高塑性稀土变形镁合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密排六方晶体结构,室温下只有3个几何滑移系和2个独立滑移系,塑性变形能力较差,使变形制品的应用受到了极大的限制。为促进变形镁合金的推广应用,一个方面需要发展提高镁合金塑性的加工技术,另一方面需要开发高塑性变形镁合金,提高镁合金的本质变形能力。我国是镁和稀土的资源大国,研究和开发价格适中的高性能含稀土镁合金具有非常有利的条件。本文拟在镁合金中添加少量稀土元素,改善合金热变形能力,提高生产效率以降低生产成本,同时提高室温塑性,扩大其应用范围,促进变形镁合金的发展。
     本文采用金相分析、扫描电镜(SEM)、能谱(EDS)分析、X衍射分析(XRD)、差热分析(DSC)、力学性能测试等试验手段,研究了稀土元素铈、钕对ZK20和ZM21镁合金铸态、均匀化退火态、变形态的组织和性能的影响。
     研究结果表明,钕和铈的添加使铸态合金的组织得到细化,也使合金中出现含稀土合金相。随钕和铈添加量的增加,含稀土合金相增多,其形态由颗粒状经不连续网状向网状转变。网状含稀土合金相的出现,使晶界对变形的协调作用减弱,铸态合金的拉伸断裂方式由穿晶断裂转变为沿晶断裂,使抗拉强度和延伸率均有所下降。
     研究结果表明,在ZK20+xNd系中,除a-Mg和MgZn相外,随钕添加量的增加先后出现了三元含钕合金相T1(Mg 27.0-33.4, Zn 60.2-66.4,Nd 6.1-7.4)相和T2相((Mg,Zn)11.5Nd);在ZK20+xCe系中随着铈添加量的增加,合金中先后出现了两种三元含铈合金相τ1(CeMg7Zn12)和τ2 (Ce(Mg,Zn)10.1);在ZM21+xNd系中除α-Mg、α-Mn和MgZn相外,随钕添加量的增加也出现了T1和T2相。
     研究发现稀土对挤压态合金的晶粒尺寸有重要影响。随着稀土钕或铈添加量的增加,挤压态合金中颗粒状含稀土合金相增多的同时,合金晶粒尺寸明显变小。ZK20合金挤压前平均晶粒尺寸为238.8μm,挤压后为23.9μm;ZK20+0.5Nd合金挤压前平均晶粒尺寸为78.2μm,挤压后为4.9μm。
     添加稀土钕或铈,可使挤压态合金的抗拉强度小幅提高,而延伸率有较大幅度地增加。稀土元素的添加在使晶粒细化、提高塑性和强度的同时,稀土还与Zn元素形成三元合金相,使Zn固溶程度减弱,一定程度上削弱了合金强度。各合金系中挤压态性能最好的合金分别为:ZK20+0.5Nd、ZK20+0.7Ce和ZM21+0.5Nd。ZK20+0.5Nd的抗拉强度为237MPA,延伸率为32.7%,分别比不加铈时增高5%和50%;ZK20+0.7Ce的抗拉强度为261MPa,延伸率为24.6%,分别比不加钕时增高8%和44%;ZM21+0.5Nd的抗拉强度达232.1MPA,延伸率达32.2%,塑性有较大幅度提高。
     对ZK20和ZK20+0.5Nd合金不同温度均匀化退火的研究表明:均匀化退火能大幅度降低枝晶偏析,使MgZn相及部分Mg-Zn-Nd相溶解到基体中。ZK20合金均匀化退火后挤压,挤压态合金强度与未经均匀化退火相比有所降低;而ZK20+0.5Nd合金经均匀化退火后挤压,挤压态合金强度与未经均匀化相比没有降低,同时合金的塑性明显提高。ZK20和ZK20+0.5Nd合金的优化均匀化退火工艺分别为:390℃×10h和420℃×10h。
     无论添加稀土元素与否,铸态合金400℃,0.5S-1高温压缩0.7真应变时,均发生不完全动态再结晶,变形合金中残留有被压扁的原始铸态大晶粒,其晶界处存在等轴的再结晶小晶粒。随钕和铈的添加量的增加,合金高温压缩峰值应力及峰值应变均增高。
     本研究的合金中,ZK20+0.5Nd和ZM21+0.5Nd二种含钕镁合金的挤压态延伸率均达到30%,比常用镁合金具有塑性优势,便于工业上大规模生产。而ZK20+0.7Ce合金在抗拉强度达到了常用镁合金的水平的同时,塑性比常用商业变形镁合金高,在制品成形加工及使用性能上具有一定的优势。
Wrought magnesium alloys have low ductility compared with aluminum alloys because of their hexagonal close pack crystal structure which has limited slip systems. Wrought magnesium alloys take 10% only in total magnesium alloys that is less than the cast magnesium alloy. To develop the plastic working technology of magnesium alloy is an important positive factor, and another important positive factor for accelerating the application of wrought magnesium alloy in industries is to develop new alloys. Therefore, it is very important to develop new magnesium alloys with perfect ductility to meet the needs of their deformation and application. China has the most plentiful magnesium and rare earth resources in the world, which provides advantages in researching and developing high properties magnesium alloys containing rare earth elements with the acceptable cost. In this work,magnesium alloys containing rare earth elements were developed for the increase of ductility and deformation ability of alloys.
