饥饿复投喂下克氏原螯虾的补偿生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以克氏原螯虾(Procambarus clarkii)为材料,分别研究了营养性饥饿限制和完全性饥饿限制下螯虾生长,生理指标的变化;长周期饥饿复投喂和不同周期性饥饿复投喂下螯虾的补偿生长变化与机理。实验共分如下三个阶段:
     1.分别以动物蛋白:淀粉:纤维素为1:1:0、1:0:1、0:1:1、1:1:1的四种混合饲料喂养克氏原螯虾44d,并于10个时间点测定螯虾三种肠胃消化酶、S0D、糖原,结果显示:(1)饲料营养组分对螯虾肠胃相应消化酶有良好的诱导作用:动物蛋白和纤维素均在0,33,50%三梯度上引起相应消化酶的适应性上升,而淀粉仅在0,33%两梯度上引起淀粉酶上升,说明螯虾对淀粉消化能力有限,此外各营养组分对非对应消化酶也有影响作用;(2)较高的动物蛋白和纤维素均有益于SOD提高,而高淀粉则会显著降低螯虾SOD值;(3)肝糖原在高蛋白情况下能不受饲料中碳水化合物下降的影响,肌糖原则表观上和饲料中糖含量保持一致。(4)各生化指标均在实验开始后的一定天数波动后保持稳定。表明:克氏原螯虾对饲料组分的变化具有一定的适应性。但就螯虾生理状态而言,动物蛋白和纤维素的营养意义大于淀粉。
     2.以持续投喂96天雄性克氏原螯虾为对照组(C),对饥饿1,2,4,8,12,16,24,32d(S1-S32)雄性克氏原螯虾复投喂至96d,于实验中不同时间点检测螯虾体重变化,特殊增长率(SGR),肝体比(HSI), SOD,肠胃蛋白酶及恢复喂食期间的食物转化率(FCE),摄食率(FR),实验结束时统计死亡个数。实验表明:(1)饥饿4d内S0D显著上升高于对照水平,饥饿时间进一步增加则显著下降至低于对照组水平,其他指标则均随饥饿时间的延长,显著下降,饥饿至16d后均逐渐保持平稳;(2)在经历不同饥饿时间后,螯虾体重与对照组的差异逐渐增大,各实验组复投喂时快速生长能力也各不相同,这直接影响各组补偿生长程度;实验结束时,螯虾饥饿1-4d(S1,S2,S4)出现了完全补偿生长,饥饿8-12d(S8,S12)出现了超额补偿生长,其中S8平均体重高于S12,饥饿16d-24d(S16,S24)出现了部分补偿生长,饥饿32d(S32)出现了不补偿生长;(3)图形拟合显示:螯虾食物转化率,摄食率均与特殊生长率呈显著正相关关系,表明:螯虾的补偿生长是通过提高摄食率和食物转化率共同作用造成;(4)恢复喂食时S1-S24的蛋白酶均显著上升,其中S1-S16组均可上升至高于对照水平,96d时均与对照无差异,S24,S32组96d时仍显著低于对照,S32仅比饥饿结束时上升31.62%;HSI和蛋白酶活力之间存在显著的正相关线性关系,恢复喂食后,螯虾的HSI开始上升,实验结束时,S1-12组均与对照无显著差异,S16和S24则略低于对照组,S32组则仅比恢复喂食开始前上升了8.62%,这表明:复投喂中蛋白酶活性的上升和复投喂初期较低的代谢水平导致了螯虾食物转化率的提高;而在快速增长后期,较高的代谢水平则促进了已积累的能量快速利用。(5)复投喂期间,S1-S16组SOD在一段时间后均能恢复至对照组水平,S24,S 32组则一直显著低于对照水平,实验结束时,S1-S4组螯虾死亡率与对照无显著差异,其余实验组随饥饿时间的增加,死亡率显著上升,最终死亡率和SOD的累计变化是一致的。
     3.以持续投喂(SR00)为对照组,周期性饥饿天数1、2、4、6、8、12、18d后等同时间复投喂(SR11-SR1818)为实验组,饲养克氏原螯虾72d。于不同时间点测量得螯虾单体重量(W),计算其特殊生长率,该结果表明:实验结束时,饥饿周期1d的螯虾出现完全补偿生长,2-6d螯虾出现超额补偿生长,8-18d螯虾出现部分补偿生长;且同组螯虾在不同时间点均表现出相同的补偿生长程度。于72d测量得螯虾的SOD (S),存活率,肝糖原(G1),肌糖原(Gm),肠胃淀粉(Es),肠胃蛋白酶(Ep),含肉率(R),肝体比(H)等生理指标,结果显示:螯虾SOD随饥饿周期时间增加显著性下降,存活率在SR66-SR1818组间无显著差异,饥饿周期0-4d内,螯虾SOD和存活率与对照组无显著性差异,但饥饿周期时间进一步增加后,均显著低于对照。糖原,肝体比,肠胃道消化酶的变化与螯虾体重改变有较明显的一致性,含肉率则变化较小。说明消化酶及糖原积累均对螯虾补偿生长有直接影响。建立W, S, G1, Gm, Es, Ep, H与t的拟合方程,参数分析结果表明:当t为3-4d时螯虾补偿生长状况最佳,适于在生产养殖中应用,而当t≥15d时,螯虾可能出现一系列不可逆转的损伤。
     综上所述:营养限制性饥饿和完全限制性饥饿均会显著影响螯虾的生长生理指标。但对克氏原螯虾不同生理指标的影响则并不一致。长周期和多重周期下补偿生长则显示了相同的机理。
Three experiments were carried out as follow to determine compensatory growth of red swamp crayfish Procambarus clarkii with single long-term and cycling feeding regimes. The effect of nutrition-restricted starvation and feed deprivation are also covered. 1. Crayfish were fed with four mixed diets containing different levels of protein, starch, cellulose:A(50/50/0), B(50/0/50), C(0/50/50), D(33/33/33), respectively, to investigate their digestive enzyme, SOD, glycogen at different period of time (0/2/4/6/8/12/16/24/32/44d). The result showed that nutrient components could induce corresponding gastrointestinal digestive enzymes of crayfish at dietary protein or cellulose level of 0,33,50%, comparing to starch 0,33%; they had influences on other digestive enzymes as well. Animal protein and cellulose at high level were beneficial for the SOD, while starch was opposite. Liver glycogen of crayfish fed with high-protein diets were even higher than these with high- Carbohydrate diets, meanwhile, the muscle glycogen apparent consistent with the content of Carbohydrate. Overall, Crayfish was well adaptable to changes in the dietary composition. All biochemical indicators reach stables after days of Fluctuations. However, animal protein and cellulose are much more important than starch for crayfish.
