聚酰胺—胺为模板剂一些无机功能材料的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰胺-胺型(PAMAM)树枝状大分子是一类新型纳米级大分子化合物,其分子大小约1~10nm,高度枝化而呈树枝状,分子外面携带大量活性的官能团,在材料、医学、催化等许多领域特别是无机功能材料的合成方面有实际应用价值,成为相关领域的研究热点之一。同时,由于能够在分子水平上对分子的大小、形状,以及表面官能团进行严格地控制与设计,极大地推动了分子设计理论向前发展。
     本论文以PAMAM树枝状大分子为模板剂,研究一些无机功能材料的制备及催化性能。
     采用树状聚酰胺-胺(PAMAM)大分子化合物与同多酸阴离子[Mo_6O_(19)]~(2-),基于静电组装得到新颖的同多金属氧酸盐/树型分子超分子化合物。用元素分析、FTIR、UV-Vis、TG/DTA、荧光光谱等测试技术分别对样品进行了结构表征及性能测试。并利用其作为电极修饰剂,制得化学体修饰的碳糊电极(CMCPE),用循环伏安法研究了同多金属氧酸盐/树型分子超分子化合物修饰碳糊电极的电化学行为和电催化性能。
     以3.5代端酯基PAMAM树型分子为模板,制备了颗粒均匀的纳米氧化锌,采用TEM、XRD及UV-Vis等手段对合成样品的形貌和结构进行表征,初步探讨了纳米ZnO形成的可能模板机理,并研究了其在紫外光作用下光催化降解罗丹明B的性能。
     以聚酰胺-胺(PAMAM)树形分子为模板,制备了颗粒细、分散性好的ZnO-SnO_2纳米复合氧化物,采用XRD、DRS、EDS、TEM等手段对合成样品的形貌和结构进行了表征,测试其在可见光作用下光催化降解罗丹明B的性能,讨论了罗丹明B溶液的初始浓度、ZnO-SnO_2纳米复合氧化物的用量、ZnO-SnO_2纳米复合氧化物合成过程中的焙烧时间以及焙烧温度对降解罗丹明B光催化活性的影响,并探讨了PAMAM树形分子的代数、浓度对合成复合氧化物颗粒形貌及光催化性能的影响。
Dendritic polymer, a class of new macromolecule, appeared in the middle of eighty years of twenty centuries. Dendrimers have a hyper-branched, well defined and monodisperse structures and can be formed by reiterative reaction sequences starting from smaller molecules named "initiator core". And its molecular weight, size, shape and functional group over surface can be controlled by the reactions and synthetic building blocks used. Great attention has been paid to dendrimers, especially poly(amidoamine) dendrimers, in a number of potential applications in supramobecular chemistry, nanosciences, biology, medicine, catalysis and so on.
     A novel supramolecular compound [Mo_6O_(19)]~(2-)/PAMAM assembled by ionic bonding was synthesized by Poly(amide amine)dendrimer(PAMAM) and [Mo_6P_(19)]~(2-) polyanion, and characterized by element analysis, FTIR, UV-Vis absorption, TG/DTA, Fluorescence spectrum. Electrochemical behavior and electrocatalytic activity of the carbon paste electrode(CPE) modified by the title compound was studied in H_2SO_4 aqueous solution.
     ZnO nanoparticles were prepared in the presence of generation 3.5 poly (amidoamine) with surface ester groups (G3.5-COOCH_3 PAMAM dendrimer) and characterized by TEM, XRD, UV-Vis. The forming mechanism of ZnO nanoparticles was discussed. The degradation of methyl Rhodamine B in aqueous solution was also investigated using ZnO nanoparticles as photochemical catalyst under UV irradiation.
     ZnO-SnO_2 nanocomposite oxides with Zn/Sn molar ratio of 2 were prepared in the presence of poly (amidoamine) dendrimer and characterized by XRD, DRS, EDS, TEM. The degradation of methyl Rhodamine B in aqueous solution was investigated using ZnO-SnO_2 nanocomposite oxides as photochemical catalyst under visible light irradiation. Effect of initial concentration of Rhodamine B, amount of catalyst, calcining time,calcining temperature, template concentration and tempate generation on decolour rate were also studied.