     In the present work, the microstructures, mechanical properties of as-cast and as-extruded ZK20+xNd alloys, ZK20+xCe alloys and ZM21+xNd alloys had been investigated systematically by optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD), mechanical properties testing, etc.
     Results showed that the microstructure of as-cast alloys gradually defined with the increase of the Nd or Ce addition, and Mg-Zn-Re ternary phases appeared. The morphology of ternary Mg-Zn-Re phases at intragranular changed from partical,to broken-network,and then to network with the increase of the Nd or Ce addition. Broken-network or network Mg-Zn-Re phase caused the decrease of alloy properties and a change in the fracture mechanism from cleavage fracture to intergranular fracture.
     Results showed that Mg-Zn-Nd ternary phases T1(Mg 27.0-33.4, Zn 60.2-66.4, Nd 6.1-7.4)and T2((Mg,Zn)11.5Nd)appeared in ZK20+x Nd alloys; Mg-Zn-Ce ternary phasesτ1 ( CeMg7Zn12 ) andτ2 (Ce(Mg,Zn)10.1) appeared in ZK20+xCe alloys; Mg-Zn-Nd ternary phases T1 and T2 appeared as well as in ZK 20+x Nd alloys.
     The grain size of as-extruded alloys gradually decreased with the increase of Nd or Ce addition from 0 to 0.7 wt. %. The average grain size of ZK20 alloy was 23.9μm after extrusion,but it was 238.8μm before extrusion; the average grains size of ZK20+0.5Nd alloy was 4.9μm after extrusion,but it was 78.2μm before extrusion.
     In as-extruded ZK20+xNd alloys、ZK20+xCe alloys and ZM21+xNd alloys, Nd or Ce addition caused the slight increase of alloy strength, but it caused alloy ductility to increase significantly. It led to a little increase of alloy strength by the Nd or Ce addition that Zn amount inα-Mg solid solutions decreased because of the formation of Mg-Zn-Re ternary phases.
     The as-extruded alloys ZK20+0.5Nd, ZK20+0.7Ce and ZM21+0.5Nd showed higher properties respectively. The UTS and El. of as-extruded ZK20+0.5Nd alloy were 237 MPa and 32.8% respectively, with the increase of 5% and 50% on those of ZK20 alloy respectively. The UTS and El. of as-extruded ZK20+0.7Ce alloy were 261MPa and 24.6% respectively, with the increase of 8% and 44% on those of ZK20 alloy. The UTS and El. of as-extruded ZM21+0.5Nd alloy were 232.1 MPa and 32.2%, of which the elongation increased significantly.
     The effects of ingot homogenizing annealing at different temperatures on properties of as-extruded ZK20 and ZK20+0.5Nd magnesium alloy were investigated. The results showed Mg-Zn and Mg-Nd-Zn compounds which were observed in the cast ingot disappeared gradually with the increase of annealing temperature. The strength of as-extruded ZK20 alloy after homogenizing annealing decreased than that of the alloy without annealing, while the strength of ZK20+0.5Nd remained unchanged. It can be concluded that the optimal homogenizing annealing process were 390℃×10 h for ZK20, and 420℃×10 h for ZK20+0.5Nd.
