机械拉伸诱导人骨髓间充质干细胞向肌腱细胞定向分化及其力信号转导的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机体组织/细胞处于复杂的力学微环境中,且其生长发育受到力学微环境的调控。肌腱/韧带组织是一种典型的传递肌肉收缩所产生的应力的连接性组织。它们在发育进程中,长期受到周期性牵拉产生的张应力,这对它们的形成具有重要的调节作用。然而,肌腱/韧带由于过度负载或者老化引起的损伤在日常生活中很常见,而且其预防和治疗仍是临床医生面临的挑战问题之一。
     骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells, BM-MSCs)是一种具有多向分化潜能的成体干细胞,由于其具有来源丰富、取材简单、快速增殖、易于转染外源基因、以及低免疫抗原反应等优点,成为组织工程、基因治疗以及细胞治疗的研究热点。目前已经有研究报道机械刺激可以诱导BM-MSCs向肌腱细胞方向分化。这为利用组织工程实现肌腱/韧带损伤修复带来了新希望,但是其力信号转导和分子机理还不清楚,并成为后续研究工作的重点。
     为了进一步研究机械刺激对BM-MSCs向肌腱细胞方向分化的影响以及分化过程中的相关力信号转导。本文以人骨髓间充质干细胞(human bone marrow-derived mesenchymal stem cells, hMSCs)为研究对象,利用拉伸装置(ST-140)对hMSCs加载一定的机械拉伸,通过实时定量PCR检测肌腱相关标记基因的表达情况,筛选诱导hMSCs向肌腱细胞方向分化的机械拉伸条件;并且利用Y-27632、细胞松弛素D和PF 530228 (PF 228)分别抑制RhoA/ROCK、细胞骨架和FAK(Focal adhesion kinase, FAK),考察RhoA/ROCK、细胞骨架和FAK在机械拉伸诱导hMSCs向肌腱细胞方向分化过程中的作用。
     本文得到的主要实验结果如下:
     ①hMSCs多向分化潜能
     多向分化潜能通常是指在体外诱导条件下具有分化为成骨细胞、成脂肪细胞和软骨细胞的能力。我们利用成骨诱导分化培养基、成脂肪诱导分化培养基和成软骨诱导分化培养基诱导hMSCs,以MSCs基础培养基培养作为对照。诱导21天后分别进行茜素红、油红O和阿尔新蓝组织化学染色。染色结果显示成骨诱导分化培养基诱导21天后,诱导组茜素红染色呈阳性而对照组呈阴性;成脂肪诱导分化培养基诱导21天后,诱导组油红O染色呈阳性而对照组呈阴性;成软骨诱导分化培养基诱导21天后,诱导组阿尔新蓝染色呈阳性而对照组呈阴性。这表明:我们的研究对象hMSCs,在体外具有分化为成骨细胞、成脂肪细胞和软骨细胞的多向分化能力。
     ②机械拉伸诱导hMSCs向肌腱细胞方向分化
     对hMSCs加载不同条件的机械拉伸(频率:0.1 Hz、1.0 Hz,应变大小:5%、10%、15% strain,拉伸时间:24 h、48 h),通过实时定量RT-PCR和Western blot技术分别检测肌腱相关标记基因如Collagen type I (Col I)、Collagen type III(Col III)、tenascin-C(TNC)和scleraxis(SCX),和肌腱相关标记蛋白如Col I和TNC的表达。实验结果显示:不同的机械拉伸引起的基因和蛋白的表达变化不尽相同。在本研究范围内,1.0 Hz、10% strain,持续时间分别为24 h和48 h能够促进肌腱相关标记基因和蛋白的表达。加载机械拉伸24 h后,Col I、Col III、TNC和SCX的基因表达分别为相应对照组的1.220±0.057倍、1.31±0.087倍、1.355±0.133倍和1.605±0.244倍;Col I和TNC的蛋白表达分别为1.191±0.042倍和1.47±0.047倍。加载机械拉伸48 h后,Col I、Col III、TNC和SCX的基因表达分别为1.285±0.049倍、1.375±0.152倍、1.64±0.146倍和2.503±0.285倍;Col I和TNC的蛋白表达分别为1.258±0.093倍和2.231±0.278倍。这些实验结果表明1.0 Hz、10% strain,持续时间48 h的机械拉伸能够诱导hMSCs向肌腱细胞方向分化。同时我们观察到机械拉伸诱导hMSCs垂直于拉伸方向排列,而且细胞排列的趋势和拉伸频率、拉伸形变和拉伸时间相关。
     ③Y-27632、细胞松弛素D和PF 228对机械拉伸诱导的actin超微结构的变化的影响
     以Fluoresceinisothiocyanate (FITC)-phalloidin标记细胞骨架F-actin,通过激光共聚焦显微镜观察actin的超微结构。利用Y-27632、细胞松弛素D和PF 228分别抑制RhoA/ROCK、细胞骨架和FAK,考察RhoA/ROCK、细胞骨架和FAK对机械拉伸诱导的hMSCs形态和actin超微结构的变化的影响。激光共聚焦显微镜的实验结果显示:静态培养的细胞随机排列,actin沿着细胞长轴呈随机排列;机械拉伸促进actin的聚合,使actin的密度升高,并诱导actin纤维垂直于拉伸方向排列。Y-27632处理的细胞,actin的聚合受到抑制,只有少数actin分布在细胞边缘;Y-27632处理的细胞加载机械拉伸后,actin呈随机排列,密度没有显著变化,但是actin变得不连续并呈点状,细胞边缘出现很短的actin。细胞松弛素D处理的细胞,actin变短且不连续,并在细胞边缘聚积;细胞松弛素D处理的细胞加载机械拉伸后,actin的不连续和点状程度更加明显,且actin呈随机排列。PF 228处理的细胞,actin并无显著变化;PF 228处理的细胞加载机械拉伸后,actin出现撕裂状,部分actin不再沿着细胞长轴排列,而是垂直于拉伸方向排列,而且拉伸后产生一些细胞碎片。这些结果表明RhoA/ROCK和FAK对机械拉伸诱导的actin的变化至关重要,而且机械拉伸通过诱导actin垂直于拉伸方向排列,最终引起细胞垂直于拉伸方向排列。
     ④Y-27632、细胞松弛素D和PF 228抑制机械拉伸诱导的FAK 397位点Tyr磷酸化及向肌腱细胞方向分化
