac. Landbouvow. Rijksuniv. Gent,53/2b:867-878.
    173. Simon Worland, Nelson Guerreiro, Lina Yip, et al.1999. Rhizobium purine auxotrophs, perturbed in nodulation, have multiple changes in protein synthesi. Aust. J. Plant Physiol,26:511-519.
    174. Stadler M, Anke H, Arendholz W R, et al.1993. Lachnumon and lachnumol A: new metabolite with nematicidal and antimicrobial activities from the ascomycete Lachnumon papyraceum (KARST.) KARST. I. Production organism, fermentation, isolation and biological activities. J Antibiot,46:961-967.
    175. Stirling G R, Smith L J, Kerrie A, et al.1998. Control of root-knot nematode with formulations of the nematode-trapping fungus Arthrobotrys dactyloides. Biological Control,11:224-230.
    176. Stirling G R.1991. Biological control of plant parasitic nematode: progress, problems and prospects. CAB International, Wallington, UK.
    177. Sturban D, Schneider R.1980. Hirsutella heteroderae, a new nematode-parasitic fungus. Phytopathologische Zeitschrift,99:105-115.
    178. Sun Q H, Wu wei, Qian wei, et al.2003. High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X.canpestris pv. campestris generated by an efficient transposon mutagenesis system. Federation of European Microbiological Societies,226:145-150.
    179. Surette M A, Sturz A V, Lada R R,et al.2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil,253:381-390.
    180. Tan M W.2002. Identification of host and pathogen factors involved in virulence using a Caenorhabditis elegans. Method Enzomol,358:13-28.
    181. Thorn R G, Barron G L.1984. Carnivorous mushrooms. Science,224:76-78.
    182. Thorne G.1940. Dubosciqia penetrans, n.sp. (Sporozoa:Microsporidia Nosematidae) a parasite of the nematode Pratylenchus paratensis(de Man) Filipjev. Proc. Helminthol. Soc. (Wash),7:51-53.
    183. Tian B Y, Li N, Lian L H, et al.2006. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbial, 186:297-305.
    184. Tian B Y, Yang J K, Lian L H, et al.2007. Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Appl Microbiol Biotechnol,74:372-380.
    185. Tian H, Riggs R D, Crippen D L.2000. Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. J Nematol,32:370-376.
    186. Tian H, Riggs R D.2000. Effects of rhizobacteria on soybean cyst nematodes, Heterodera glycines. J Nematol,32:377-388.
    187. Utkhede R S.1984. Antagonism of isolates of Bacillus subtilis to Phytophthora cactorum. Canadian Journal of Botany,62(5):1032-1035.
    188. Valdivia R H, Falkow S.1997. Fluorescence-based of bacterial genes expressed within host cells. Science,227:2007-2011.
    189. Vangandy S D, Kirkpatrick J D, Golden J.1977. The nature and role of metabolic leakage form root-knot nematode galls and infection by Rhizocttonin solani. J Nematol,19:113-121.
    190. Walsh J A, Lee D L, Sheptherd A M.1983. The distribution and effect of intracellular rickettsia-like microorganisms infecting adult males of the potato cyst-nematode Globodera rostochiensis. Nematologica,29:227-239.
    191. Walsh J A.1979. An intracellular microorganism in tissues of the potato cyst-nematode Globodera rostochiensis and the pea cyst-nematode Heterodera goettingiana. J Nematol,11:317.
    192. Wang S, Wu H J, Qiao J Q, et al.2009. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. Journal of Microbiology and Biotechnology,19 (10):1250.
    193. Wang Shuai, Wu Huijun, Zhan Jiang, et al.2010. The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl.
    194. Webster J M.1972. Nematodea and biological control. Entomology. London Academic, 19:469-496.
    195. Wei J Z, Hale K, Carta L, et al.2003. Bacillus thuringiensis crystal proteins that target nematodes. P. Natl. Acad. Sci. USA,100:2760-2765.
    196. Wheeler T A, Starr J L.1988. Incidence and economic importance of plant-parasitic nematodes on peanuts in Texas. Peanut Sci,15:94-96.