     Incomplete dynamic recrystallization had occurred in alloys at compression deformation at 400℃,0.5S-1. Peak stress and peak strain increased with the increase of Nd or Ce addition.
     ZK20+0.5Nd alloy and ZM21+0.5Nd alloy showed the advantage in deformation with the better ductility. ZK20+0.7Ce showed the advantage in application, since its strength hit the level of commercial magnesium alloys and its ductility was better than common commercial magnesium alloys.
引文
[1]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报, 2001,32(6): 599-603.
    [2]张士宏,许沂,王忠堂等.镁合金成形加工技术[J].世界科技研究与发展, 2001, 23(6): 18-21.
    [3]王敏芳,徐明忠.国内外金属镁及其合金的生产与市场研究[J].工业技术进步,1997(1):58-62.
    [4]卢晨,卫中山.镁合金的研究与应用进展[J].汽车工业材料,2005(9):1-3.
    [5]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究,2003,(1):34-37.
    [6]訾炳涛,王辉.镁合金及其在生产中的应用[J].稀有金属,2004,28(1):229-232.
    [7]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002,10:374.
    [8] Pekguleryuz M. O.. Magnesium alloys’some potentials for alloy development[J]. Light Metal,1992,12:679-686.
    [9] Avedsain Michael M, Baker Hugh. Magnesium and Magnesium alloys[M]. ASM International, 1999 .
    [10] Nishikawa Y. Development of Electric Products Using Magnesium Alloys[J]. Function and Materials,1999,19(6):21-27.
    [11] Elektron. Magnesium Alloys Handbook[M]. Magnesium Elektron Ltd., 1953.
    [12] E.F.Emley. Principles of Magnesium Technology[M]. London: Pergamon Press,1966: 267.
    [13] Baghni,I.M. Wu,Yin-Shum. Mechanical properties and potential applications of magnesium alloys[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2003(12), 13(6): 1253-1259.
    [14] Elektron, Magnesium Alloys Handbook[M]. Magnesium Elektron Ltd., 1953.
    [15] G.Cole. Magnesium :the unfriendly metal with friendly future[C]. Sinomag Gie Casting Magnesium Seminar, Beijing: Nov., 22th~24th, 2002.
    [16]王祝堂.镁合金在汽车上的应用前景[J].铝加工, 1998, 21(6): 54-55 .
    [17] B.L.Mordike,T. Ebert.Magnesium:Properties–application–potential[J]. Materls Science and Engineering A, 2001, 302: 37-45.
    [18] Chen L H, Zhao H J, Liu Z. Magnesium alloy die castings and it' sapplied in automobile [J]. Foundry, 1999 (10):45.
    [19] Friderich H, Schumann S. Research for a new age of magnesium in the automotive industry [J]. Mater. Sci. Technol, 2001,117 (1): 276.
    [20] Liu H. M.,WANG Y. R..Stream surface strip element method and simulation of three- dimensional deformation of continuous hot rolled strip[J].Journal of Iron and Steel Research,2004,11(2):18-24.
    [21] M.M. Avedesian, H. Baker, eds. ASM Speicalty Handbook-Magnesium and Magnesium Alloys[M], ASM International, 1999.
    [22] H. Friedrich, S. Schumann. The second age of magnesium- research strategies to the automotive industry’s vision to reality[J]. Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology. Dead Sea, Israel. 2000. Magnesium Research Institute (MRI) LTD., 2000, 2: 9-18.
    [23] Y. Tzabari, I. Reich. Light weight and low stiffness magnesium steering wheel design[J]. Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology. Dead Sea, Israel. 2000. Magnesium Research Institute (MRI) LTD., 2000, 2:35-42.
    [24] A. Luo, M. O. Pekguleryuz. Review cast magnesium alloys for elevated temperature application [J]. Journal of materials science, 1994, 29: 5259-5271.
    [25] B.L. Mordike, T.Ebert. Magnesium Properities-applications-potential[J]. Materials Science and Engineering, 2001, A302 : 37-45.
    [26] Benjamin Landkof. Magneisum applications in the electronic industries[J]. Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology. Dead Sea, Israel. 2000. Magnesium Research Institute (MRI) LTD., 2000, 2: 50-56.
    [27] H. Friedrich, S. Schumann. Research for a‘new age of magnesium’in the automotive industry[J]. Journal of Materials Processing Technology, 2001, 117, 276-281..