     Y-27632、细胞松弛素D和PF 228抑制机械拉伸诱导的hMSCs FAK磷酸化。Western blot结果显示Y-27632和细胞松弛素D抑制后,FAK磷酸化下降到对照组水平; PF 228处理抑制机械拉伸诱导的FAK磷酸化,将FAK磷酸化水平下降到20%左右,且磷酸化程度比对照水平更低。这表明RhoA/ROCK和细胞骨架对机械拉伸诱导的FAK磷酸化具有重要的调节作用,而PF 228作为FAK的选择性抑制剂对FAK磷酸化的抑制程度更剧烈。不仅如此,实验结果进一步显示:Y-27632、细胞松弛素D或PF 228处理,显著抑制机械拉伸诱导的肌腱相关标记基因(Col I、Col III、TNC、SCX、EphA4、Eya2和Six1)和蛋白(Col I、Col III和TNC)的表达。相比而言,PF 228的抑制效果更加剧烈。这表明RhoA/ROCK、细胞骨架和FAK调节机械拉伸诱导的hMSCs向肌腱细胞方向分化。在这个分化过程中,RhoA/ROCK、细胞骨架和FAK之间相互影响、相互调节,组成一个力学感应的信号网络。这个信号网络感应胞外力学环境,并将力信号转变为生化信号,并进一步触发向肌腱细胞方向分化进程。抑制这个信号网络中的任何一个成员,将导致机械拉伸诱导hMSCs向肌腱细胞方向分化的失败。综合以上研究表明:hMSCs不仅具有分化为成骨细胞、脂肪细胞和软骨细胞的能力,而且在机械拉伸加载条件(1.0 Hz,10% strain)的条件下,能够向肌腱细胞方向分化。在机械拉伸诱导hMSCs向肌腱细胞方向分化过程中,激活的RhoA/ROCK、完整的细胞骨架和FAK Tyr397位点磷酸化是必要条件,而且RhoA/ROCK、细胞骨架和FAK相互影响并协同调节械拉伸诱导hMSCs向肌腱细胞方向分化。本研究对认识机械拉伸诱导hMSCs定向分化的分子基础以及分化过程中力信号传导具有重要意义,还可为临床上腱/韧带创伤的治疗及其组织工程化提供定量的参考依据。
Tendon/ligament is a kind of connective tissue subjected to complicated mechanical microenvironment which is controlling their growth, development and regeneration. However, it is always injured in the daily life, and the cure of the injuries is a serious challenge for clinician.
     Mesenchymal stem cells (MSCs) are able to differentiate into a lot of cell lineages. For their advantages, such as abundant source, fast proliferation, easy to transfer exogenous gene, low immune reaction, they become one of the research focus of tissue engineering, gene therapy or cell therapy. At present, it was reported that MSCs were able to differentiate into tenocytes by mechanical stimuli, and to be used for tendon/ligament repair. It brings new hopes for the appliacation of tissue engineering for tendon/ligament repair. However, the mechanical stretch-induced tenogenic differentiation is not well understood and the mechanotransduction mechanism is still unclear. Therefore, it becomes an important research content of in the furthure.
     This study further investigated the effect of mechanical stretch on tenogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs), and the mechanotransduction mechanism during the process. To search for an appropriate stretch parameter, cyclic stretch device (ST-140) was used to load mechanical stretch on hMSCs which growth on febronectin-coated silicon chambers. After stretch, tendon-related gene and protein expressions were analyzed by real-time RT-PCR and western blot. After that, to examine the effect of RhoA/ROCK, cytoskeletal organization and FAK (Focal adhesion kinase) during mechanical stretch-induced tenogenic differentiation, Y-27632, ctochalasin D and PF 530228 (PF 228) were used to inhibit RhoA/ROCK, cytoskeletal organization and FAK, respectively.