     2 Groups of male crayfish were exposed for 96 days to nine different regimes:control (fed every day); 1,2,4,8,12,16,24,32 days of fasting followed by refeeding (designated S1-S12, respectively). Mean weight, Special Growth Rate(SGR), Hepatosomatic Index(HIS), SOD, pepsin, Feed Conversion Efficiency(FCE) and Feeding rate(FR) were measured at different time points, and the number of deaths was counted after the experiment. Results:(1) The activities of SOD increased significantly, even higher than C, at the first 4d of fasting period, however which is then reduced continuously to below the control level. Other indicators cannot remain stable (show visible drop actually) as the extension of starvation, until in hunger to 16 days. (2)The degree of compensatory growth(CG) vary depend on the duration of starvation, as the increased of the gap of the mean weight between the experiment groups with different fasting time and the control group, as well as different value of SGR and length of fast growth phase in each groups. In this experiment, S1, S2 and S4 showed complete CG, S8 and S12 showed over CG, S16, S24 showed partial CG, and S32 showed non CG. (3) A significant positive linear relationship between special growth rate and feeding rate and food conversion efficiency are observed, This means the higher SGRs during the refeeding phase are introduced by both higher FCE and FR. (4) The changes of pepsin and HSI in experiment groups during refeeding phase showed:The higher FCEs are caused by the increased of the activity of pepsin mainly, while a low level of HSI only increased the FCEs at a very earlier time. A higher level of HSI promoted the accumulation and use of the energy in some groups. (5) There are no differences of mortality between control group and S1,S2,S4. However it increased significantly from S8 to S32. The changes of SOD during all period are in concordance with the mortality in experiment groups.
     3. A 72-day feeding trail was conducted to investigate compensatory growth of crayfish, Crayfish were divided into one control group(SROO), which were continuous feeding, and six experimental groups as follow:starvation 1d+re-feeding 1d(SR11); starvation 2d+ re-feeding 2d(SR22); starvation 4d+re-feeding 4d(SR44); starvation 6d+re-feeding 6d(SR66); starvation 8d+re-feeding 8d(SR88); starvation 12d+re-feeding 12d(SR1212); starvation 18d+re-feeding 18d(SR1818). The crayfish under starvation for 1d showed full compensatory growth while 2-6d showed over compensatory and 8-18d showed partial compensatory during the whole 72d experiment. The survive rate and SOD were significantly indifferent from control group within 4d starvation, but were remarkably lower than control group while the cycling starvation time was more than 6 days. No apparently different value of the survive rate was found from group SR66 to SR1818, while SOD was deceased with the increase of starvation time. The glycogen, HSI and digestive enzyme activities shows the same trend with the gross weight, while the flesh rate did not change so much. It indicated that the value of glycogen and digestive enzyme had a direct impact on compensatory growth of crayfish. Fitting the equations of single weight, SOD, liver glycogen, muscle glycogen, digestive enzyme and HSI along with cycling starvation time, according to which, the crayfish had the most rapid weight gain, SOD, digestive enzyme activities and glycogen after 3 to 4 days cycling starvation, and occurred the point of no return (PNR) by 15-day starvation.
     These results indicate that the nutrition-restricted starvation and feed deprivation affected the growth and physiological indicators of crayfish with different outcomes, while the similar mechanism of compensatory growth is also found by the crayfish with long-term and cycling feeding regimes.
引文
Alcorlo P, Geiger W, Otero M.2004. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitats differing in food item diversity. Crustaceana 77:435-453.
    Ali M, Wootton RJ.1998. Do random fluctuations in the intervals between feeding affect growth rate in juvenile three-spined sticklebacks? Journal of Fish Biology 53:1006-1014.
    Ali M, Wootton RJ.2001. Capacity for growth compensation in juvenile three-spined sticklebacks experiencing cycles of food deprivation. Journal of Fish Biology 58:1531-1544.
    Ali M, Nicieza A, Wootton RJ.2003. Compensatory growth in fishes:a response to growth depression. Fish and Fisheries 4:147-190.
    Anastacio PM.2005a. Crayfish (Procambarus clarkii) consumption of wet-seeded rice plants (Oryza sativa):Modifications throughout the rice growing period. Theoretische und Angewandte Limnologie., 29(2):849-851.
    Anastacio PM, Correia AM, Menino JP.2005b. Processes and patterns of plant destruction by crayfish: effects of crayfish size and developmental stages of rice. Archiv Fur Hydrobiologie 162:37-51.
    Anastacio PM, Nielsen SN, Frias AF, Marques JC.1999. CRISP (crayfish and rice integrated system of production):4. Modelling water, algae and oxygen dynamics. Ecological Modelling 123:29-40.
    Anger K.1995. Starvation Resistance in Larvae of a Semiterrestrial Crab, Sesarma-Curacaoense (Decapoda, Grapsidae). Journal of Experimental Marine Biology and Ecology 187:161-174.
    Antonelli J, Steele C, Skinner C.1999. Cover-seeking behavior and shelter use by juvenile and adult crayfish, Procambarus clarkii:Potential importance in species invasion. Journal of Crustacean Biology 19: 293-300.
    Aquiloni L, Gherardi F.2008a. Evidence of female cryptic choice in crayfish. Biology Letters 4: 163-165.
    Aquiloni L, Gherardi F.2008b. Mutual mate choice in crayfish:large body size is selected by both sexes, virginity by males only. Journal of Zoology 274:171-179.
    Aquiloni L, Gherardi F.2008c. Assessing mate size in the red swamp crayfish Procambarus clarkii: effects of visual versus chemical stimuli. Freshwater Biology 53:461-469.
    Aquiloni L, Buric M, Gherardi F.2008d. Crafish females eavesdrop on fighting males before choosing the dominate mate. Current Biology 18:R462-R463.
    Auckland J.1968. Compensatory Growth in Market Turkeys. Worlds Poultry Science Journal 24: 315-&.
    Baird HP, Patullo B, MacMillan DL.2006. Reducing aggression between freshwater crayfish (Cherax destructor Clark:Decapoda, Parastacidae) by increasing habitat complexity. Aquaculture Research 37: 1419-1428.
    Barcellos LJG, Marqueze A, Trapp M, Quevedo RM, Ferreira D.2010. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundia Rhamdia quelen. Aquaculture 300: 231-236.
    Basiao ZU, Doyle RW, Arago AL.1996. A statistical power analysis of the 'internal reference' technique for comparing growth and growth depensation of tilapia strains. Journal of Fish Biology 49: 277-286.
    Bergman DA, Moore PA.2003. Field observations of intraspecific agonistic behavior of two crayfish species, Orconectes rusticus and Orconectes virilis, in different habitats. Biological Bulletin 205:26-35.
    Blake RW, Chan KHS.2006. Cyclic feeding and subsequent compensatory growth do not significantly impact standard metabolic rate or critical swimming speed in rainbow trout. Journal of Fish Biology 69: 818-827.