    [28] Dwain M, Magers. A Global Review of Magnesium Parts in Automobiles [J]. Light Metal Age, 1996, (10): 60-63.
    [29] Robert E. Bob Brown. Sinomag Die Casting Magneisum Seminar [J]. Light Metal Age, 2001, (2): 92-97.
    [30]刘正,王越,王中光等.镁基轻质材料的研究与应用[J].材料研究学学报,2000,14(5):449-456.
    [31]黄晓锋,周宏,何镇明.镁合金的防燃研究及其进展.中国有色金属学报,2000,10(1):271-274.
    [32]曾荣昌,柯伟.镁合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [33]师瑞霞,尹衍升,谭训彦.镁合金的研究进展[J].山东冶金,2003,25(2):63-56.
    [34]春泉,曾小勤,丁文江等.镁合金的开发与应用[J].机械工程材料,2001,25(1):6-10.
    [35] Yu K, Li W X ,Wang R C,Ma Z Q. Research, development and application of wrought magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2003,13 (2): 277.
    [36]宋孚群,张青来,徐永超等.变形镁合金晶粒细化及热处理后的组织和性能[J].金属成形工艺, 2004, (3) :46.
    [37] Bae D H, Lee M H, Kim K T,et al. Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys[J]. Alloys Comp, 2002, 342:45.
    [38]周海涛,曾小勤,刘文法等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报, 2004, (1) :99.
    [39]陈振华等.镁合金[M].北京:化学工业出版社, 2004.5.
    [40]刘子利,丁文江,袁广银等.镁铝基耐热铸造镁合金的进展[J].机械工程材料, 2001, (11): 1.
    [41]李亚国,段劲华等.钇稀土在Mg-Zn-Zr镁合金中的强化作用[J].现代机械, 2003,(5) :86.
    [42]吴安如,古一,夏长清. Mg-Re(Ce ,Nd ,Y)-Zn-Zr合金显微组织及力学性能研究[J].热加工工艺,2004,(12) :21.
    [43]罗治平,张少卿,鲁立奇等.热处理对Mg-Nd-Zr挤压合金性能与组织的影响[J].中国稀土学报,1994 ,(6) :183.
    [44]蒋斌,张丁非,彭建等. Mg-Li超轻合金的研究与应用[J].材料导报,2005(5): 38-41.
    [45]马春江,张荻,覃继宁等. Mg-Li-Al合金的力学性能和阻尼性能[J].中国有色金属学报,2000,10(增刊1) : 10-14.
    [46]李劲风,郑子樵,陶光勇.超轻Mg-Li合金[J].轻合金加工技术,2004,32(10) :35.
    [47]陈斌,冯林平等.变形Mg-Li-Al-Zn合金的组织与性能[J].北京航空航天大学学报, 2004, (10) :976.
    [48] John Wiley. Magnesium and its alloys[M]. USA: Sons, Inc. 1960.
    [49] Wei L Y, Dunlop GL, Westengen H. Age hardening and precipitation in a cast magnesium rare earth alloy[J]. Mater Sci,1996 ,31:387.
    [50] A. Ben-Artzy, A. Shtechman, N. Ben-Ari, D. Dayan. Plastic deformation of wrought magnesium alloys AZ31, ZK60[J]. Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology. Dead Sea, Israel. 2000. Magnesium Research Institute (MRI) LTD., 2000, 2: 151-158.
    [51] B. Closset, R. Steins, A. Bonjour and J. P. Filloux. Heat treatment and mechanical properties of extruded magnesium alloys[J]. Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology. Dead Sea, Israel. 2000. Magnesium Research Institute (MRI) LTD., 2000, 2:143-150.
    [52] Wei L Y,Dunlop G L ,Westengen H. Intergranular microstructure of cast Mn2Zn and Mg-Zn-rare earth alloys[J]. Mater Trans A, 1995, 26A(8) :1947.
    [53] Friderich H, Schumann S. Research for a new age of magnesium in the automotive industry [J]. Mater.Sci. Technol, 2001, 117 (1): 276.
    [54] Yizhen Lü, Qudong Wang, Xiaoqin Zeng, Wenjiang Ding, etc. Effects of rare earths on themicrostructrue, properties and fracture behavior of Mg-Al alloys [J]. Materials Science and Engineering, 2000, A278: 66-76.