     The main experiments and major results are as follows:
     ①hMSCs multi-lineages differentaiton potential
     To examine the multi-lineages differentaiton potential of hMSCs used in this study, hMSCs were cultured in OS (osteogenic) induction media, AD (adipogenic) induction media or CH (chondrogenic) induction media for 21 d. Alizarin red S, oil red O and acian blue staining were conducted to analyzed the OS induction, AD induction and CH induction, respectively. The staining results suggest that hMSCs could differentiate into osteogenic, adipogenic and chondrogenic.
     ②Mehcanical stretch-induced tenogenic differentiation of hMSCs
     Aimed to search for appropriate stretch parameters, hMSCs were loaded with different mechanical stretch (0.1 Hz, 15% strain, 24 h and 48 h; 0.1 Hz, 10% strain, 24 h and 48 h; 0.1 Hz, 5% strain, 24 h and 48 h; 1.0 Hz, 15% strain, 24 h and 48 h; 1.0 Hz, 10% strain, 24 h and 48 h; 1.0 Hz, 5% strain, 24 h and 48 h), gene expressions of collagen type I (Col I), collagen type III (Col III), tenascin-C (TNC) and scleraxis (SCX), and protein expressions of Col I and TNC, were anaylized by real-time RT-PCR and western blot. The results showed that only the mechanical stretch (1.0 Hz, 10% strain, 24 h and 48 h) can promote the gene expressions of Col I, Col III, TNC and SCX,and the protein expressions of Col I and TNC. It suggests that 1.0 Hz, 10% strain mechanical stretch can induce tenogenic differentiation of hMSCs. Concomitant with this process, hMSCs were induced to realign vertically to the direction of stretch, and the trend of realignment was dependent on the strain, frequence and duration of mechanical stretch.
     ③Effects of Y-27632, cytochalsin D and PF 228 on mechanical stretch-induced changes in morphology of hMSCs
     Y-27632, cytochalsin D and PF 228 had important effect on mechanical stretch-induced changes in cytoskeletal dynamics which defines cell shape. The changes in density of actin fibers and vertical alignment of actin fibers to the direction of stretch, are due to the adaptation to mechanical loads which can resist and reduce experienced mechanical force. Inhibition of RhoA/ROCK resulted in lacking actin fibers, failure in trailing-edge retraction and leaving a long tail behind cells, and showed stellate-like morphology. However, in the presence of Y-27632 and mechanical stretch resulted in discontinuous actin fibers and very short actin fibers in the cell edges, and no significant changes in cell shape and favorite alignment with respect to the direction of stretch. Cytochalasin D treatment resulted in disruption of actin fibers organization and circular cell shape. When the cytochalasin D treated cells were exposure to stretch, the actin fibers were further disrupted and the cell shape became more circuler. PF 228 incubation resulted in more circular cell shape and shorter actin fibers. Interestingly, PF 228 incubation with mechanical stretch resulted in stellate-like cells, shorter actin fibers and rough edges, and even resulted in generation of cell debris. In addition, there were also no specific alignments of cells and actin fibers with respect to the direction of stretch. These data suggest that mechanical stretch facilitates actin fibers formation and induces realignment of cells by inducing actin fibers perpendicular aligning to the direction of stretch which can resist and adapt to the force balance. And the stretch-induced realignment is needed activation of RhoA/ROCK, intact cytoskeltal organization and FAK phosphorylation.
     ④Effects of Y-27632, cytochalsin D and PF 228 on mechanical stretch-induced changes in FAK phosphorylation and tenogenic differentiation of hMSCs
     Western blot showed that with experience of stretch for 30 min, phosphorylation of FAK at Tyr397 was increased up to 1.966±0.167 times. When cells were treated by Y-27632, phosphorylation of FAK at Tyr397 was decreased to 1.081±0.1 times. When the assembling of F-actin was blocked by cytochalasin, phosphorylation of FAK at Tyr397 was decreased to 1.095±0.099 times. Treatment with PF 228 resulted in dramatical decrease of phosphorylation of FAK at Tyr397. It was reduced to 0.395±0.075 times. It indicates RhoA/ROCK and cytoskeletal organization are essential to mechanical stretch-activated FAK phosphorylation.
     Except for the influence on morphology and stretch-activated FAK phosphorylation, Y-27632, cytochalsin D and PF 228 have important effect on gene expressions and even to differentiation. Y-27632, cytochalsin D or PF 228 inhibited the mechanical stretch-induced gene expressions of Col I, Col III, TNC, SCX, EphA4, Eya2 and Six1, and the protein expressions of Col I, Col III and TNC. It suggests that RhoA/ROCK, cytoskeleton and FAK are necessary for mechanical stretch-induced tenogenic diferentiation of hMSCs. Moreover, RhoA/ROCK, cytoskeletal organization and FAK interacted with each other in the stretch-induced tenogenic differentiation of hMSCs.
