超/特高压输电线路雷电屏蔽性能三维先导仿真模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超/特高压输电线路的雷电屏蔽是制约电网安全运行水平提升的瓶颈问题之一。超/特高压输电线路的几何尺度大、工作电压高,雷电迎面先导对屏蔽性能的影响开始凸显,致使传统的雷电屏蔽分析方法已无法满足其雷电屏蔽设计和防护的需求。本文以建立超/特高压输电线路雷电屏蔽性能三维先导仿真模型为研究目标,围绕雷电迎面先导起始与发展过程建模和雷击输电线路三维空间电场计算两个方面的基础问题,开展深入细致的研究。
     研究了已有的正极性迎面先导特性试验方法的等效性。以间隙电场时空相似为原则,结合放电过程试验观测,提出了负极性棒-棒间隙和正极性棒-板间隙中电场空间分布与自然雷电条件不相似;负极性板-棒间隙中,下棒电极附近的电场空间分布与自然雷电条件一致,然而间隙电场时间等效性还有待完善。尽管已有的长间隙放电试验方法均无法直接模拟雷电迎面先导过程,但是通过开展典型间隙的放电试验观测,获取正极性先导起始和发展特性,对于雷电迎面先导仿真模型的建立和完善具有重要意义。本文利用CCD高速摄影仪,获取了典型间隙中正极性先导起始电压、临界电晕半径和发展速度等的宏观特征参数,为雷电迎面先导仿真模型的验证提供了基础数据。
     研究了正极性先导发展过程中空间电荷量的计算方法,建立了基于热电离机理的正极性先导发展仿真模型,并利用典型间隙放电试验观测结果验证了模型的有效性。基于所建立的模型,对负极性板-棒间隙试验方法中,背景电场随时间的变化特性与正极性迎面先导起始和发展特性的关系进行了分析。通过与最新的雷电观测结果的对比,提出了用于雷电迎面先导发展过程仿真的先导通道电流和发展速度外推关系。
     开展了雷云和下行先导作用下输电线路附近空间动态三维电场计算方法研究。提出了输电线路和杆塔的单元划分和模拟电荷配置方法,通过引入并行计算技术,提高了三维电场的求解效率。利用计算方法研究了计算模型维度、工作电压和杆塔对下行先导作用下输电线路空间电场计算结果的影响。
     建立了超/特高压输电线路雷电屏蔽性能分析的三维仿真模型。实现了计及架空输电线路三维结构影响的雷电下行先导和迎面先导相向发展过程的动态仿真,克服了已有二维雷电先导模型中无法计算雷电迎面先导持续发展速度和无法考虑实际线路三维结构影响两个方面的不足。利用典型超/特高压输电线路运行经验,对模型的合理性极性了验证。所开发的雷电屏蔽三维仿真工具为特高压变电站进线段、耐张转角塔以及大跨越线段等特殊对象的雷电屏蔽性能评估提供了新的途径。
Lightning shielding failure of EHV and UHV transmission lines is one of the mostimportant aspects to cause unscheduled disturbance of the UHV power system. The largescale and high operation voltage increases the probability of lighting strokes to EHV andUHV transmission lines.The traditional lightning shielding analysis models can notcompletely explain the lightning shielding failure mechanism of UHV transmission lines,and support the lightning shielding design. Aimming to develop a new3-dimensional leaderprogression model for lightning shielding performance simulation of EHV and UHVtransmission lines, this paper mainly focuses on the modeling of the self-consistent positiveupward leader and the calculation method of3-dimensional electric field of transmissionlines under thunder cloud and negative downward stepped leader.
     Firstly, the equivalency of the exsiting positive upward leader test methods by usinglong sparks was discussed. Comparing the electric field spatio-temporal distribution of thedischarge gaps and lightning attachment process, the rod-rod gaps under negative impulsevoltages and the rod-plane gaps under positive impulse voltages can’t reproduce the electricfield spatial distribution during the lightning attachment process. The temporalcharacteristics of the ambient electric field during the lightning attachment process can’t berepresence in the inverted rod-plane gaps under negative impulses. However, the macrofeatures of the positive leader initiated and developed in such typical discharge gaps wereobserved by using CCD high speed cameras, which could provide some fundmental datafor the development and verification of the self-consistent positive upward connectingleader simulation models.