引文
[1] Tomalia D.A, Dewald J.R. Dense star polymer having core, core branches, terminal groups. U.S. Patent 4,507,466, 1985-03-26
    [2] Tomalia D.A, Dewald J.R. Dense star polymer and dendrimers. U.S. Patent 4,568,737, 1986-05-06
    [3] Tomalia D.A, Kaplan DA, Kruper W.J, et al. Starburst conjugates. U.S. Patent 5,338,532, 1994-08-16
    [4] Hedstrand D.M, Tomalia D.A. Small cell foams and blends and a process for their preparation. U.S. Patent 5,387,617, 1995-02-07
    [5] Hedstrand D.M, Tomalia D.A. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent. U.S. Patent 5,393,797, 1995-02-28
    [6] Newkome G.R, Moorefield C.N. Multifunctional Synthons as Used in the preparation of Cascade Polymers of Unimolecular Micelles. U.S. Patent 5,206,410, 1993-04-27
    [7] Newkome G.R, Moorefield C.N. Multifuntional Synthons as Used in the Preparation of Cascade Polymers or Unimolecular Micelles. U.S. Patent 5,210,309, 1993-03-11
    [8] Kallos G..J, Tomalia D.A, Hedstrand D M. Molecular Weight Determination of a Polyamidoamine Starburst Polymer by Electrospray Ionization Mass Spectrometry. Rapid Commun Mass Spectrom. 1991, 5:383-386
    [9] Buhleier E, Wehner W, Vogtle F. "Cascade" and "nonskid-chain-like" syntheses of molecular cavity topologies, Synthesis, 1978:155
    [10] (a) Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: starburst-dendritic macromolecules. Polym. J, 1985, 17:117;(b) Newkome GR, Yao ZQ, Baker GR, Gupta VK, Micelles. Part 1. Cascade molecules: a new approach to micelles. A [17]-arborol. J. Org. Chem., 1985, 50:2003
    [11] (a)Hawker C J, Frecht J M J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromoleeules. J. Am. Chem. Soc, 1990, 112:7638; (b)Grayson S M, Frechet J M J. Convergent dendrons and dendrimers: from synthesis to applications Chem. Rev, 2001, 101:3819
    [12] Wooley K L, Hawker C J, Frech t JM J. Polymeric Materials Science and Engineering, 1991, 64(4):73-74
    [13] Wooley K L, Hawker C J, Frech t JM J. J. A"Branched-Monomer Approach for the Rapid Synthesis of Dendimers.Angew Chem. Int Ed Eng, 1994, 33(1): 82-85
    [14] Kawaguchi T, Walker K L, Wilkins C L, Moore J S. Double Exponential Dendrimer Growth, J. Am. Chem. Soc, 1995, 117(8): 2159-2165
    [15] Kim C, Jeong K,Jung I.Progress toward limiting generation of dendritic ethynylsilanes (PhC=C)4-nMenSi(n=0-2). J Polym Sci Part A:Polym Chem, 2000, 38(15):2749-2759
    [16] Kim C,Kim H. End-capped AB3-type hyperbranched carbosilane macromolecules. J Polym Sci Part A:Polym Chem,2001, 39(19):3287-3293
    [17] Kim C,Park E. End-capped carbosilane dendrimers with benzoxazole, quinoline, and pyrone derivatives. J Polym Sci Part A:Polym Chem,2001, 39(13):2308-2314
    [18] Gong C, Frech t JM J. End functionalization of hyperbranched poly(siloxysilane): Novel crosslinking agents and hyperbranched-linear star block copolymers. J Polym Sci Part A:Polym Chem,2000, 38(16):2970-2978
    [19] Hawker CJ, Frechet JM J,Grubbs R B,Dao J. Preparation of Hyperbranched and Star Polymers by a "Living", Self-Condensing Free Radical Polymerization. J Am Chem Soc, 1995, 117(43): 10763-10764
    [20] Gaynor S G,Edelman S,Matyjaszewski K. Synthesis of Branched and Hyperbranched Polystyrenes Macromolecules, 1996,29(3):1079-1081