     In summary, we can infer that RhoA/ROCK, cytoskeletal dynamics and FAK interacte with each other and compose a signaling network to sense mechanical environment. The signaling network converts mechanical stretch into biochemical signaling, and then triggers stretch-induced tenogenic differentiation. Inhibiting any component of the signaling network, it fails to convert mechanical stretching into biochemical signaling and the stretch-induced tenogenic differentiation will be aborted. It provides novel view into the mechanisms of stretch-induced tenogenesis and supports the therapeutic potential of hMSCs.
引文
[1]姜宗来.樊瑜波.生物力学:从基础到前沿[M].北京:科学出版社, 2010.
    [2] J.M. Archambault, J.P. Wiley, R.C. Bray. Exercise loading of tendons and the development of overuse injuries. A review of current literature [J]. Sports Med, 1995, 20: 77-89.
    [3] J.H.C. Wang. Mechanobiology of tendon [J]. J Biomech, 2006, 39: 1563-1582.
    [4]曹谊林,张文杰.组织工程与组织器官缺损修复[J].临床外科杂志, 2007, 15: 40-41.
    [5] Q.W. Wang, Z.L. Chen, Y.J. Piao. Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer [J]. J Biosci Bioeng, 2005, 100: 418-422.
    [6] X. Chen, X.H. Song, Z. Yin, et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors [J]. Stem Cells, 2009, 27:1276-1287.
    [7] Y.L. Cao, J.P. Vacanti, X. Ma, et al. Generation of neo-tendon using synthetic polymers seeded with tenocytes [J]. Transplant Proc, 1994, 26: 3390-3391.
    [8]裴学涛.干细胞技术[M].北京:化学工业出版社, 2002.
    [9]谭贡,张允蚌.组织工程化肌腱应用于肌腱运动损伤的修复:研究与应用现[J].中国组织工程研究与临床康复, 2010, 14: 2225-2228.
    [10]陈兵兵,丁小邦,祝联,等.自体肌腱介导修复肌腱缺损的实验研究[J].中华手外科杂志, 2003, 19: 60-62.
    [11]邓丹,刘伟,杨漾,等.人皮肤成纤维细胞与PGA进行组织构建的适宜接种浓度[J].组织工程与重建外科杂志, 2006, 2: 137-139.
    [12] T.L. Donahue, C. Gregersen, M.L. Hull, et al. Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons [J]. J Biomech Eng, 2001, 123:162-169.
    [13] Z. Ge, J.C. Goh, E.H. Lee. Selection of cell source for ligament tissue engineering. Cell Transplant [J], 2005,14:573-583.
    [14]龙剑虹,祁敏,黄晓元,等.胶原-聚羟基乙酸与骨髓间质干细胞的细胞相容性研究[J].中国医师杂志, 2005, 7: 203-205.
    [15]裴雪涛.干细胞生物学[M].北京:科学出版社, 2003.
    [16] R.K. Schneider, A. Puellen, R. Kramann, et al. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds [J]. Biomaterials, 2010, 31: 467-480.
    [17] K. Hess, A. Ushmorov, J. Fiedler, et al. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway [J]. Bone, 2009, 45: 367-376.
    [18] A. Mukherjee, E.M. Wilson, P. Rotwein. Selective signaling by Akt2 promotes bone morphogenetic protein 2-mediated osteoblast differentiation [J]. Mol Cell Biol, 2010, 30: 1018-1027.
    [19] H. Miraoui, K. Oudina, H. Petite, et al. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling [J]. J Biol Chem, 2009, 284: 2897-2904.
    [20] J.H. Lee, N.G. Rim, H.S. Jung, et al. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite [J]. Macromol Biosci, 2010, 11: 173-182.
    [21] N. Kimelman-Bleich, D. Seliktar, I. Kallai, et al. The effect of ex vivo dynamic loading on the osteogenic differentiation of genetically engineered mesenchymal stem cell model [J]. J Tissue Eng Regen Med, 2011, in press.
    [22] I.S. Kim, J.K. Song, Y.M. Song, et al. Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells [J]. Tissue Eng Part A, 2009, 15: 2411-2422.
    [23] R.K. Jaiswal, N. Jaiswal, S.P. Bruder, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase [J]. J Biol Chem, 2000, 275: 9645-9652.
    [24] L. Wu, X. Cai, H. Dong, et al. Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK-dependent PPARgamma expression and phosphorylation [J]. J Cell Mol Med, 2010, 14: 922-932.
    [25] L. Wu, X. Cai, H. Dong, et al. Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK-dependent PPARgamma expression and phosphorylation [J]. J Cell Mol Med, 2010, 14: 922-932.
    [26] D. Sheyn, G. Pelled, D. Netanely, et al. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study [J]. Tissue Eng Part A, 2010, 16: 3403-3412.