     Secondly, the calculation method for the streamer space charge produced during thepositive leader propagation was studied here, and a physical model for the positive leaderpropagation simulation was developed on the basis of the thermal ionization theory, whichwas verificated by using the data observed in long air gaps. The influence of the temporalcharacteristics of the ambient electric field on the positive leader propagation in theinverted rod-plane gap was carried out by using this model. A new velocity-current relationduring positive leader propagation was proposed by comparing the simulation results to the recent lightning observation results.
     Next, the3-dimensional distribution of space electric field in vicinity of thetransmission lines under thunder cloud and negative downward stepped leader wascalculated by using the charge simulation method (CSM). The mesh method andconfiguration of the simulation charge was proposed in the4th chapter. And the parallelcomputation methodology was introduced here to accelerate the solution of chargesimulation equation. The impact of calculation dimensionality, operation voltages andtowers on the space electric field calculation were discussed in the rest of this chapter.
     At last, by combining the physical model of positive leader propagation and3-dimensional electic field calculation method develop in previous chapters, a new3-dimensional leader progression model for lightning shielding performance simulation ofEHV and UHV transmission lines was proposed, which overcome the disadvantages of theexisting2-dimensional leader progression model. The calculation results of this model werecompared to the operation experiences, which verified the applicability of this model. Thismodel provide a new choice for the lightning shielding performance asseccment of somespecific facilities, such as incoming lines of substation, anchor tower and long span lines.
引文
[1]李培国.国外对特高压输电线路雷击跳闸原因的一个新观点.电网技术,2000,24(7):63-65
    [2]钱冠军,王晓瑜,丁一正等.500kV线路直击雷典型事故调查研究.高电压技术,1997,23(2):72-83
    [3]维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验.高电压技术,1998,24(2):76~79
    [4] Takami J, Okabe S. Characteristics of direct lightning strokes to phase conductors ofUHV transmission lines. IEEE Trans. on Power Delivery,2007,22(1):537-546
    [5] Watanabe Y. Switching surge flashover characteristics of extremely long air gaps.IEEE Trans. on Power Apparatus and Systems,1967,86(8):933-936
    [6] Paris L. Influence of air gap characteristics on line to ground switching surge strength.1967,86(8):936-947
    [7] Suzuki T, Miyake K. Breakdown process of long air gaps with positive switchingimpulses. IEEE Trans. on Power Apparatus and System,1975,94(3):1021-1043
    [8] Les Renardières Group. Research on long air gap discharges at Les Renardières.Electra,1972,23:53-157
    [9] Les Renardières Group. Research on long air gap discharges-1973results. Electra,1974,35:47-155
    [10] Les Renardières Group. Positive discharges in long air gaps at Les Renardières-1975results and conclusions. Electra,1977,53:31-152
    [11] Les Renardières Group. Negative discharges in long air gaps at Les Renardières-1978results. Electra,1981,74:67-218
    [12] Armstrong H R, Whitehead E R. Field and Analytical Studies of Transmission LineShielding. IEEE Trans. on Power Apparatus and System,1968,87(1):270-282
    [13] Brown G W, Whitehead E R. Field and Analytical Studies of Transmission Lines PartⅡ. IEEE Trans. on PowerApparatus and System,1969,88(5):617-626
    [14] Golde R H. Lightning. New York: Academic Press,1977
    [15] Golde R H. The frequency of occurrence and the distribution of lightning flashes totransmission lines. Transactions of the AIEE,1945,64:902-910
    [16] Young F S, Clayton J M, Hileman A R. Shielding of transmission lines, IEEE Trans.on Power Apparatus and System,1963,82(4):132-154
    [17] Cooray V, Rakov V, Theethayi N. The lightning striking distance-Revisited. Journalof Electrostatics,2007,65(5):296-306