    197. Winslow R D, Williams T D.1957. Amoeboid organisms attacking labrvae of the potato eelworm (Heterodera rostochiensis Woll.) in England and the beet eelworm (H. Schachtii Schm.) in Canada. Tijdachr. Plantenzieken,63:242-43.
    198. Xie Bo, Chen Dasong, Cheng Guojun, et al.2009. Effects of the purl gene expression level on the competitive nodulation ability of Sinorhizobium fredii. Curr Microbiol,59:193-198.
    199. Xu J, Narabu T, Mizukubo T, et al.2001. A molecular marker correlated with selected virulence against the tomato resistance gene Mi in M. incognita, M. javanica, M. arenaria. Phytopathology, 91:377-382.
    200. Zhao Genshi, Winkler Malcolm E.1996. A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. Journal of Bacteriology,1(178):232-239.
    201. Zuckerman B M, Dicklow M B,Acosta N.1993. A strain of Bacillus thuringiensis for the control of plant-parasitic nematodes. Biocontrol Sci Technol,3:41-46.
    202. Zuckerman B M, Jasson H B.1984. Nematode chemotaxis and possible mechanisms of host/prey recognition. Ann Rev Phytopathol,22:95-113.
    203.陈利锋,徐敬友主编.2001.农业植物病理学(南方本).中国农业出版社.
    204.陈立杰,段玉玺,范圣长.2005.大豆胞囊线虫病的生防因子研究进展.西北农林科技大学学报,33(增刊):190-194.
    205.陈品三.2001.杀线虫剂主要类型、特性及其作用机制.农药科学与管理,22(2):33-35.
    206.陈新,周洪友,马玺.2009.内蒙古中西部地区小麦禾谷孢囊线虫的发生分布.植物保护,35(5):114-117.
    207.程瑚瑞,林茂松,黎伟强.1983.南京黑松上发生的萎焉线虫病.森林病虫通讯,4:1-5.
    208.丁国春,付鹏,李红梅,等.2005.枯草芽孢杆菌AR11菌株对南方根结线虫的生物防治.南京农业大学学报,28(2):46-49.
    209.董炜博,石延茂,迟玉成,等,1999.穿刺巴氏杆菌防治植物根结线虫病的研究现状及其应用前景.中国生物防治,15(2):89-93.
    210.段丽霞,向梅梅.2005.现代科技与21世纪的植物保护.贵州农业科学,33(1):83-84.
    211.段玉玺,吴刚.2002.植物线虫病害防治.北京:中国农业科技出版社.
    212.范丽清,许广波,李艳茹,等.2001.高新技术在有害生物综合治理中的应用.23(2):149-152.
    213.付鹏,李红梅,丁国春,等,2004.GJ23生防菌剂防治南方根结线虫研究.江苏农业科学,(5):43-45.
    214.郭予元.2004.我国近年植保研究工作的重大进展.植物保护,30(2):7-13.
    215.黄必旺,喻子牛,黄志鹏.1998.应用细菌防治植物寄生线虫.福建农业大学学报,27(3):257-260.
    216.黄海婵.2005.枯草芽孢杆菌防治植物病害的研究进展.浙江农业科学,(3):213-215.
    217.蒋琳,马承铸.2000.生物农药研究进展(综述).上海农业学报,16(增刊):73-77.
    218.李芳,张绍升,陈家弊.1998.淡紫拟青霉对烟草根结线虫的防治效果.福建农业大学学报,27(2):196-199.
    219.李天飞,张克勤,刘杏忠.2000.食线虫真菌分类学.北京:中国科学技术出版社.
    220.廖金铃,周慧娟,冯志新.2001.杀线剂田间药效实验中的问题及对策.农药科学与管理,增刊:33-34.
    221.刘存信.1987.国内近年栽培植物线虫病害概述.植物检疫,1:5-12.
    222.刘维志.2000.植物病原线虫学.北京:中国农业出版社.
    223.刘维志.2004.植物线虫志.北京:中国农业出版社.