    [55] L. Y. Wei, G. L. Dunlop, H. Westengen. Solidification behaviour and phase constituents of cast Mg-Zn-misch metal alloys [J], Journal of materials science, 1997, 32: 3335-3340.
    [56] I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock. Microstructural stability and creep of rare-earth containing magnesium alloys [J]. Scripta Materialia, 2003, 48: 1029–1034.
    [57] Wei L Y,Dunlop G.L, Westengen H. Age hardening and precipitation in a cast magnesium rare earth alloy[J]. Mater Sci, 1996, 31:387.
    [58] Wei L.Y, Dunlop G.L ,Westengen H. Intergranular microstructure of cast Mn-Zn and Mg-Zn-rare earth alloys[J]. Mater Trans A,1995, 26A(8): 1947.
    [59]曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究[J].稀有金属材料与工程, 1999, (4) :28.
    [60]刘正,张奎,曾小勒.镁基轻质合金理论及其应用[M].北京:机械工业出版社, 2002.9.
    [61]李元元,张卫文,刘英,等,镁合金的发展动态和前景展望[J].特种铸造及有色合金, 2004, (1): 14.
    [62] Mordike B. L. , Ebert T. Magnesium:Properties applicationspotential[J]. Mater Sci Eng A, 2001, 302:37.
    [63] Pe′rez Prado M. T., del Valle J. A ., Ruano A. Achieving high strength in commercial Mg cast alloys through large strain rolling[J]. Mater Lett, 2005, 59:3299.
    [64] Wei Y. H. , Wang Q. D., Zhu Y P, et al. Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates[J]. Mater Sci Eng A,2003,360:107.
    [65] Emley. Principles of magnesium technology [M]. Oxford: Pergamon ,1966.122.
    [66] Das S. K.,Chang C. F.. Magnesium alloys and their applications [M]. oberursel: FRGDGM Information Sgesellschaft,1992.
    [67]曾正明等,机械工程材料手册,金属材料(第五版)[M].北京:机械工业出版社, 1998.12.
    [68] Kleiner, S Beffort, O Uggowitzer P. Microstrueture evolution during reheating of an extruded Mg-AI-Zn alloy into the semisolid state. Scripta Materialia, 2004, 51 (5):405-410.
    [69] Czerwinski F.. Size evolution of the unmelted Phase during injection molding of semisolid magnesium alloys. Seripta Materialia, 2003, 48(4): 327-331.
    [70] Jones H., Shaw C.. The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys[J].Materials Science and Engineering:A, 1997, 226-228(15): 856-860.
    [71] Takuda H.,Fujimoto H., Hatta N.. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. Joumal of Materials Processing Technology, 1998, 80-81(8): 513-516.
    [72]黄晓峰,周宏.镁合金的防燃研究进展[J].中国有色金属学报, 2000, Vol. 10: 271.
    [73]徐玉磊,张奎,李兴刚,袁海波.镁合金中混合稀土加入方法研究[J].热加工工艺, 2009, 38(5): 1-7.
    [74]黄明丽,杨金艳,李洪晓,任玉平,丁桦,郝士明. Mg-Zn-Nd系富镁角300℃局部相平衡研究[J].材料与冶金学报,Vol.7,No.7,2008(6):126-129,142.
    [75]黄明丽,李洪晓,杨金艳,任玉平,丁桦,郝士明. Mg-Zn-Nd合金中低Nd三元化合物T1相的研究[J].金属学报,Vol.44,No.44,2008(4):385-390.
    [76] M.L.Huang b,H.X.Li, H.Ding,Z.Y.Tang,R.B.Mei,H.T.Zhou,R.P. Ren S.M.Hao. A ternary linear compound T2 and its phase equilibrium relationships in Mg–Zn–Nd system at 400℃[J].Journal of Alloys and Compounds ,489(2010),620–625.
    [77]杨友,刘勇兵,方懿.AZ91D+xNd压铸镁合金拉伸和疲劳断裂模式[J]. 2007, 56(1): 41-45.
    [78]廖景娱,梁思祖,梁耀能.金属构件失效分析[M].北京:化学工业出版社,2003:50-69.