    [21] 张其震,孙继润,翟利.含邻位羟基Schiff碱近晶相液晶中的高强向错.高等学校化学学报,1996,17(12):1804-1806
    [22] 张其震,孙继润,王大庆.含SC相硅碳烷树枝状分子液晶.高等学校化学学报,1998,19(7):1175-1178
    [23] Malmstroem E,Hult A. Kinetics of Formation of Hyperbranched Polyesters Based on 2,2-Bis(methylol)propionic Acid. Macromolecules, 1996, 29(4): 1222-1228
    [24] Komber H, Volt B. ~1H and ~(13)C NMR Spectra of a Hyperbranched Aromatic Polyamide from p-Phenylenediamine and Trimesic Acid.Maeromolecules,2001,34(16):5487-5493
    [25] Rao C,Tam J P. Synthesis of Peptide Dendrimer. J Am Chem Soc,1994, 116(15):6975-6976
    [26] Kim Y H. Lyotropic liquid crystalline hyperbranched aromatic polyamides.J Am Chem Soc,1992, 114(12):4947-4948
    [27] Uhrich K E,Hawker C J,FrUchet J MJ,Turner S R. Polym Mater Sci Eng,1991, 64:237.
    [28] Kim Y H. Highly Branched Aromatic Polymers,Vol. 2,Kim Y H Ed. JAI Press Inc.,Hamptonhill,Middlesex,1995,p123
    [29] Sunder A,Hanselmann R,Frey H,Mulhaupt R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Maeromolecules,1999, 32(13):4240-4246
    [30] Sunder A,Hanselmann R,Frey H. Hyperbranched Polyether-Polyols Based on Polyglycerol: Polarity Design by Block Copolymerization with Propylene Oxide.Macromolecules,2000, 33(2):309-314
    [31] Bharathi P,Patel U,Kawaguchi T,Pesak D J,Moore J S. Improvements in the Synthesis of Phenylacetylene Monodendrons Including a Solid-Phase Convergent Method. Macromolecules, 1995, 28(17):5955-5963
    [32] Bharathi P,Moore J S. Solid-Supported Hyperbranched Polymerization: Evidence for Self-Limited Growth. J Am Chem Soc,1997, 119(14):3391-3392
    [33] Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers:Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of ~(125)I-labelled polyamidoamine dendrimers in vivo.J Controlled Release, 2000, 65(1): 133-148
    [34] Roberts J C, Bhalgat M K, Zera R T. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. J Biomed Mater Res, 1996 30(1):53-65
    [35] Haensler J, Szoka F C Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem, 1993, 4(5): 372-379
    [36] Delong R, Stephenson K, Loftus T, et al. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J Pharm Sci, 1997,86(6): 762-764
    [37] Bielinska A, Kukowska Latallo J F, Johnson J, et al. Nucleic Acids Res,1996, 24(11):2176-2182
    [38] Tang M X, Redemann C T, Szoka F C Jr. In Vitro Gene Delivery by Degraded Polyamidoamine Dendrimers. Bioconjug Chem, 1996, 7(6): 703-714
    [39] Atria S A, Shepherd V E, Rosenblatt M N, et al. Antisense Nucleic Acid Drug Dev,1998, 8(3): 207-214
    [40] Maruyama Tabata H, Harada Y, Matsumura T, et al. Gene Ther, 2000,7(1):53-60
    [41] Hodgson C P, Xu G, Solaiman F, et al. Biosynthetic retrovectoring systems for gene therapy.J Mol Med. 1997,75(4):249-258
    [42] Tomalia D A. USA, WO9934908. 1999
    [43] Chen W,Tomalia D A, Tomas J L. Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes. Maeromolecules, 2000, 33(25): 9169-9172
    [44] Watkins D M. langmuir,1997, 13: 3136-3141
    [45] Malik N, Evagorou E G, Duncan R. Anticancer Drugs, 1999,10(8):767-776
    [46] Zhuo R X, Du B, Lu Z R. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Controlled Release, 1999, 57(3): 249-257