    [27] B. Johnstone, T.M. Hering, A.I. Caplan, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells [J]. Exp Cell Res, 1998, 238: 265-272.
    [28] Y. Jiang, L.K. Chen, D.C. Zhu, et al. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair [J]. Tissue Eng Part A, 2010,16: 1621-1632.
    [29] A. Aung, G. Gupta, G. Majid, et al. Osteoarthritic chondrocyte-secreted morphogens induce chondrogenic differentiation of human mesenschymal stem cells [J]. Arthritis Rheum, 2011, 63:148-158.
    [30] J.C. Chang, S.H. Hsu, D.C. Chen. The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture [J]. Biomaterials, 2009, 30: 6265-6275.
    [31] J. Li, Z. Zhao, J. Yang, et al. p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds [J]. J Cell Physiol, 2009, 221: 609-617.
    [32] E.G. Meyer, C.T. Buckley, S.D. Thorpe, et al. Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression [J]. J Biomech, 2010, 43: 2516-2523.
    [33] G. Wu, J. Peng, M. Wu, et al. Experimental study of low-frequency electroacupuncture-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes [J]. Int J Mol Med, 2011, 27:79-86.
    [34] J. Lou, Y. Tu, M. Burns, et al. BMP-12 gene transfer augmentation of lacerated tendon repair [J]. J Orthop Res, 2001, 19: 1199-1202.
    [35] S.C. Fu, Y.P. Wong, B.P. Chan, et al. The roles of bone morphogenetic protein (BMP) 12 in stimulating the proliferation and matrix production of human patellar tendon fibroblasts [J]. Life Sci, 2003, 72: 2965-2974.
    [36] S. Violini, P. Ramelli, L.F. Pisani, et al. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12 [J]. BMC Cell Biol, 2009, 10: 29-38.
    [37] G. Altman, R. Horan, I. Martin, et al. Cell differentiation by mechanical stress [J]. FASEB J, 2002, 16: 270-272.
    [38] L. Zhang, C.J.F. Kahn, H.Q. Chen, et al. Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C [J]. Cell Bio Int, 2008, 32: 344-352.
    [39] C.K. Kuo, R.S. Tuan. Mechanoactive tenogenic differentiation of human mesenchymal stem cells [J]. Tissue Eng Part A, 2008, 14: 1615-1627.
    [40] I.C. Lee, J.H. Wang, Y.T. Lee, et al. The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system [J]. Biochem Biophys Res Commun, 2007, 352: 147-152.
    [41] S. Sahoo, S.L. Toh, J.C. Goh, et al. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells [J]. Biomaterials, 2010, 31: 2990-2998.
    [42] Z. Gong, G. Calkins, E.C. Cheng, et al. Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells [J]. Tissue Eng Part A, 2009, 15: 319-330.
    [43] C. Wang, S. Yin, L. Cen, et al. Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-beta1 and bone morphogenetic protein-4 [J]. Tissue Eng Part A, 2010, 16: 1201-1213.
    [44] S.J. Gwak, S.H. Bhang, H.S. Yang, et al. In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growth factor-beta1 [J]. Cell Biochem Funct, 2009, 27: 148-154.
    [45] C.Y. Tay, H. Yu, M. Pal, et al. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage [J]. Exp Cell Res, 2010, 316: 1159-1168.
    [46] K. Li, Q. Han, X. Yan, et al. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing [J]. Stem Cells Dev, 2010, 19: 1267-1275.
    [47] K. Bai, Y. Huang, X. Jia, et al. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations [J]. J Biomech, 2010, 19: 1176-1181.
    [48] X. Long, M. Olszewski, W. Huang. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells [J]. Stem Cells Dev, 2005, 14: 65-69.
    [49] I. Kan, Y. Barhum, E. Melamed, et al. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice [J]. Stem Cell Rev, 2011, in press.
    [50] Q. Zhao, H. Ren, X. Li, et al. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells [J]. Cytotherapy, 2009, 11: 414-426.
    [51] A. Piryaei, M.R. Valojerdi, M. Shahsavani, et al. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis mode [J]. Stem Cell Rev, 2011, 7:103-118.
    [52] H.Y. Lin, C.C. Tsai, L.L. Chen, et al. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK [J]. J Biomed Sci, 2010, 17: 56-65.
    [53] A.H. Paz, G.D. Salton, A. Ayala-Lugo, et al. Betacellulin overexpression in mesenchymalstem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats [J]. Stem Cells Dev, 2011, 20:223-232.
    [54] T.Y. Liu, H. Dai, J. Lin, et al. Expressions of myogenic markers in skeletal muscle differentiation of human bone marrow mesenchymal stem cells [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2010, 32: 516-520.
    [55] H. Tian, S. Bharadwaj, Y. Liu, et al. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering [J]. Tissue Eng Part A, 2010, 16: 1769-1779.