    [79]陈水先,张辉,严琦琦,李落星,刘文华.热处理对挤压镁合金ZK60拉伸变形与断裂行为的影响[J].金属热处理,2008,33μm (6): 85-88.
    [80]陈振华,许芳艳,傅定发,夏伟军.镁合金的动态再结晶[J].化工进展,2006,25(2): 140-146.
    [81]覃银江,潘清林,何运斌,李文斌,刘晓艳,范曦. ZK60镁合金热压缩变形流变应力行为与预测[J].金属学报,2009,45(7):887—891.
    [82]郭强,严红革,陈振华,张辉. AZ31镁合金高温热压缩变形特性[J].中国有色金属学报,2005,15(6):900-906.
    [83]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [84]杨友.Nd对压铸镁合金AZ91D高周疲劳性能的影响[J].特种铸造及有色合金,2006, 26(10): 646-648.
    [85] Ferro R., Saccone A., Borzone G.. Rare earth metals in light alloys [J]. Journal of Rare Earth, 1997, 1 (15): 45-61.
    [86] Ma C. J., Liu M. P., Wu G H. Tensile properties of extruded ZK60-RE alloys [J]. Materials Science and Engineering, 2003, A00 (1):6.
    [87] Yu K., Li W. X.. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy [J]. Scripta Material,2003,A48: 1319.
    [88] Huang X. F.Wang Q.D. Zeng X.Q. Influence of rare earth on mechanical properties and high temperature creep properties of AM50 magnesium alloy [J]. Journal of The Chinese Rare Earth Society, 2004, 22 (4): 493.
    [89] Wang B. Yi D.Q. Zhou L.L. Fang X.Y. Influence of Y and Nd on microstructure and properties of Mg-Zn-Zr alloys [J]. Heat Treatment of Metals, 2005, 30 (7): 9.
    [90]杜文博,吴玉锋,聂祚仁,等.稀(碱)土在镁合金中的作用及应用现状[J].稀有金属材料与工程,2006,35(9):1 345-1 349.
    [91]黄晓锋,付彭怀,卢晨,等.Nd对AM50力学性能及高温性能的影响[J].材料研究学报, 004,18(6): 93-596.
    [92]吴玉锋,杜文博,聂祚仁,等.Mg-Al-M合金中Al-M相(M=Sr,Nd)析出行为的热力学分析[J].金属学报,2006,42(5):487-491.
    [93]宋雨来,刘耀辉,朱先勇,等.钕对AZ91镁合金组织及机械性能的影响[J].吉林大学学报(工学版),2006,36(3):289-293.
    [94]朱知寿,马济民,高扬,等.富Nd第二相颗粒对钛合金拉伸断裂方式的影响[J].航空材料学报,2000,20(3): 27-32.
    [95] Qiang Li, Qudong Wang, Haitao Zhou, Xiaoqing Zeng, Ya Zhang, Wenjiang Ding. High strength extruded Mg–5Zn–2Nd–1.5Y–0.6Zr–0.4Ca alloy produced by electromagnetic casting[J]. Materials Letters, 2005 (59): 2549– 2554.
    [96] Qiang Li, Qudong Wang, Yingxin Wang, Xiaoqin Zeng, Wenjiang Ding. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy.[J]. Journal of Alloys and Compounds, 2007 (427): 115–123.
    [97] J.S. Zhang, J. Yan, W. Liang, C.X. Xu, C.L. Zhou. Icosahedral quasicrystal phase in Mg–Zn–Nd ternary system [J]. Materials Letters, 62 (2008): 4489–4491.
    [98]黄光胜,汪凌云,黄光杰.均匀化退火对AZ31 B镁合金组织性能的影响[J].重庆大学学报(自然科学版),2004,11:18-21.
    [99] Chen Z H. Magnesium Alloys [M].Chemical Industry Press. Beijing:2004,(5):162.
    [100] Liu G.Q. Chen L.P. Ai Y.L. Effects of RE element Y on the microstructure of ZM5 Mg alloy [J]. Special Casting & Nonferrous Alloys, 2005, 25 (7): 496.
    [101]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社,1979:4-150.
    [102] Askeland D.R. phule P P. Essentials of materals science and engineering [M]. Tsinghua University Press, 2005 (1): 103.
    [103]张娅,马春江,卢晨.轻合金加工技术,2003,31(7):35.