    [47] Matthews B R, Holan G. AUS. WO9534595, 1995
    [48] Wiener E C, Brechbiel M W, Brothers H, et al. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn Reson Med. 1994,31(1):1-8
    [49] Wiener E C, Konda S, Shadron A, et al. Invest Radiol. 1997, 32(12): 748-754
    [50] Barth R F, Soloway A H. Mol Chem Neuropathol. 1994, 21(2~3): 139-154
    [51] Capala J, Barth R F, Bendayan M, et al. Boronated Epidermal Growth Factor as a Potential Targeting Agent for Boron Neutron Capture Therapy of Brain Tumors. Bioconjug Chem, 1996, 7(1): 7-15
    [52] Yang W, Barth R F, Adams D M, et al. Cancer Res. 1997, 57(19): 4333-4339
    [53] Singh P, Moll F 3rd, Lin S H, et al. Clin Chem, 1994, 40(9): 1845-1849
    [54] Hu Yang, Joseph J M, Stephanie T L. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 2004,2730): 148-154
    [55] Milhem O M, Myles C, McKeown N B, et al. Proc. Int. Symp. Controlled Release Bioact Mater, 1999,26:931-932.
    [56] Milhem O M, Myles C, McKoown N B,et al. Polyamidoamine Starburst~(?) dendrimers as solubility enhancers. Int J Pharm, 2000, 197(1-2):239-241
    [57] 叶玲,朴东旭.PAMAM树状大分子对烟酸增溶效果的影响.首都医科大学学报,2002,23(1):17-19
    [58] Checkik V, Crooks R M, Zhao M. Self-Assembled Inverted Micelles Prepared from a Dendrimer Template: Phase Transfer of Encapsulated Guests. J Am Chem Soc, 1999, 121(20): 4910-4911
    [59] 王俊,陈红侠,于翠艳,等.树枝状聚酰胺-胺对O/W型模拟原油乳液的破乳性能.石油学报:石油加工,2002,18(3):60-64
    [60] 王俊,李杰,等.星型聚合物破乳剂的合成与性能研究.精细化工,2002,19(3):169-171
    [61] 周贵忠,潘朝蓬,王纲,等.火炸药学报,2001,4:20
    [62] 周贵忠,潘朝蓬,多英全,等.一种新型乳化炸药及其制备工艺。爆破器材,2001,30(4):1-4
    [63] Knapen J W., van der Made, A W, de Wilde. Nature, 1994, 372: 659
    [64] Oosterom G. E, van Haaren R. J, Reek J. N. H, Kamer P. C. J, van Leeuwen P.W. N. M. Catalysis in the core of a carbosilane dendrimer. Chem Commun., 1999, 1119-1120
    [65] de Groot D, Eggeling E B C. Chem Commun. Palladium complexes of phosphine functionalised carbosilane dendrimers as catalysts in a continuous flow membrane reactor. 1999, 1623-1624
    [66] Mizugaki T, Ooe M, Ebitani K, Kaneda K. Catalysis of dendrimer-bound Pd(Ⅱ) complex: Selective hydrogenation of conjugated dienes to monoenes. J Mol Catal A, 1999, 145(1-2): 329-333
    [67] De Groot D, Emmerink P G, Coucke C, Reek J N H, Kamer P C J, van Leeuwen P W N M. Rhodium catalysed hydroformylation using diphenylphosphine funetionalised carbosilane dendrimers. Inorg. Chem. Commun. 2000, 3(12): 711-713
    [68] Marquardt T., Lü ning U. Towards golf ball shaped reagents: dendrimer fixed concave pyridines. Chem. Commun., 1997, 1681
    [69] Reetz M. T, Lohmer G, Schwiekardi R. Systhesis and Catalytic Activity of Dendritic Diphosphane Metal Complexes. Angew. Chem., Int.Ed. Engl., 1997, 36(13-14): 1526-1529
    [70] Gong A, Fan Q, Chen, Y. Two-phase hydroformylation reaction catalysed by rhodium-complexed water-soluble dendrimers. J Mol.Catal. A, 2000,159(2): 225-232
    [71] Mak C. C, Chow H.-F. Dendritic Catalysts: Reactivity and Mechanism of the Dendritic Bis(oxazoline)metal Complex Catalyzed Diels-Alder Reaction. Macromolecules, 1997, 30(4): 1228-1230
    [72] Chow, H.-F.; Mak,C. C. J. Org. Chem., 1997, 62:5116