    [56] K.S. Kolahi, M.R. Mofrad. Mechanotransduction: a major regulator of homeostasis and development [J]. Wiley Interdiscip Rev Syst Biol Med, 2010, 2: 625-639.
    [57] U. Lindberg, R. Karlsson, I. Lassing, et al. The microfilament system and malignancy [J]. Semin Cancer Biol, 2008, 18(1):2-11.
    [58] A. Katsumi, A.W. Orr, E. Tzima, et al. Integrins in mechanotransduction [J]. J Biol Chem, 2004, 279:12001-12004.
    [59] L.A. McMahon, V.A. Campbell, P.J. Prendergast. Involvement of stretch-activated ion channels in strain-regulated glycosaminoglycan synthesis in mesenchymal stem cell-seeded 3D scaffolds [J]. J Biomech, 2008, 41:2055-2059.
    [60]王金发.细胞生物学[M].北京:科学出版社, 2006.
    [61] K. Kaibuchi, S. Kuroda, M. Amano. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells [J]. Annu Rev Biochem, 1999, 68:459-486.
    [62] D. Riveline, E. Zamir, N.Q. Balaban, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism [J]. J Cell Biol, 2001, 153: 1175-1186.
    [63] Lutz R, Sakai T, Chiquet M. Pericellular fibronectin is required for RhoA-dependent responses to cyclic strain in fibroblasts [J]. J Cell Sci, 2010, 123:1511-1521.
    [64] O. Silbert, Y. Wang, B.S. Maciejewski, et al. Roles of RhoA and Rac1 on actin remodeling and cell alignment and differentiation in fetal type II epithelial cells exposed to cyclic mechanical stretch [J]. Exp Lung Res, 2008, 34:663-680.
    [65] S.J. Tumminia, K.P. Mitton, J. Arora, et al. Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells [J]. Invest Ophthalmol Vis Sci, 1998, 39:1361-1371.
    [66] A. Sarasa-Renedo, V. Tunc-Civelek, M. Chiquet. Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain [J]. Exp Cell Res, 2006, 312: 1361-1370.
    [67] C. Dubroca, X. Loyer, K. Retailleau, et al. RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries [J]. Cardiovasc Res, 2007, 73: 190-197.
    [68] J.A. Frost, S. Xu, M.R. Hutchison, et al. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members [J]. Mol Cell Biol, 1996, 16:3707-3713.
    [69] H. Teramoto, P. Crespo, O.A. Coso, et al. The small GTP-binding protein Rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells: evidence for a Pak-independent signaling pathway [J]. J Biol Chem, 1996, 271:25731-25734.
    [70] M. Shahrestanifar, X. Fan, D.R. Manning. Lysophosphatidic acid activates NF-κβin fibroblasts [J]. J Biol Chem, 1999, 274:3828-3833.
    [71] A.J. Ridley, A. Hall. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors [J]. Cell, 1992, 70:389-399.
    [72] S.J. Tumminia, K.P. Mitton, J. Arora, et al. Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells [J]. Invest Ophthalmol Vis Sci, 1998, 39:1361-1371.
    [73] J.M. Tayor, C.P. Mack, K. Nolan, et al. Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells [J]. Mol Cell Biol, 2001, 21: 1565-1572.
    [74] M.B. Calalb, T.R. Polte, S.K. Hanks. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases [J]. Mol Cell Biol, 1995, 15: 954-963.
    [75] Y. Seko, N. Takahashi, K. Tobe, et al. Pulsatile stretch active mitogen- activated protein kinase (MAPK) family members and focal adhesion kinase (p125 FAK) in cultured rat cardiac myocytes [J]. Biochem Biophys Res Commun, 1999, 259: 8-14.
    [76] J.G. Wang, M. Miyazu, E. Matsushita,et al. Uni-axial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation [J]. Biochem Biophys Res Commun, 2001, 288: 356-361.
    [77] J.T. Parsons. Focal adhesion kinase: The first ten years [J]. J Cell Sci, 2003,116:1409-1416.
    [78] T.M. Suchyna, F. Sachs. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes [J]. J Physiol, 2007, 581:369-387.
    [79] V.P. Zagorodnyuk, S.J. Brookes, N.J. Spencer, et al. Mechanotransduction and chemosensitivity of two major classes of bladder afferents with endings in the vicinity to the urothelium [J]. J Physiol, 2009, 587:3523-3538.
    [80] J.R. Holt, D.P. Corey. Two mechanisms for transducer adaptation in vertebrate hair cells [J]. Proc Natl Acad Sci U S A, 2000, 97:11730-11735.
    [81] D.E. Ingber. Tensegrity-based mechanosensing from macro to micro [J]. Prog Biophys Mol Biol, 2008, 97:163-179.
    [82] A.J. Friedenstein, K.V. Petrakova, A.I. Kurolesova. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues [J]. Transplantation, 1986, 6: 230-247.
    [83] P.C. Chagastelles, N.B. Nardi, M. Camassola. Biology and applications of mesenchymal stem cells [J]. Sci Prog, 2010, 93:113-127.