    [18] Wagner C F. The relation between stroke current and the velocity of the return stroke.IEEE Trans. on Power Apparatus and System,1963,82(5):609-617
    [19] Love E R. Improvements in lightning stroke modeling and applications to design ofEHV and UHV transmission lines. M.Sc. dissertation, Univ. Colorado, Denver, CO,1973
    [20] IEEE. Guide for Improving the Lightning Performance of Transmission Lines. IEEEStd1243-1997,1997
    [21] Anderson J G. Transmission Line Reference Book-345kV and above. CA: Elect.Power Res. Inst.,1982
    [22] Armstrong H R, Whitehead E R. A Lightning Stroke Pathfinder. IEEE Trans. onPower Apparatus and System,1964,83(12):1223-1230
    [23] Whitehead E R. Survey of the lightning performance of EHV transmission lines.Electra,1979,27:63-89
    [24] IEEE working group on estimating lightning performance of transmission line. Asimplified method on estimating lightning performance of transmission line. IEEETrans. on Power Apparatus and System,1985,104(4):919~931
    [25] Berger K. Methods and results of lightning records at Monte San Salvatore from1963-1971. Bull. Schweiz. Elektrotech.1972,63:21403-21422
    [26] Eriksson A J. The lightning ground flash-an engineering study. Ph. D. thesis, Facultyof Engineering, University of Natal, Pretoria,1979
    [27] Takami J, Okabe S. Characteristics of direct lightning strokes to phase conductors ofUHV transmission lines. IEEE Trans. on Power Delivery,2007,22(1):537-546
    [28] Takami J, Okabe S. Observational results of lightning current on transmission towers.IEEE Trans. on Power Delivery,2007,22(1):547-556
    [29] Becerra M, Cooray V, Neto A S, et al. Lightning attachment to power transmissionlines-on the validity of the electrogeometric model. Proceedings of the29thInternational Conference on Lightning Protection. Uppsala, Sweden,Jun.23-26,2008
    [30] Taniguchi S, Tsuboi T, Okabe S. Observation results of lightning shielding forlarge-scale transmission lines. IEEE trans. on Dielectrics and Electrical Insulation,2009,16(2):552-559
    [31] Taniguchi S, Okabe S. A contribution to the investigation of the shielding effect oftransmission line conductors to lightning strikes. IEEE trans. on Dielectrics andElectrical Insulation,2008,15(3):710-720
    [32] Taniguchi S, Okabe S, Takahashi T, et al. Air-gap discharge characteristics in foggyconditions relevant to lightning shielding of transmission lines. IEEE trans. on PowerDelivery,2008,23(4):2409-2416
    [33] Taniguchi S, Okabe S, Takahashi T, et al. Discharge characteristics of5m long air gapunder foggy conditions with lightning shielding of transmission line. IEEE trans. onDielectrics and Electrical Insulation,2008,15(4):1031-1037
    [34] Taniguchi S, Okabe S, Takahashi T, et al. Flashover characteristics of long air gapswith negative switching impules. IEEE trans. on Dielectrics and Electrical Insulation,2008,15(2):399-406
    [35] Taniguchi S, Tsuboi T, Okabe S, et al. Method of calculating the lightning outage rateof large-sized transmission lines. IEEE trans. on Dielectrics and Electrical Insulation,2010,17(4):1276-1283
    [36] Taniguchi S, Tsuboi T, Okabe S, et al. Improved method of calculating lightningstroke rate to large-sized transmission lines based on electric geometry model. IEEEtrans. on Dielectrics and Electrical Insulation,2010,17(4):1276-1283
    [37] Idone V P and Orville R E. Lightning return stroke velocities in the thunderstormresearch international program (TRIP). J. Geophys. Res.,1982,87(C7):4903-4916
    [38] Eriksson A J.The incidence of lightning strikes to power line. IEEE Trans. on PowerDelivery,1987,2(3):861-870
    [39] Eriksson A J. An improved electrogeometric model for transmission line shieldinganalysis. IEEE Trans. on Power Delivery,1987,2(3):871-886
    [40] Alessandro F D, Gumley J R. A "collection volume method" for the placement of airterminals for the protection of structures against lightning. Journal of Electrostatics,2001,50(4):279-302
    [41] Carrara G, Thione L. Switching surge strength of large air gaps: a physical approach.IEEE Trans. on Power Apparatus and Systems,1976,95(2):512-524.