    [73] Maraval,V.;Laurent, R.;Caminade,A.-M.; Majoral, J.-P. Phosphorus-Containing Dendrimers and Their Transition Metal Complexes as Efficient Recoverable Multicenter Homogeneous Catalysts in Organic Synthesis Organometallics 2000, 19(20): 4025-4029
    [74] Sylvain Nlate, Didier Astruc, Ronny Neumann. Synthesis, Catalytic Activity in Oxidation Reactions, and Recyclability of Stable Polyoxometalate-Centred Dendrimers Adv. Synth. Catal., 2004, 346(12): 1445-1448
    [75] Kimura M.; Kato M.; Muto T.; Hanabusa K.; Shirai H.. Temperature-Sensitive Dendritic Hosts: Synthesis, Characterization, and Control of Catalytic Activity, Macromolecules, 2000, 33(4): 1117-1119
    [76] Bhyrappa P, Young J K, Moore J S. Dendrimer-Metalloporphyrins: Synthesis and Catalysis. J. Am.Chem. Soc, 1996, 118(24): 5708-5711
    [77] Kimura M, Sugihara Y, Muto T. Dendritic Metallophthalocyanines-Synthesis, Electrochemical Properties, and Catalytic Activities. Chem. Eur. J. 1995, 5(12): 3495-3500
    [78] Miedance A, Curtis C J, Barkley R M. Electrochemical Reduction of CO_2 Catalyzed by Small Organophosphine Dendrimers Containing Palladium.Inorg Chem.,1994, 33(24): 5482-5490
    [79] Miedaner A, DuBois D L. Polym. Mater. Sci. Eng., 1995, 279-280
    [80] Losada J, Cuadrado I, Mora'n M, Casado C M, Alonso B, Barraneo M. Ferrocenyl silicon-based dendrimers as mediators in amperometrie biosensors. Anal. Chim. Acta,1997, 338(3): 191-198
    [81] Rigaut S, Delville M.-H, Astruc D. Triple C-H/N-H Activation by O2 for Molecular Engineering: Heterobifunctionalization of the 19-Electron Redox Catalysts FeICp(arene). J. Am. Chem. Soc., 1997, 119(45): 11132-11133
    [82] Fillaut J L, Linares J, Astrue D. Single-Step Six-Electron Transfer in a Heptanuclear Complex: Isolation of Both Redox Forms. Angew. Chem., Int. Ed. Engl., 1994, 33(23-24): 2460-2462
    [83] Casado C. M, Gonzale's B, Cuadrado I, Alonso B, Mora'n M, Losada J.Mixed FerroceneCobaltocenium Dendrimers: The Most Stable Organometallic Redox Systems Combined in a Dendritic Molecule. Angew. Chem., Int. Ed., 2000, 39(12): 2135-2138
    [84] Claeys M, Hearshaw M, Moss J R., van Steen E. Stud. Surf.Sci. Catal., 2000, 130B: 1157-1162
    [85] Reetz M T, Gibel D. Cross-Linked Scandium-Containing Dendrimers: A New Class of Heterogeneous Catalysts. Angew Chem Int Ed,2000,39(14):2498-2501
    [86] 朱文祥,刘鲁美.中级无机化学.北京师范大学出版社,北京,1993,117
    [87] Crooks R.M., Zhao M., Sun L., et al. Dendimer encapsulated metal nanoparticles: synthesis, characterization and application to catalysis, Acc Chem Res, 2001, 34: 181-190
    [88] Zhao M., Sun L., Crooks R M. Preparation of Cu nanoclusters within dendrimer templates, J.Am.Chem. Soc., 1998, 120:4877-4878
    [89] Balogh L., Tomalia D A. Poly(amidoamine) dendrimer-templated nanocomposites 1. Synthesis of zerovalent copper nanocluster, J. Am. Chem. Soc., 1998, 120: 7355-7356
    [90] Grohn F., Bauer B., Akpalu Y. Dendrimer templates for the formation of gold nanocluster, Macromolecules, 2000, 33:6042-6050
    [91] Zhao M., Crooks R.M. Dendrimer encapsulated Pt nanoparticles: synthesis, characterization and application to catalysis, Adv. Mater., 1999, 11: 217-220.