    Blaxter JHS,1965, The effect of light intensity on the feeding ecology of herring,Symp. Br Ecol Soc, 6:393-409.
    Bohman VR.1955. Compensatory Growth of Beef Cattle-the Effect of Hay Maturity. Journal of Animal Science 14:249-255.
    Boujard T, Burel C, Medale F, Haylor G, Moisan A.2000. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. Aquatic Living Resources 13:129-137.
    Breithaupt T, Eger P.2002. Urine makes the difference:chemical communication in fighting crayfish made visible. Journal of Experimental Biology 205:1221-1231.
    Briain AH, Aioyzas B, Francesca G, Patrizia A.2003. Invasive species of crayfish use a broader range of predation-risk cues than native species. Biological Invasinos 5:223-228.
    Buckel JA, Letcher BH, Conover DO.1998. Effects of a delayed onset of piscivory on the size of age-0 bluefish. Transactions of the American Fisheries Society 127:576-587.
    Bull CD, Metcalfe NB, Mangel M.1996. Seasonal matching of foraging to anticipated energy requirements in anorexic juvenile salmon. Proceedings of the Royal Society of London Series B-Biological Sciences 263:13-18.
    Calow P.1973. Regulatory Nature of Individual Growth-Some Observations from Freshwater Snails. Journal of Zoology 170:415-428.
    Carter C, Houlihan D, Kiessling A, Medalo F, Jobling M.2001. Physiological effects of feeding. In: Feed Intake in Fish, Blackwell Scientific, Oxford, pp.297-331.
    Chmilevskij DA.1994. Effect of low temperature on oogenesis in Oreochromis mossambicus. Effect on twenty two day post hatch fish. Vopr Ikhtiol,34:675-680.
    Cho SH, Lee SM, Park BH, Ji SC, Lee J, Bae J, Oh SY.2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. Journal of the World Aquaculture Society 37: 168-174.
    Cho YJ, Cho SH.2009. Compensatory Growth of Olive Flounder, Paralichthys olivaceus, Fed the Extruded Pellet with Different Feeding Regimes. Journal of the World Aquaculture Society 40:505-512.
    Corkum LD, Cronin DJ.2004. Habitat complexity reduces aggression and enhances consumption in crayfish. Journal of Ethology 22:23-27.
    Correia AM.2002. Niche breadth and trophic diversity:feeding behaviour of the red swamp crayfish (Procambarus clarkii) towards environmental availability of aquatic macroinvertebrates in a rice field (Portugal). Acta Oecologica-International Journal of Ecology 23:421-429.
    Correia AM, Bandeira N, Anastacio PM.2005. Predator-prey interactions of Procambarus clarkii with aquatic macroinvertebrates in single and multiple prey systems. Acta Oecologica-International Journal of Ecology 28:337-343.
    Cortes-Jacinto E, Villarreal-Colmenares H, Civera-Cerecedo R, Naranjo-Paramo J.2004. Effect of dietary protein level on the growth and survival of pre-adult freshwater crayfish Cherax quadricarinatus (von Martens) in monosex culture. Aquaculture Research 35:71-79.
    Crook R, Patullo BW, Macmillan DL.2004. Multimodal individual recognition in the crayfish Cherax destructor. Marine and Freshwater Behaviour and Physiology 37:271-285.
    Dai Y, Wang TT, Wang YF, Gong XJ, Yue CF.2009. Activities of digestive enzymes during embryonic development in the crayfish Procambarus clarkii (Decapoda). Aquaculture Research 40:1394-1399.
    Daws AG, Grills J, Konzen K, Moore PA.2002. Previous experiences alter the outcome of aggressive interactions between males in the crayfish, Procambarus clarkii. Marine and Freshwater Behaviour and Physiology 35:139-148.
    Detto T, Backwell PRY, Hemmi JM, Zeil J.2006. Visually mediated species and neighbour recognition in fiddler crabs (Uca mjoebergi and Uca capricomis). Proceedings of the Royal Society B-Biological Sciences 273:1661-1666.
    Edsman L, Jonsson A.1996. The effect of size, antennal injury, ownership, and ownership duration on fighting success in male signal crayfish, Pacifastacus leniusculus (Dana). Nordic Journal of Freshwater Research 72:80-87.
    Enes P, Panserat S, Kaushik S, Oliva-Teles A.2008. Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274: 101-108.
    Eroldogan OT, Kumlu M, Kiris GA, Sezer B.2006. Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquaculture Nutrition 12:203-210.
    Fero K, Moore PA.2008. Social spacing of crayfish in natural habitats:what role does dominance play Behavioral Ecology and Sociobiology 62:1119-1125.
    Figler MH, Blank GS, Peeke HVS.2005. Shelter competition between resident male red swamp crayfish Procambarus clarkii (Girard) and conspecific intruders varying by sex and reproductive status. Marine and Freshwater Behaviour and Physiology 38:237-248.
    Foss A, Imsland AK, Vikingstad E, Stefansson SO, Norberg B, Pedersen S, Sandvik T, Roth B.2009. Compensatory growth in Atlantic halibut:Effect of starvation and subsequent feeding on growth, maturation, feed utilization and flesh quality. Aquaculture 290:304-310.
    Gaylord TG, Gatlin DM.2001. Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture 194:337-348.
    Graham ME, Herberholz J.2009. Stability of dominance relationships in crayfish depends on social context. Animal Behaviour 77:195-199.
    Guiasu RC, Dunham DW.1998. Inter-form agonistic contests in male crayfishes, Cambarus robustus (Decapoda, Cambaridae). Invertebrate Biology 117:144-154.
    Hayward RS, Noltie DB, Wang N.1997. Use of compensatory growth to double hybrid sunfish growth rates. Transactions of the American Fisheries Society 126:316-322.
    Heide A, Foss A, Stefansson SO, Mayer I, Norberg B, Roth B, Jenssen MD, Nortvedt R, Imsland AK. 2006. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture 261:109-117.
    Herberholz J, McCurdy C, Edwards DH.2007. Direct benefits of social dominance in juvenile crayfish. Biological Bulletin 213:21-27.
    Hobbs HH.1988. Crayfish distribution, adaptive radiation and evolution. In:D. M. Holdich and R.S. Lowery (editors), Fisheries Crayfish:Biology, Management and Exploitation. London, England and Sydney.
    Horner AJ, Manfred S, Donald HE, Charles DD.2008a. Role of the olfactory pathway in agonistic behaviorof crayfish, Procambarus clarkii, Invertebrate Neuroscience 8:11-18.
    Horner AJ, Weissburg MJ, Derby CD.2008b. The olfactory pathway mediates sheltering behavior of Caribbean spiny lobsters, Panulirus argus, to conspecific urine signals. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 194:243-253.