    224.罗兰,谢丙炎,戴小枫,等.2005.苏云金芽孢杆菌杀线虫晶体蛋白的相关基因.中国生物防治,21(1):49-51.
    225.牛秋红,黄晓玮,徐进,等.2006.细菌在线虫生防中应用的研究进展.生物技术,16(1):90-94.
    226.欧师琪,彭德良,李玉.2008.禾谷孢囊线虫(Heterodera avenae)的分子鉴定及抗性基因研究 进展.植物保护,34(6):7011.
    227.沈寅初,杨慧心.1994.杀虫抗生素Avermectin的开发及特性.农药译丛,16(3):1-13.
    228.孙炳达,刘杏忠.2004.生物防治的机制//刘杏忠,张克勤,李天飞.植物寄生线虫生物防治.北京:中国科学技术出版社,12-26.
    229.唐朝荣,孙福在,赵廷昌.2003.利用细菌冰核基因构建促冻杀虫基因工程菌.科学通报,48:64-69.
    230.田宝玉,黄薇,江贤章,等.2009.植物寄生线虫生防细菌及其作用机制研究.生物技术,19(4):90-93.
    231.汪来发.2002.根结线虫生物防治研究进展.南京林业大学学报(自然科学版),26(1):64-68.
    232.王静,孔凡玉.2002.烟草根结线虫病综合防治技术.烟草科技,第9期.
    233.王琛柱,黄玲巧.1998.应用转基因技术治理害虫展望.植物保护,(3):35-37.
    234。王明祖.1998.中国植物线虫研究.湖北科学技术出版社.
    235.王希国,李志强,葛素华.2006.热处理出口牡丹种苗防治根结线虫.植物检疫,20(5):283-284.
    236.谢辉.2000.植物线虫分类学.合肥:安徽科学技术出版社.
    237.徐建华,魏大为,詹裕定,等.1994.江苏省大棚蔬菜寄生线虫的种类和发生.南京农业大学学报,17:47-51.
    238.许志刚.1997.普通植物病理学.中国农业出版社.
    239。阎乃红,陈静,余懋群.2003.小麦禾谷孢囊线虫及抗线虫性基因研究进展.麦类作物学报,23(1):90-94.
    240.杨佐忠.2001.枯草杆菌拮抗体在植物病害生物防治中的应用.四川林业,22(3):41-44.
    241.喻子牛.1996.苏云金芽孢杆菌的分类及生物活性蛋白基因.中国生物防治,12(2):85-89.
    242.张杰,彭于发,赵建周,等.1995.用接合转移方法构建杀虫防病荧光假单胞菌.农业生物技术学报,3(2):75-81.
    243.张绍升.2006.中国植物线虫学研究九十年[C]//廖金铃,彭得良,郑经武,等.中国线虫学研究(第1卷).北京:中国农业科学技术出版社,298-309.
    244.张世清,任文彬,王华,等.2006.植物寄生线虫生物防治和抗线虫基因工程综述.热带农业科学,26(4):69-75.
    245.张小玲,罗天宽,刘庆.2003.现代生物技术与农业.温州职业技术学院学报,3(3):42-44.
    246.郑经武,林茂松,方中达.1996.寄生麦类作物的胞囊线虫种类、分布及其鉴定特征.植物检疫,10(1):8-11.
    247.周春娜,谢晖,徐春玲,等.2004.矮化属线虫2个中国新记录种记述.华中农业大学学报,23(4):507-509.
    248.朱丽梅,吴小芹,陈江天,等.2009.一株毒杀松材线虫的解淀粉芽孢杆菌活性物质的基本性质.中国生物防治,25(4):359-363.
    249.朱丽梅,吴小芹,蒋萍.2008.细菌XS2JS对松材线虫杀线活性的测定.南京林业大学学报(自然科学版),32(1):79-82.
    250.朱秀珍,田希武,王随保,等.2004.甘薯茎线虫病发病规律及综合防治.山西农业科学,32(3):54-57.
    251.祝明亮,李天飞,夏振远,等.2003.云南省烟草根结线虫发病土壤生态因子分析.中国烟草学报,9(4):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700