    [104]陈振华,许方艳,傅定发,夏伟军.化工进展,2006,25:140.
    [105]汪凌云,黄光胜,范永革,等.变形AZ31镁合金的晶粒细化[J].中国有色金属学报,2003,13(3):594- 598.
    [106]郭强,张辉,陈振华,等.AZ31镁合金的高温热压缩流变应力行为的研究[J].湘潭大学自然科学学报,2004,26(3):108—111.
    [107] Chen Z.H. Xia W.J. Yan H. Principles and technologies of plastic Deformation for magnesium alloys [J]. Chemical Industry and Engineering Progress, 2004,23 (2):127.
    [108] J.Koike. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature [J]. Metallurgical and materials transactions A, 2005, 36 (7): 1689-1696.
    [109]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13 (2): 277-287.
    [110] FRIDERICH H, SCHUMANN S. Research for a new age of magnesium in the automotive industry[J]. Mater. Sci. Technol, 2001, 117:276.
    [111] LUO A. RENAUD J. Magnesium castings for automotive applications [J]. JOM, 1995,47(7): 28.
    [112] KLEINER S, BEFFORT O, UGGOWITER P J. Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state[J]. Scripta Materialia, 2004,51:405-410.
    [113] CIZEK L. GREGER M. PAWLICA L. Study of selected properties of magnesium alloyAZ91 after heat treatment and forming [J]. Journal of Materials Processing Technology, 2004, 157-158: 466-471.
    [114]丁茹,王伯健,王成等. AZ31镁合金晶粒细化方法及机制研究现状[J].轻合金加工技术, 2010,38(1):23-26.
    [115]郭强,严红革,陈振华,吴有伍.均匀化退火工艺对铸态AZ80镁合金组织与性能的影响[J].金属热处理, 2006,31(7):77-80.
    [116]彭建,张丁非,杨椿楣,丁培道. ZK60镁合金铸坯均匀化退火研究[J].材料工程, 2004,8:32-35.
    [117]杨君刚,赵美娟,蒋百灵.均匀化退火对AZ91D镁合金组织与性能的影响[J].材料热处理学报, 2008,29(4):69-73.
    [118]王斌,易丹青,周玲伶,方西亚,罗文海,杨洁.稀土元素Y和Nd对Mg-Zn-Zr系合金组织和性能的影响[J].金属热处理, 2005, 30 (7): 9-13.
    [119]宋雨来,刘耀辉,朱先勇,王素环,于思荣.钕对AZ91镁合金组织及机械性能的影响[J].吉林大学学报(工学版) , 2006, 26(3):289-293.
    [120]金军兵,王智祥,刘雪峰,谢建新.均匀化处理对AZ91镁合金组织和力学性能的影响[J].金属学报, 2006,42 (10):1014-1018.
    [121]王强,高家诚,王勇,李伟,牛文娟.均匀化退火对WE43镁合金铸坯组织和性能的影响[J].材料热处理学报, 2008,29(4): 65-68.
    [122]王军,刘勇兵,杨晓红.铈对压铸镁合金AZ91组织和高温性能的影响[J].中国稀土学报, 2005, 23(3):378-381.
    [123]余琨,黎文献,张世军. Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程, 2005, 34(7):1013-1016.
    [124]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造, 2002, 151(12): 767-771.
    [125] Li S.H. Zheng W.C.Tang B. et.al. Grain coarsening behavior of Mg-Al alloys withmischmetal addition[J]. Journal of rare earthes, 2007, 25: 227-232.
    [126]潘复生,彭家兴,杨明波.铈对AZ31镁合金铸态组织的影响[J].重庆大学学报, 2009, 32(4): 363-366.
    [127]刘文娟,曹发和,张昭,张鉴清.稀土元素Ce和La合金化对AM60镁合金腐蚀行为的影响[J].腐蚀科学与防护技术.2009,21(2):82-84.
    [128]王明星,周宏,王林,等. Y和Ce对AZ91D镁合金显微组织和力学性能的影响[J].吉林大学学报,2007,37(1):9-11.
    [129]王少武,夏长清,吴安如.稀土铈对AZ31镁合金显微组织和力学性能的影响[J].矿冶工程,2006,26(4):77-80.