    Huang G, Wei L, Zhang X, Gao T.2008. Compensatory growth of juvenile brown flounder Paralichthys olivaceus (Temminck & Schlegel) following thermal manipulation. Journal of Fish Biology 72: 2534-2542.
    Huner JV.1994. Freshwater Crayfish Aquaculture in North America Europe and Australia:Families Astacidae Cambaridae, and Parastacidae. New York and London:Food Products Press, An Imprint of the Haworth Press Inc.
    Inness CLW, Metcalfe NB.2008. The impact of dietary restriction, intermittent feeding and compensatory growth on reproductive investment and lifespan in a short-lived fish. Proceedings of the Royal Society B-Biological Sciences 275:1703-1708.
    Issa FA, Adamson DJ, Edwards DH.1999. Dominance hierarchy formation in juvenile crayfish Procambarus clarkii. Journal of Experimental Biology 202:3497-3506.
    Joanne VV, Ying Z,Blair WP, David LM.2008. Crayfish Recognize the Faces of Fight Opponents. PLoS ONE3:e1695.
    Jobling M, Koskela J.1996. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. Journal of Fish Biology 49: 658-667.
    Jobling M, Johansen SJS.1999. The lipostat, hyperphagia and catch-up growth. Aquaculture Research 30:473-478.
    Jobling M, Jorgensen EH, Siikavuopio SI.1993. The Influence of Previous Feeding Regime on the Compensatory Growth-Response of Maturing and Immature Arctic Charr, Salvelinus-Alpinus. Journal of Fish Biology 43:409-419.
    Jobling M, Meloy OH, Santos J, Christiansen B.1994. The compensatory growth response of the Atlantic cod:effects of nutritional history. Aquaculture International,2:85-90.
    John F, David H.2007. Status and ecosystem interactions of the invasive Louisianan red swamp crayfish Procambarus clarkii in East Africa. Invading Nature-Springer Series In Invasion Ecology 2: 91-101.
    Jones DA, Kumlu M, LeVay L, Fletcher DJ.1997. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae:a review. Aquaculture 155:285-295.
    Jover M, Fernandez-Carmona J, Del Rio M, Soler M.1999. Effect of feeding cooked-extruded diets, containing different levels of protein, lipid and carbohydrate on growth of red swamp crayfish (Procambarus clarkii). Aquaculture 178:127-137.
    Kamarudin MS, Jones DA, Levay L.1994. Ontogenic Change in Digestive Enzyme-Activity during Larval Development of Macrobrachium-Rosenbergii. Aquaculture 123:323-333.
    Kankanen M, Pirhonen J.2009. The effect of intermittent feeding on feed intake and compensatory growth of whitefish Coregonus lavaretus L. Aquaculture 288:92-97.
    Kim ML, Lovel RT.1995. Effects of restricted feeding regimes on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture 135(3,4):285■293.
    Koppe W, Pockrandt J, Meyer-Burgdor KH, Gunther KD.1993. Effects of realimentation after a period of restricted feeding on food intake, growth and body composition in Piaractus brachypomus (Cuvier1818), a South American characoid fish. In:Fish Ecotoxicology and Ecophysiology (eds T. Braunbeck,W. Hanke and H. Segner),VCH, NewYork, pp.263-268.
    Le Francois NR, Blier PU, Adambounou LT, Lacroix M.1999. Exposures to low-level ionizing radiation:Effects on biochemical and whole-body indices of growth in juvenile brook charr (Salvelinus fontinalis). Journal of Experimental Zoology 283:315-325.
    Luna AJF, Hurtado-Zavala JI, Reischig T, Heinrich R.2009. Circadian Regulation of Agonistic Behavior in Groups of Parthenogenetic Marbled Crayfish, Procambarus sp. Journal of Biological Rhythms 24:64-72.
    Martin AL, Moore PA.2008. The influence of dominance on shelter preference and eviction rates in the crayfish, Orconectes rusticus. Ethology 114:351-360.
    Mattila J, Koskela J, Pirhonen J.2009. The effect of the length of repeated feed deprivation between single meals on compensatory growth of pikeperch Sander lucioperca. Aquaculture 296:65-70.
    Mcmillan DN, Houlihan DF.1992. Protein-Synthesis in Trout Liver Is Stimulated by Both Feeding and Fasting. Fish Physiology and Biochemistry 10:23-34.
    Metcalfe NB, Bull CD, Mangel M.2002. Seasonal variation in catch-up growth reveals state-dependent somatic allocations in salmon. Evolutionary Ecology Research 4:871-881.
    Miglavs I, Jobling M.1989a. Effects of Feeding Regime on Food-Consumption, Growth-Rates and Tissue Nucleic-Acids in Juvenile Arctic Charr, Salvelinus-Alpinus, with Particular Respect to Compensatory Growth. Journal of Fish Biology 34:947-957.
    Miglavs I, Jobling M.1989b. The Effects of Feeding Regime on Proximate Body-Composition and Patterns of Energy Deposition in Juvenile Arctic Charr, Salvelinus-Alpinus. Journal of Fish Biology 35: 1-11.
    Miller TJ, Crowder LB, Rice JA, Marschall EA.1988. Larval Size and Recruitment Mechanisms in Fishes-toward a Conceptual-Framework. Canadian Journal of Fisheries and Aquatic Sciences 45: 1657-1670.
    Mommsen TP.1998. Growth and metabolism. In:The Physiology of Fishes (2nd edn.,ed. D.H. Evans), CRC Press, Boca Raton, pp.65-97.
    Moore PA.2007. Evolutionary ecology of social and sexual systems. Oxford Scholarship Online Monographs,2007:90-115.
    Morkore T, Mazo PI, Tahirovic V, Einen O.2008. Impact of starvation and handling stress on rigor development and quality of Atlantic salmon (Salmon salar L). Aquaculture 277:231-238.
    Mortensen A, Damsgard B.1993. Compensatory Growth and Weight Segregation Following Light and Temperature Manipulation of Juvenile Atlantic Salmon (Salmo-Salar L) and Arctic Charr (Salvelinus-Alpinus L). Aquaculture 114:261-272.
    Mueller KW, Bodensteiner LR.2009. Shelter Occupancy by Mixed-Species Pairs of Native Signal Crayfish and Non-Native Red Swamp Crayfish Held in Enclosures. Journal of Freshwater Ecology 24: 67-76.
    Munoz M, Cedeno R, Rodriguez J, van der Knaap WPW, Mialhe E, Bachere E.2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 191:89-107.
    Nagaraj GC, Roger DY.2001. Application of Compensatory Growth to Enhance Production in Channel Catfish Ictalurus punctatus. Journal of the World Aquaculture Society 32:278-285.