    [42] Dellera L, Garbagnati E. Lightning stroke simulation by means of the leaderprogression model Part I: description of the model and evaluation of exposure offree-standing structures. IEEE Trans. on Power Delivery,1990,5(4):2009-2017
    [43] Dellera L, Garbagnati E. Lightning stroke simulation by means of the leaderprogression model Part II: Exposure and shielding failure evaluation of overheadlines with assessment of application graphs. IEEE Trans. on Power Delivery,1990,5(4):2023-2029
    [44] Rizk F A M. Switching impulse strength of air insulation: leader inception criterion.IEEE Trans. on Power Delivery,1989,4(4):2187-2194
    [45] Rizk F A M. Modeling of transmission line exposure to direct lighting strokes. IEEETrans. on Power Delivery,1990,5(4):1983~1997
    [46]王晓瑜.雷电屏蔽性能的模拟试验和分析模型研究.高电压技术,1994,20(2):48-54
    [47]钱冠军,王晓瑜,汪雁,等.输电线路雷击仿真模型.中国电机工程学报,1999,19(8):39-44
    [48] He Jingiang, Tu Youping, Zeng Rong, et al. Numeral analysis model for shieldingfailure of transmission line under lightning stroke. IEEE Trans. on Power Delivery,2005,20(2):815-822
    [49]曾嵘,耿屹楠,李雨,等.高压输电线路先导发展绕击分析模型研究.高电压技术,2008,34(10):2041-2046
    [50] He Jinliang, Zeng Rong, Yuan Jun, and et al. Lightning shielding failurecharacteristics of1000kV AC ultra-high voltage transmission line. Proceedings of the29th International Conference on Lightning Protection. Uppsala, Sweden,June23-26,2008.
    [51]贺恒鑫,何俊佳,钱冠军,等.特高压交流输电线路的雷电屏蔽分析模型.高电压技术,2010,36(1):196-204
    [52]魏本钢,傅正财,袁海燕,等.改进先导传播模型法500kV架空线路雷电绕击分析.中国电机工程学报,2008,28(25):25-29
    [53]杨庆,司马文霞,冯杰,等.云广特高压直流输电线路雷电屏蔽性能研究.高电压技术,2008,34(3):442-446
    [54]谷定燮,周沛洪,戴敏,等.特高压线路雷电绕击跳闸率计算比较分析.中国电力,2008,41(8):85-89
    [55] Hutzler B.雷电模拟.雷电与静电,1989,2:58-69
    [56] Gary C, Hutzler B, Cristescu D, and et al. Laboratory aspects regarding the upwardpositive discharge due to negative lightning. Rev. Roum. Sci. Techn. Electrotechn.Energ.,1989,34:363-377
    [57] Alessandro F D, Kossmann C J, Gaivoronsky A S, and et al. Experimental study oflightning rods using long sparks in air. IEEE Trans. on Dielectrics and ElectricalInsulatin,2004,11(4):638–649
    [58] Petrov N I, Waters R T. Determination of the striking distance of lightning to earthedstructures. Proc. R. Soc.,1995,450:589-601
    [59] Petrov N I, Alessandro F D. Theoretical analysis of the processes involved inlightning attachment to earthed structures. J. Phys. D: Applied Physics,2002,35(14):1788-1795
    [60] Bazelyan E M, Raiser Yu P. Lightning physics and lightning protection. Institute ofPhysics Publishing IOP, Brisol and Philadelphia,2000
    [61] Gallimberti I. The mechanism of the long spark formation. J. Phys. Colloques,1979,40(C7):193-250
    [62] Gallimberti I. A computer model for streamer propagation. J. Phys. D: AppliedPhysics,1972,5(12):2179-2189
    [63] Bondiou A, Gallimberti I. Theoretical modelling of the development of the positivespark in long gaps. J. Phys. D: Applied Physics,1994,27(6):1252-1266
    [64] Goelian N, Lalande P, Bondiou A, et al. A simplified model for the simulation ofpositive-spark development in long air gaps. J. Phys. D: Applied Physics,1997,30(27):2441-2452
    [65] Gallimberti I, Bacchiega G, Bondiou-Clergerie A, and et al. Fundamental processes inlong air gap discharges. C. R. Physique,2002,3:1335-1359
    [66] Lalande P, Bondiou-Clergerie A, Bacchiega G, Gallimberti I. Observations andmodeling of lightning leaders. C.R. Physique,2002,3:1375-1392
    [67] Lalande P. Study of the lightning stroke conditions on a grounded structure:[Doctoralthesis]. Office National d’Etudes et de Recherches A’erospatiales ONERA,1996.