    [130]朱丽娟,钱佳,刘越,刘瑞华,张稚静. Y和Ce对Mg-6Al合金挤压铸造组织和性能的影响[J].特种铸造及有色合金,2008,28(11):852-855 .
    [131]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造, 2002, 151(12): 767-771.
    [132]张诗昌,魏伯康,林汉同,等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报,2001,11(S2):99-102.
    [133]刘生发,黄尚宇,徐萍. Ce对AZ91镁合金铸态组织细化的影响[J].金属学报, 2006, 4(42): 443.
    [134]郑伟超,李双寿,屠彬,曾大本.混合稀土对AZ91D镁合金组织和力学性能的影响[J].金属学报, 2006, 42(8):835.
    [135]刘生发,王慧源,康柳根,黄尚宇,徐萍.钕对AZ91镁合金铸态组织的影响[J].中国有色金属学报, 3006, 16(3):466.
    [136]廖慧敏,龙思远,肖华强,朱志兵.富铈混合稀土对AZ81合金组织与性能的影响[J].中国稀土学报,2008,26(6):792-796.
    [137] Liu C.M.., Zhu X.R.., Zhou H.T.. Magnesium alloy phase diagram [M]. Hunan: Central South University Press, 2006:212-215.
    [138]张菊梅,蒋百灵,王志虎,袁森,夏鹏举.固溶和时效对AZ80镁合金断裂行为的影响[J].特种铸造及有色合金,2007,27(9):663-666.
    [139]王越,姜丽丽,毛萍莉,刘正,王长义.应变速率对AZ31B变形镁合金力学性能的影响[J].沈阳工业大学学报, 20 0 8, 30 (5): 539-542.
    [140]陈吉华,傅定发,严红革,夏伟军,陈振华.镁合金材料的塑性变形理论及其技术[J].化工进展, 2004, 23(2): 127-135.
    [141]郭强,张辉,陈振华,等.AZ31镁合金的高温热压缩流变应力行为的研究[J].湘潭大学自然科学学报,2004,26(3):108-111.
    [142]刘刚强,陈乐平,艾云龙,稀土Nd对ZM5合金组织与性能影响的研究[J].特种铸造及有色合金, 2005, 25 (7): 496-498.
    [143]张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响[J].铸造。2001,50(6):310-315.
    [144]陈健美,张新明,熊创贤,蒋浩,邓桢桢.添加Mn、Sc元素对Mg-9Gd-4Y合金组织和力学性能的影响[J].材料热处理学报, 2006,27(2):42-46.
    [145]周学华,钮洁欣,卫中领,陈秋荣.添加RE和Mn元素对Mg-9A1合金耐腐蚀性的影响[J].轻合金加工技术,2006,34(10):49-54.
    [146] WANG Jianli, PENG Qiuming, WU Yaoming. Microstructure and mechanical properties of Mg-6A1-4RE-0.4Mn alloy[J]. Trans.Nonferrous Met.Soc.2006(6): l 703-1 707.
    [147]肖代红,宋畋,陈康华,黄伯云. Er对铸态Mg-AI—Zn—Mn合金组织与力学性能的影响[J].种铸造及有色合金, 2007,27(11): 824-826.
    [148]王迎新,关绍康,王建强. RE对Mg-8Zn-4AI-0.3Mn合金组织的影响[J].中国有色金属学报, 13 (3): 616-621.
    [149]赵亚忠,潘复生,彭建.挤压态ME20镁合金退火工艺优化[J].热加工工艺,2009, 38(16) : l29-132.
    [150]郝士明.镁的合金化与合金相图[J].材料与冶金学报,2002,1(3): l66-170.
    [151] Liu C. M., Zhu X. R., Zhou H. T.. Magnesium phase diagrams [M], ChangSha: Central South University Press, 2006 (12): 300-302.
    [152] M.E.Drits. E.M.Padezhnova. N.V.Miklina.Russ.Metall. 1974 (3):143-146.
    [153] V. kinzhibalo. A.T. Tyvanchuk. E.V. Melnik.Stable and Metastable Phase Equilibria in Metallic Systems[J]. Nauke. Moscow.USSR.1985: 70-74.
    [154] M.L.Huang. H.X. Li, J.Y.Yang. Y.P. Ren,H.Ding. S.M.Hao.Acta Metall. Sin, 44 (2008) 385-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700