    Nicieza AG, Metcalfe NB.1997. Growth compensation in juvenile Atlantic salmon:Responses to depressed temperature and food availability. Ecology 78:2385-2400.
    Nicieza AG, Reiriz L, Brana F.1994. Variation in Digestive Performance between Geographically Disjunct Populations of Atlantic Salmon-Countergradient in Passage Time and Digestion Rate. Oecologia 99:243-251.
    Nikki J, Pirhonen J, Jobling M, Karjalainen J.2004. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually\. Aquaculture 235:285-296.
    Oh SY, Noh CH, Cho SH.2007. Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, pagrus major. Journal of the World Aquaculture Society 38:443-449.
    Oh SY, Noh CH, Kang RS, Kim CK, Cho SH, Jo JY.2008. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation. Fisheries Science 74: 846-852.
    Oliveira J, Fabiao A.1998. Growth responses of juvenile red swamp crayfish, Procambarus clarkii Girard, to several diets under controlled conditions. Aquaculture Research 29:123-129.
    Patullo BW, Macmillan DL.2006. Corners and bubble wrap:the structure and texture of surfaces influence crayfish exploratory behaviour. Journal of Experimental Biology 209:567-575.
    Patullo BW, Baird HP, Macmillan DL.2009. Altered aggression in different sized groups of crayfish supports a dynamic social behaviour model. Applied Animal Behaviour Science 120:231-237.
    Paul AJ, Paul JM, Smith RL.1995. Compensatory Growth in Alaska Yellowfin Sole, Pleuronectes Asper, Following Food-Deprivation. Journal of Fish Biology 46:442-448.
    Pavasovic A, Anderson AJ, Mather PB, Richardson NA.2007. Influence of dietary protein on digestive enzyme activity, growth and tail muscle composition in redclaw crayfish, Cherax quadricarinatus (von Martens). Aquaculture Research 38:644-652.
    Percival DT, Moore PA.2010. Shelter size influences self-assessment of size in crayfish, Orconectes rusticus:Consequences for agonistic fights. Behaviour 147:103-119.
    Perez-Bote JL.2004. Feeding ecology of the exotic red swamp crayfish, Procambarus clarkii (Girard, 1852) in the Guadiana River (Swiberian Peninsula). Crustaceana 77:1375-1387.
    Perez-Bote JL, Del Viejo AM, Garcia JM, Rodriguez SP.2005. Evidence of dissemination of Triops cancriformis mauritanicus Ghigi,1921 (Branchiopoda, Notostraca) cysts by the red swamp crayfish, Procambarus clarkii (Girard,1852) (Decapoda, Cambaridae). Crustaceana 78:481-485.
    Prabhakar SK, Sardar P, Das RC.2008. Effect of starvation with subsequent realimentation with respect to compensatory growth of Indian major carp, Rohu (Labeo rohita H.). Animal Nutrition and Feed Technology 8:89-96.
    Qian X, Cui Y, Xiong B, Yang Y.2000. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. Journal of Fish Biology 56:228-232.
    Reimers E, Kjorrefjord AG, Stavostrand SM.1993. Compensatory Growth and Reduced Maturation in 2nd Sea Winter Farmed Atlantic Salmon Following Starvation in February and March. Journal of Fish Biology 43:805-810.
    Reynolds JD.2002. Growth and reproduction. In:Holdich DM, editor. Biology of freshwater crayfish. Blackwell Science, Oxford. PP:152-192
    Robert SH, Douglas BN, Ning W.1997. Use of compensatory growth. Transactions of the American Fisheries Society 126:316-322.
    Russell NR, Wootton RJ.1992. Appetite and Growth Compensation in the European Minnow, Phoxinus-Phoxinus (Cyprinidae), Following Short Periods of Food Restriction. Environmental Biology of Fishes 34:277-285.
    Rutherford PL, Dunham DW, Allison V.1995. Winning Agonistic Encounters by Male Crayfish Orconectes Rusticus (Girard) (Decapoda, Cambaridae)-Chela Size Matters but Chela Symmetry Does Not. Crustaceana 68:526-529.
    Sarojini R, Nagabhushanam R, Fingerman M.1995. Naphthalene-Induced Atresia in the Ovary of the Crayfish, Procambarus-Clarkii. Ecotoxicology and Environmental Safety 31:76-83.
    Schwarz FJ, Plank J, Kirchgessner M.1985. Effects of Protein or Energy Restriction with Subsequent Realimentation on Performance Parameters of Carp (Cyprinus-Carpio L). Aquaculture 48:23-33.
    Shabani S, Kamio M, Derby CD.2009. Spiny lobsters use urine-borne olfactory signaling and physical aggressive behaviors to influence social status of conspecifics. Journal of Experimental Biology 212:2464-2474.
    Silvia B.2000. The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy; Biological Invasions,2(3):259-264
    Skilbrei OT.1990. Compensatory Sea Growth of Male Atlantic Salmon, Salmo-Salar L Which Previously Mature as Parr. Journal of Fish Biology 37:425-435.
    Skog M, Chandrapavan A, Hallberg E, Breithaupt T.2009. Maintenance of dominance is mediated by urinary chemical signals in male European lobsters, Homarus gammarus. Marine and Freshwater Behaviour and Physiology 42:119-133.
    Song CK, Herberholz J, Edwards DH.2006. The effects of social experience on the behavioral response to unexpected touch in crayfish. Journal of Experimental Biology 209:1355-1363.
    Speare DJ, Arsenault GJ.1997. Effects of intermittent hydrogen peroxide exposure on growth and columnaris disease prevention of juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences 54:2653-2658.
    Steele C, Skinner C, Steele C, Alberstadt P, Mathewson C.1999. Organization of chemically activated food search behavior in Procambarus clarkii Girard and Orconectes rusticus Girard crayfishes. Biological Bulletin 196:295-302.
    Stefansson SO, Imsland AK, Handeland SO.2009. Food-deprivation, compensatory growth and hydro-mineral balance in Atlantic salmon (Salmo salar) post-smolts in sea water. Aquaculture 290: 243-249.
    Tricarico E, Gherardi F.2010. Past ownership makes crayfish more aggressive. Behavioral Ecology and Sociobiology 64:575-581.
    Turano MJ, Borski RJ, Daniels HV.2007. Compensatory growth of pond-reared hybrid striped bass, Morone chrysops x Morone saxatilis, fingerlings. Journal of the World Aquaculture Society 38:250-261.
    Turchini GM, Francis DS, De Silva SS.2007. Finishing diets stimulate compensatory growth:results of a study on Murray cod, Maccullochella peelii peelii. Aquaculture Nutrition 13:351-360.
    Usio N, Konishi M, Nakano S.2001. Species displacement between an introduced and a "vulnerable" crayfish:the role of aggressive interactions and shelter competition. Biological Invasions,3:179-185.