    [84]张蕾.机械牵张和间接共培养诱导骨髓间充质干细胞向韧带细胞分化的体外研究[D].四川大学, 2007.
    [85] G. Song, Y. Ju, H. Soyama, et al. Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells [J]. Mol. Cell. Biomech., 2007, 4(4): 201-210.
    [86] R. Schweitzer, J.H. Chyung, L.C. Murtaugh, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments [J]. Development, 2002, 128: 3855-3866.
    [87] Y.J. Chen, C.H. Huang, I.C. Lee, et al. Effects of cyclic mechanical stretching on the gene expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells [J]. Connect Tissue Res, 2008, 49: 7-14.
    [88] C. Neidlinger-Wilke, E.S. Grood, J.C. Wang, et al. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates [J]. J Orthop Res, 2001, 19: 286-293.
    [89] H. Yamada, T. Takemasa, T. Yamaguchi. Theoretical study of intracellular stress fiber orientation under cyclic deformation [J]. J Biomech, 2000, 33: 1501-1505.
    [90] H. Wang, W. Ip, R. Boissy,et al. Cell orientation response to cyclically deformed substrates: experimental validation of a cell model [J]. J Biomech, 1995, 28: 1543-1552.
    [91]秦廷武.杨志明.解慧琪.等.动态应变下肌腱细胞三维培养的初步研究[J].华西医科大学报, 2002,33(1):1-4.
    [92] M.J.Buckley, A.J.Banes, L.G. Levin. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro [J]. Bone Miner, 1988, 4(3):225-236.
    [93] R.A. Grymes, C. Sawyer. A novel culture morphology resulting from applied mechanical strain [J]. In Vitro Cell Dev Biol Anim. 1997, 33(5):392-397.
    [94] R.J. Segurola, B.E.Sumpio, I. Mills. Strain-induced dual alignment of L6 rat skeletal musclecells [J]. In Vitro Cell Dev Biol Anim. 1998, 34(8):609-612.
    [95] M. Jagodzinski, M. Drescher, J. Zeichen, et al. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells [J]. Eur Cells Mater, 2004, 7: 35-41.
    [96] S. Ghazanfari, M. Tafazzoli-Shadpour, M.A. Shokrgozar. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells [J]. Biochem Biophys Res Commun, 2009, 388: 601-605.
    [97] C.Y.C. Huang, K.L. Hagar, L.E. Frost, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells [J]. Stem Cells, 2004, 22: 313-323
    [98] R. Li, B. Chen, G. Wang, et al. Effects of mechanical strain on oxygen free radical system in bone marrow mesenchymal stem cells from children [J]. Injury, 2010, in press.
    [99] C.A. Simmons, S. Matlis, J. Amanda, et al. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway [J]. J Biomech, 2003, 36:1087-1096.
    [100] K. Kurpinski, J. Chu, C. Hashi, et al. Anisotropic mechanosensing by mesenchymal stem cells [J]. Proc. Natl. Acad. Sci. U S A, 2006, 103:16095-16100.
    [101] J.J. Wille, E.L. Elson, R.J. Okamoto. Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch [J]. Ann Biomed Eng, 2006, 34:1678-1690.
    [102] E.M. Kearney, P.J. Prendergast, V.A. Campbell. Mechanisms of strain-mediated mesenchymal stem cell apoptosis [J]. J Biomech Eng, 2008, 130:061004.
    [103] A.J. Engle, S. Sen, H.L. Sweeney, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell, 2006, 126: 677-689.
    [104] C.H. Huang, M.H. Chen, T.H. Young, et al. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells [J]. J Cell Biochem, 2009, 108: 1263-1273.
    [105] J.E. Moreau, D.S. Bramono, R.L. Horan, et al. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments[J]. Tissue Eng Part A, 2008, 14:1161-1172.
    [106] E. Farng, A.R. Urdaneta, D. Barba, et al. The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture [J]. Clin Orthop Relat Res, 2008, 466:1930-1937.
    [107] B. Geiger, A. Bershadsky. Assembly and mechanosensory function of focal contacts [J]. Curr Opin Cell Biol, 2001, 13: 584-592.
    [108] J.Y. Shyy, S. Chien. Role of integrins in cellular responses to mechanical stress and adhesion[J]. Curr Opin Cell Biol, 1997, 9: 707-713.
    [109] V. Vogel, M. Sheetz. Local force and geometry sensing regulate cell functions [J]. Nat Rev Mol Cell Biol, 2006, 7: 265-275.
    [110] K.E. Michael, D.W. Dumbauld, K.L. Burns, et al. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation [J]. Mol Biol Cell, 2009, 20: 2508-2519.
    [111] S.J. Zhang, G.A. Truskey, W.E. Kraus. Effect of cyclic stretch onβ1D-integrin expression and activation of FAK and RhoA [J]. Am J Physiol Cell Physiol, 2007, 292: C2057-C2069.