    [68] Becerra M, Cooray V. A self-consistent upward leader propagation model. J. Phys. D:Applied Physics,2006,39(16):3708-3715
    [69] Becerra M, Cooray V. Time dependent evaluation of the lightning upwardconnectiong leader inception. J. Phys. D: Applied Physics,2006,39(21):4695~4702
    [70] Becerra M, Cooray V. A simplified physical model to determine the lighting upwardconnecting leader inception. IEEE Trans. on Power Delivery,2006,21(2):897~908
    [71] Becerra M, Cooray V, Hartono Z A. Identification of lightning vulnerability points oncomplex grounded structures. Journal of Electrostatics,2007,65(9):562-570
    [72] Becerra M, Cooray V, Roman F. Lightning striking distance of complex structures.IET Gen. Transm. Distrib.,2008,2(1):131-138
    [73] Uman M A. The lightning discharge. Academic press, Orlando,1987
    [74] Weitao Lu, Yang Zhang, Luwen Chen, etal. Attanchment processes of two naturaldownward lightning flashes striking on high structures. Proceedings of the30thInternational Conference on Lightning Protection. Cagliari, Italy, Sep.13-17,2010
    [75] Warner T A. Obervations of simultaneous multiple upward leaders from tall structures.Proceedings of the30th International Conference on Lightning Protection. Cagliari,Italy, Sep.13-17,2010
    [76]谷山强,陈维江,陈家宏,等.雷电放电过程高速摄像观测研究.高电压技术,2008,34(10):2030-2035
    [77] Grzybowski S, Disyadej T, Mallick S. Effectiveness of lightning protection devices.High Voltage Engineering,2008,34(12):2517-2522
    [78] Abdel-Salam M, Turky A A, Hashem A A. The oneset voltage of coronas on bare andcoated conductors. J. Phys. D: Applied Physics,1998,31(19):2550-2556
    [79] Comtois D, Pepin H, Vidal F, et al. Triggering and guiding of an upward positiveleader from a ground rod with an ultrashort laser pulse-I: experimental results. IEEETrans. on Plasma Science,2003,31(3):377~386
    [80] Comtois D, Pepin H, Vidal F, et al. Triggering and guiding of an upward positiveleader from a ground rod with an ultrashort laser pulse-II: modeling. IEEE Trans. onPlasma Science,2003,31(3):387~395
    [81] Arevalo L, Cooray V. Laboratory long gaps simulation considering a variableCocrona region. Proceeding of the30th International Conference on LightningProtection. Cagliari, Italy, Sep.13-17,2010
    [82] Rizk F A M, Vidal F. Modeling of positive leader speed under slow frontvoltages-part I: long air gaps. IEEE Trans. on Power Delivery,2008,23(1):296~301
    [83] Baldo G, Gallimberti, Garcia H N, et al. Breakdown phenomena of long gaps underswitching impulse conditions influence of distance and voltage level. IEEE Trans. onPower Apparatus and Systems,1975,94(4):1131~1140
    [84] Shindo T, Suzuki T. A new calculation method of breakdown voltage-timecharacteristics of long air gaps. IEEE Trans. on Power Apparatus and Systems,1985,104(6):1556~1563
    [85] Ortega P, Heilbronner F, Ruhling F, et al. Charge-voltage relationship of the firstimpulse corona in long air gaps. J. Phys. D: Applied Physics,2005,38(2):2215-2226
    [86] Lee B Y, Park J K, Myung S H, et al. An effective modeling method to analyzeelectric field around transmission lines and substation using a generalized finite linecharge. IEEE Trans. on Power Delivery,12(3):1997
    [87]陈国良.并行计算(修订版).北京:高等教育出版社,2006
    [88] Shao X M. The Development and Structure of Lightning Discharges Observed byVHF Radio Interferometer. New Mexico Institute of Mining and Technology, NewMexico, American,1993.
    [89] Cooray V, Lundquist S. Characteristics of the Radiation Fields from Lightning in SriLanka in the Tropics. Journal of Geophysical Research,1985,90:6099-6109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700