    Usio N, Kamiyama R, Saji A, Takamura N.2009. Size-dependent impacts of invasive alien crayfish on a littoral marsh community. Biological Conservation 142:1480-1490.
    van Dijk PLM, Staaks G, Hardewig I.2002. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia 130:496-504.
    Viana MT, Lopez LM, GarciaEsquivel Z, Mendez E.1996. The use of silage made from fish and abalone viscera as an ingredient in abalone feed. Aquaculture 140:87-98.
    Wang Y.1999. Compematory growth and related bioener getic mechanism in hybridtilapia. Postdoctor Research Paper. Wuhan:Institute of Hydrobiology,Chinese Academy of Science.
    Wang Y, Li C, Qin JG, Han H.2009. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L. Aquaculture Research 40:204-210.
    Warren AH, Saltzman L, Buckholt MA, Mathews LM.2009. Agonistic Interactions Differ by Sex and Season in the Crayfish Orconectes Quinebaugensis. Journal of Crustacean Biology 29:484-490.
    Weatherley AH, HS Gill.1987. The Biology of Fish Growth. London:Academic Press:133-216.
    Wei LZ, Zhang XM, Li J, Huang GQ.2008. Compensatory growth of Chinese shrimp, Fenneropenaeus chinensis following hypoxic exposure. Aquaculture International 16:455-470.
    Wieser W, Krumschnabel G, Ojwangokwor JP.1992. The Energetics of Starvation and Growth after Refeeding in Juveniles of 3 Cyprinid Species. Environmental Biology of Fishes 33:63-71.
    Wright HA, Wootton RJ, Barber I.2007. Compensatory growth in threespine sticklebacks (Gasterosteus aculeatus) inhibited by experimental Schistocephalus infections. Canadian Journal of Fisheries and Aquatic Sciences 64:819-826.
    Xie S, Zhu X, Cui Y 2001. Compensatory growth in the gibel carp following feed deprivation: temporal patterns in growth, nutrient deposition, feed intake and body composition. J Fish Biol,58: 999-1009.
    Zhu X, Cui Y, Ali M, Wootton RJ.2001. Comparison of compensatory growth responses of juvenile three-spined stickleback and minnow following similar food deprivation protocols. Journal of Fish Biology 58:1149-1165.
    Zhu XM, Xie SQ, Wu L 2005. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture 248:307-314.
    Zulandt T, Zulandt-Schneider RA, Moore PA.2008. Observing agonistic interactions alters subsequent fighting dynamics in the crayfish, Orconectes rusticus. Animal Behaviour 75:13-20.
    柴鹏,李吉方,吴蒙蒙,陈竟敏,2007,饥饿和再投喂对锦鲤幼鱼几种消化酶活性的影响.水利渔业,27(4): 20-23
    陈军,2001,克氏螯虾人工养殖.科学养鱼,8:21.
    陈孝煊等,虫草多糖对克氏原螯虾免疫机能的影响.第四届世界华人鱼虾营养学术研讨会论文集
    邓利,张波,谢小军,1999,南方鲇继饥饿后的恢复生长.水生生物学报,23(2):168-173
    董云伟,牛翠娟,杜丽,2001,饲料蛋白水平对罗氏沼虾生长和消化酶活性的影响.北京师范大学学报,37(1):96-99.
    侯凤霞,张健东,叶富良,2007,饥饿和再投喂对尼罗罗非鱼蛋白酶活性的影响.广东海洋大学学报,27(5):11-15
    黄越峰;严维辉;唐建清;黄成,2009,不同含量螺旋藻饲料对克氏原螯虾两种消化酶的影响.水产养殖,10:31-33
    江舒,庞璐,黄成,2007,外来种克氏原鳌虾的危害及其防治;生物学通报,42(5):
    姜志强等,2002,美国红鱼继饥饿后的补偿生长及其机制.水产学报,26(1):67-72.
    李才根,2006,淡水小龙虾稻田无公害养殖技术.河北渔业,11:16-18
    李林春,段鸿斌,2005,克氏螯虾(龙虾)生物学特性研究.安徽农业科学,6
    李志华,谢松,王军霞,2007,间歇性饥饿对日本沼虾生长和几种消化酶的影响.水产学报,31(4):456-462
    林黑着,刘永坚,何建国,郑文晖,李卓佳,田丽霞,2006,饥饿对斜带石斑鱼肝脏和肌肉脂肪酸组成的影响,南方水产,4:1-6
    刘璐,吴立新,张伟光,2007,饥饿及再投喂对日本囊对虾糖代谢的影响.应用生态学报,18(3):697-700
    刘璐,吴立新,张伟光,2007,饥饿及再投喂对日本囊对虾糖代谢的影响.应用生态学报,18(3):697-700
    刘其根,李应森,陈蓝荪,2008克氏原螯虾的生态养殖—克氏原螯虾的生物学.水产科技情报,1:21-23
    潘鲁青,王克行,1997,中国对虾幼体消化酶活力的实验研究.水产学报,21(1):26-31.
    庞璐,何金星,唐建清,黄成,2009,不同饲料对克氏原螯虾消化酶活性的影响.江苏农业科学,2:212-214
    钱云霞,蒋霞敏,王春琳,赵青松,2000,黑斑口虾蛄消化酶的初步研究.中国水产科学.,7(2):100-102.
    邵青,杨阳,王志铮,,罗海忠,袁久尧,2004水产养殖动物补偿生长的研究进展.浙江海洋学院学报(自然科学版),,23(4):334-346
    寿国成,2006,克氏螯虾养殖技术.农家顾问,10:55-56
    宋长太,2001,克氏原螯虾及其人工养殖技术.淡水鱼业,31(1):28-30.
    宋长太,2006,克氏原螯虾,黄鳝,泥鳅为何如此贵.渔业致富指南,11:9
    苏时萍,施培松,杨启超,潘丽莉,2009,饲料蛋白质水平对克氏原螯虾幼体消化酶活性和肌肉成分的影响,安徽农业大学学报,36(2):231-235
    汪官余,于孝东,姚维志,2006,外来水生生物入侵对我国渔业水域的影响.水利渔业,3:62-64
    汪留全,2002,克氏螯虾的成虾养殖安徽农业,8:29-30
    王军霞,李志华,谢松,2005,饥饿补偿对日本沼虾生长及生化组成的影响.河北大学学报(自然科学版),25(6):644-648
    王岩,2001,海水养殖罗非鱼补偿生长的生物能量学机制.海洋与湖沼,32(3):233-239
    王燕妮,张志蓉,郑曙明,2001,鲤鱼的补偿生长及饥饿对淀粉酶的影响.水利渔业,21(5):6-7
    王友斌,江金潮,宋加林,常泰,2009,蟹池套养龙虾,鳜鱼高效生态养殖技术,渔业致富指南,20:35-36
    王玉梅,2006,淡水龙虾的养殖技术.内陆水产,11:45-46
    吴立新,2000,水产动物继饥饿或营养不足后的补偿生长研究进展.应用生态学报,11(6):943-946.