    [112] A.S. Torsoni, T.M. Marin, L.A. Velloso, et al. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes [J]. Am J Physiol Heart Circ Physiol, 2005, 289: H1488-H1496.
    [113] E.J. Arnsdorf, P. Tummala, R.Y. Kwon, et al. Mechanically induced osteogenic differentiation - the role of RhoA, ROCKII and cytoskeletal dynamics [J]. J Cell Sci, 2009, 122: 546-553.
    [114] Y.R. Shih, K.F. Tseng, H.Y. Lai, et al. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells [J]. J Bone Miner Res, 2011, in press.
    [115] R. McBeath, D.M. Pirone, C.M. Nelson, et al. Cell shape, cytoskeletal tension, and RhoA regulation stem cell lineage commitment [J]. Dev Cell, 2004, 6: 483-495.
    [116] H.Y. Huang, L.L. Hu, T.J. Song, et al. Involvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4 [J]. Mol Cell Proteomics, 2011, 10:M110.002691.
    [117] D. Ilic, C.H. Damsky, T. Yamamoto. Focal adhesion kinase: at the crossroads of signal transduction [J]. J Cell Sci, 1997, 110: 401-407.
    [118] R.M. Salasznyk, R.F. Klees, W.A. Williams, et al. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells [J]. Exp Cell Res, 2007, 313: 23-27.
    [119]陈晓.胚胎干细胞与蚕丝-胶原支架促进肌腱再生的研究[D].浙江大学, 2010.
    [120]苏玲,张标,曹晓蕾. EphA4基因在胃癌中的表达及其与临床病理指标的关系[J].交通医学, 2009, 23(5):468-470.
    [121]袁斌,?曾敏,?李熔,?等. EYA基因家族的研究进展[J].军事医学科学院院刊, 2007, 31(1):87-90.
    [122]郑秀惠,李力. Six1基因研究进展[J].国际肿瘤学杂志, 2009, 36(12):885-888.
    [123] R.A. Worthylake, S. Lemoine, J.M. Watson, et al. RhoA is required for monocyte tail retraction during transendothelial migration [J]. J Cell Biol, 2001, 154: 147-160
    [124] J. Alblas, L. Ulfman, P. Hordijk, et al. Activation of RhoA and ROCK are essential for detachment of migrating leukocytes [J]. Mol Biol Cell, 2001, 12: 2137-2145.
    [125] J. Kolega. Cytoplasmic dynamics of myosin IIA and IIB: spatial‘sorting’of isoforms in locomoting cells [J]. J Cell Sci, 1998, 111: 2085-2095.
    [126] D.J. Sieg, C.R. Hauck, D. Ilic, et al. FAK integrates growth-factor and integrin signals to promote cell migration [J]. Nat Cell Biol, 2000, 2: 249-256.
    [127] M.P. Iwanicki, T. Vomastek, R.W. Tilghman, et al. FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibroblasts [J]. J Cell Sci, 2008, 121: 895-905.
    [128] D. Bian, C. Mahanivong, J. Yu, et al. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration [J]. Oncogene, 2006, 25: 2234-2244.
    [129] A.F. Palazzo, C.H. Eng, D.D. Schlaepfer, et al. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling [J]. Science, 2004, 303: 836-839.
    [130] X.D. Ren, W.B. Kiosses, D.J. Sieg, et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover [J]. J Cell Sci, 2000, 113: 3673-3678.
    [131] B. Wojciak-Stothard, A.J. Ridley. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases [J]. J Cell Biol, 2003, 161: 429-439.
    [132] H. Hirata, H. Tatsumi, M. Sokabe. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner [J]. J Cell Sci, 2008, 121: 2795-2804.
    [133] K. Numaguchi, S. Eguchi, T. Yamakawa, et al. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments [J]. Circ Res, 1999, 85: 5-11.
    [134] D.F. Ward Jr, W.A. Williams, N.E. Schapiro, et al. Focal adhesion kinase signaling controls cyclic tensile strain enhanced collagen I-induced osteogenic differentiation of human mesenchymal stem cells [J]. Mol Cell Biomech, 2007, 4: 177-188.
    [135] Maier S, Lutz R, Gelman L, et al. Tenascin-C induction by cyclic strain requires integrin-linked kinase [J]. Biochim Biophys Acta, 2008, 1783(6), 1150-1162.
    [136] J.H. Park, J.M. Ryu, H.J. Han. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways [J]. J Cell Physiol, 2011, 226: 267-275.
    [137] S.Y. Hong, Y.M. Jeon, H.J. Lee, et al. Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts [J]. Mol Cell Biochem, 2010, 335: 263-272.
    [138] A.M. Malek, I.W. Lee, S.L. Alper, et al. Regulation of endothelin-1 gene expression by cellshape and the microfilament network in vascular endothelium [J]. Am J Physiol, 1997, 273: 1764-1774.
    [139] K. Takahashi, S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell, 2006, 126: 663-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700