    吴立新,董双林,田相利,2001,中国对虾继饥饿后的补偿生长研究.生态学报,21(3):452-457
    夏爱军,唐建清,2006,克氏原螯虾现状分析与研究思路.水产养殖,27(6):9-11
    肖英平,吴志强,胡向萍,肖鸣鹤,黄婷,2009,饥饿对克氏原螯虾仔虾消化酶和生化成分的影响,水产科学,8:443-446
    谢国驷,蔡永祥,徐维娜,2007,饲料蛋白水平对日本沼虾生长、消化酶和免疫酶的影响.江苏农业学报,23(6):612-617.
    谢文星,董方勇,谢山,黄道明,梁友光,胡传林,2008,克氏原螯虾的食性、繁殖和栖息习性研究.水利渔业,7:63-65
    姚翠鸾,王维娜,王安利,2003,水生动物体内超氧化物歧化酶的研究进展.海洋科学,27(10):18-21.
    姚根娣,孙振中,郭履骥,林惠山,戚隽渊,蒋忻坡,张旻,1993,克氏原螯虾含肉率和营养成份分析.水产科技情报,20(4):177-179
    殷帅文,林学群,陈洁辉,2002,限食(含饥饿)和再充分投喂对鲮鱼形态性状的影响.水产养殖,(6):28-30
    尹春光,2004,克氏螯虾的习性与科学投喂.水产养殖,1:13-14
    张静,王军霞,张亚娟,刘存歧,崔洪涛,2007,饥饿对日本沼虾代谢及SOD活性的影响,河北大学学报,27(5):537-540
    张从义,李圣华,2004a,稻田饲养克氏原螯虾.福建水产,12(4):63-65
    张从义,李圣华,2004b,藕田饲养克氏原螯虾.渔业致富指南,8:42-44
    张从义,李圣华,张惠萍,2005a,克氏原螫虾池塘养殖(上).渔业致富指南,4:58-59王顺昌,2003,克氏螯虾池塘精养试验.渔业致富指南,6:51—52
    张从义,李圣华,张惠萍,2005b,克氏原螯虾稻田养殖.渔业致富指南,6:60-62
    张静,王军霞,张亚娟等,2007,饥饿对日本沼虾代谢及SOD活性的影响.河北大学学报(自然科学版),5:1-4
    赵朝阳,周鑫,邴旭文,王桂芹,2010,饥饿对克氏原螯虾亲虾消化酶活性及部分免疫指标的影响,大连水产学院学报,25(1):85-87
    周勤,李佳佳,2009,克氏原螯虾池塘养殖放养新模式,水产养殖,12:31-31
    朱建中,陆承平,2001,对虾白斑综合症病毒在螯虾动物模型的感染特征.水产学报,25(1):47-51.
    祝尧荣,沈文英,2002,饥饿和再投喂对草鱼鱼种糖代谢的影响.绍兴文理学院学报,22(4):23-25
    祝尧荣,寿建昕,沈文英,2009,温度对克氏原螯虾消化酶活性的影响.浙江农业学报,21(3):238-240
    Alcorlo P, Geiger W, Otero M.2004. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitats differing in food item diversity. Crustaceana 77:435-453.
    Biesiot PM, Capuzzo JM.1990. Digestive Protease, Lipase and Amylase Activities in Stage-Ⅰ Larvae of the American Lobster, Homarus-Americanus. Comparative Biochemistry and Physiology a-Physiology 95: 47-54.
    Cuzon G, Cahu C, Aldrin JF 1980. Starvation effect on metabolism of Penaeus japonicas. Proceedings of the World Mariculture Society 11:410-423
    Gherardi F, Barbaresi S.2007. Feeding preferences of the invasive crayfish, Procambarus clarkii. Bfpp-Connaissance Et Gestion Du Patrimoine Aquatique:7-20.
    Ilheu M, Bernardo JM 1995. Trophic ecology of red swamp crayfish Procambarus clarkii (Girard). Preferences and digestibility of plant foods. Freshwater Crayfish 10:132-139.
    Jones DA, Kumlu M, LeVay L, Fletcher DJ.1997. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae:a review. Aquaculture 155:285-295.
    Jover M, Fernandez-Carmona J, Del Rio M, Soler M.1999. Effect of feeding cooked-extruded diets, containing different levels of protein, lipid and carbohydrate on growth of red swamp crayfish (Procambarus clarkii). Aquaculture 178:127-137.
    Mauglepd, Osamud.1983. Effect of microencapsulated amylase and bovine trypsin dietary supplements on growth and metabolism of shrimp, Bull Japan Soc Sci Fish,49 (9):1421-1427
    Munoz M, Cedeno R, Rodriguez J, van der Knaap WPW, Mialhe E, Bachere E.2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 191:89-107.
    Nagase G.1964. Contribution to the physiology of digestion in Tilap iamossambica:digestive enzymes and the effects of diets on their activity. Z Vergl Physiol,49:270-284.
    Oliveira J, Fabiao A.1998. Growth responses of juvenile red swamp crayfish, Procambarus clarkii Girard, to several diets under controlled conditions. Aquaculture Research 29:123-129.
    Perez-Bote JL.2004. Feeding ecology of the exotic red swamp crayfish, Procambarus clarkii (Girard, 1852) in the Guadiana River (Swiberian Peninsula). Crustaceana 77:1375-1387.
    Sanchezsaavedra MD, Rearaujo AD, Voltolina D.1993. Growth-Rate and Diet of a Natural Procambarus-Clarkii (Crustacea, Cambaridae) Population in Baja-California, Mexico. Revista De Biologia Tropical 41:591-597.
    Steele C, Skinner C, Steele C, Alberstadt P, Mathewson C.1999. Organization of chemically activated food search behavior in Procambarus clarkii Girard and Orconectes rusticus Girard crayfishes. Biological Bulletin 196:295-302.
    蔡春芳,陈立侨,吴萍,等,2003,饲料糖种类和水平对异育银鲫肝糖原代谢的影响。中国水产科学,10(1):55-59
    李志华,谢松,王军霞等,2007,间歇性饥饿对日本沼虾生长和几种消化酶的影响。水产学报,31(4):456-462
    董云伟,牛翠娟,杜丽,2001,饲料蛋白水平对罗氏沼虾生长和消化酶活性的影响。北京师范大学学报(自然科学版),37(1)
    吴垠,孙建明,周遵春,等,2003,饲料蛋白质水平对中国对虾生长和消化酶活性的影响。大连水产学院学报,18(4)
    张瑞萍等,2002,纤维素酶活性测定方法.印染,28(8):38-39.
    Ali M, Nicieza A, Wootton RJ.2003. Compensatory growth in fishes:a response to growth depression. Fish and Fisheries 4:147-190.
    Cho SH, Lee SM, Park BH, Ji SC, Lee J, Bae J, Oh SY.2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. Journal of the World Aquaculture Society 37: 168-174.
    Cortes-Jacinto E, Villarreal-Colmenares H, Civera-Cerecedo R, Naranjo-Paramo J.2004. Effect of dietary protein level on the growth and survival of pre-adult freshwater crayfish Cherax quadricarinatus (von Martens) in monosex culture. Aquaculture Research 35:71-79.
    Foss A, Imsland AK, Vikingstad E, Stefansson SO, Norberg B, Pedersen S, Sandvik T, Roth B.2009. Compensatory growth in Atlantic halibut:Effect of starvation and subsequent feeding on growth, maturation, feed utilization and flesh quality. Aquaculture 290:304-310.
    Furne M, Hidalgo MC, Lopez A, Garcia-Gallego M, Morales AE, Domezain A, Domezaine J, Sanz A. 2005. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250:391-398.
    Hayward RS, Noltie DB, Wang N.1997. Use of compensatory growth to double hybrid sunfish growth rates. Transactions of the American Fisheries Society 126:316-322.
    Heide A, Foss A, Stefansson SO, Mayer I, Norberg B, Roth B, Jenssen MD, Nortvedt R, Imsland AK. 2006. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture 261:109-117. Jobling M, Meloy OH, Dos SJ, Christiansen B 1994. The compensatory growth response of the Atlantic cod:effects of nutritional history. Aquaculture International 2,75-90.
    Kankanen M, Pirhonen J.2009. The effect of intermittent feeding on feed intake and compensatory growth of whitefish Coregonus lavaretus L. Aquaculture 288:92-97.
    Kuzmina VV.1996. Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture 148:25-37.
    Lemieux H, Blier P, Dutil JD.1999. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiology and Biochemistry 20: 293-303.
    Lundstedt LM, Melo JFB, Moraes G.2004. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei:Siluriformes) in response to diet composition. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 137:331-339.
    Nikki J, Pirhonen J, Jobling M, Karjalainen J.2004. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually\. Aquaculture 235:285-296.
    Oh SY, Noh CH, Kang RS, Kim CK, Cho SH, Jo JY.2008. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation. Fisheries Science 74: 846-852.
    Pavasovic A, Anderson AJ, Mather PB, Richardson NA.2007. Influence of dietary protein on digestive enzyme activity, growth and tail muscle composition in redclaw crayfish, Cherax quadricarinatus (von Martens). Aquaculture Research 38:644-652.
    Qian X, Cui Y, Xiong B, Yang Y.2000. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. Journal of Fish Biology 56:228-232.
    Tian XL, Qin JG.2003. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture 224:169-179.
    Wang Y, Li C, Qin JG, Han H.2009. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L. Aquaculture Research 40:204-210.
    Wu LX, Dong SL.2002. Compensatory growth responses in juvenile Chinese shrimp, Fenneropenaeus chinensis, at different temperatures. Journal of Crustacean Biology 22:511-520.
    Zhu XM, Xie SQ, Zou ZJ, Lei W, Cui YB, Yang YX, Wootton RJ.2004. Compensatory growth and food consumption in gibel carp, Carassius auratus gibelio, and Chinese longsnout catfish, Leiocassis longirostris, experiencing cycles of feed deprivation and re-feeding. Aquaculture 241:235-247.
    Ali M, Nicieza A, Wootton RJ.2003. Compensatory growth in fishes:a response to growth depression. Fish and Fisheries 4:147-190.
    Ali MZ, Jauncey K.2004. Evaluation of mixed feeding schedules with respect to compensatory growth and body composition in African catfish Clarias gariepinus. Aquaculture Nutrition 10:39-45.
    Cui ZH, Wang Y, Qin JG.2006. Compensatory growth of group-held gibel carp, Carassius auratus gibelio (Bloch), following feed deprivation. Aquaculture Research 37:313-318.
    Heide A, Foss A, Stefansson SO, Mayer I, Norberg B, Roth B, Jenssen MD, Nortvedt R, Imsland AK. 2006. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture 261:109-117.
    Munoz M, Cedeno R, Rodriguez J, van der Knaap WPW, Mialhe E, Bachere E.2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 191:89-107.
    Nikki J, Pirhonen J, Jobling M, Karjalainen J.2004. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually\. Aquaculture 235:285-296.
    Regnault M.1981. Respiration and Ammonia Excretion of the Shrimp Crangon-Crangon L Metabolic Response to Prolonged Starvation. Journal of Comparative Physiology 141:549-555.
    Van Dijk PLM, Hardewig I, Holker F.2005. Energy reserves during food deprivation and compensatory growth in juvenile roach:the importance of season and temperature. Journal of Fish Biology 66:167-181.
    Xie S, Zhu X, Cui Y 2001. Compensatory growth in the gibel carp following feed deprivation: temporal patterns in growth, nutrient deposition, feed intake and body composition. J Fish Biol,58: 999-1009.
    Yufera M, Pascual E, Polo A, Sarasquete MC.1993. Effect of Starvation on the Feeding Ability of Gilthead Seabream (Sparus-Aurata L) Larvae at 1st Feeding. Journal of Experimental Marine Biology and Ecology 169:259-272.
    Zhu XM, Xie SQ, Zou ZJ, Lei W, Cui YB, Yang YX, Wootton RJ.2004. Compensatory growth and food consumption in gibel carp, Carassius auratus gibelio, and Chinese longsnout catfish, Leiocassis longirostris, experiencing cycles of feed deprivation and re-feeding. Aquaculture 241:235-247.
    Zhu XM, Xie SQ, Wu L 2005. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture 248:307-314.
    柴鹏,李吉方,吴蒙蒙,等,2007,饥饿和再投喂对锦鲤幼鱼几种消化酶活性的影响。水利渔业,27(4):12-14
    付世建,邓利,张文兵,1999,南方鲇幼鱼胃和肝脏的组织结构及其在饥饿过程中的变化[J].西南师范大学学报,24(3):336-342.
    高露姣,陈立侨,赵晓勤,2004,施氏鲟幼鱼的饥饿和补偿生长研究对消化器官结构和酶活性的影响.中国水产科学,11(5):413-419
    刘璐,吴立新,张伟光,2007,饥饿及再投喂对日本囊对虾糖代谢的影响。应用生态学报,18(3):697-700
    张静,王军霞,张亚娟等,2007,饥饿对日本沼虾代谢及SOD活性的影响。河北大学学报(自然科学版),27(5):537-540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700