    [92] 潘碧峰,高峰,贺蓉,古宏晨.以酯端基PAMAM树形分子为模板在N,N-二甲基甲酰胺溶剂中制备金纳米粒子.材料科学与工程学报.2005,23(3)
    [93] Chunyan Bao,Ming Jin,Ran Lu,et al. Preparation of Au nanoparticles in the presence of low generational poly(amidoamine) dendrimer with surface hydroxyl groups. Materials Chemistry and Physics.2003,81(1):160-165
    [94] 李国平,罗运军,李杰,谭惠民.低代端酯基PAMAM树枝状大分子存在下银纳米颗粒的制备.无机化学学报.2005,21(2)
    [95] Young-Min Chung,Hyun-Ku Rhee. Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd-Rh bimetallic nanoparticles. Journal of Molecular Catalysi A: Chemical. 2003, 206(1-2):291-298.
    [96] HongyingWu,ZelinLiu,XudongWang,et al. Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer. Journal of Colloidand InterfaceScience. 2006, 302(1):142-148
    [97] 李国平,罗运军,徐厚才.树形分子保护下铜原子簇的制备.无机化学学报.2004,20.(1)
    [98] 魏秀珍,朱宝库,谢曙辉,徐又一.胺基基树状分子在铜纳米粒子形成过程中的模板及稳定化作用.2005,36(8)
    [99] Franziska G., Barry J., Bauer J., et al. Templating nanocrystals with dendrimers: a mesoscopic model system, Polym. Preprints ACS, 2000, 41:560-561
    [100] Zhao M., Crooks R.M. Dendrimer encapsulated Pt nanoparticles: synthesis, characterization and application to catalysis, Adv. Mater., 1999, 11: 217-220.
    [101] Roy R, Komarneni S,Roy D M. Mater Res Soc Symp Proc, 1984, 32:347
    [102] He Jin-An,Valluzzi R, Yang K, et al. Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite. Chem Mater, 1999,11(11):3268-3274
    [103] Sooklal K, Huang J, Murphy C J, et al. Mater Res Symp Proc, 1999,576:439
    [104] 丛日敏,罗运军,李国平,谭惠民.PAMAM树形分子模板法原位制备CdS-ZnS核-壳结构量子点.高等学校化学学报.2006,27(5):793-796
    [105] 罗运军,丛日敏,李国平,谭惠民.PAMAM树形分子与Cd~(2+)的配位作用研究及CdS/PAMAM纳米复合材料的制备与表征.化学学报.2005,63(5):421-426
    [106] 林深,骆耿耿,罗运军,吴丹,郑思宁.树形分子为模板低温制备纳米硫化锌空心球.无机化学学报.2005,21(11):1767-1771
    [107] Yuko Nakanishi,Toyoko Imae. Synthesis of dendrimer-protected TiO_2 nanoparticles and photodegradation of organic molecules in an aqueous nanoparticle. Journal of Collid and Interfanc Science.2005,285(1):158-162
    [108] Venkateswarlu Juttukonda, Robert L..Paddock,et al. Facile Synthesis of Tin Oxide Nanoparticles Stabilized by Dendritic Polymers. J.Am.Chem.Soc. 2006.128(2):420-421
    [109] Fan Zhang,Shi-Ping Yang, et al. Preparation of nanocrystalline ceramic oxide powders in the presence of anionic starburst dendrimer. Materials Letters. 2004,58(26):3285-3289
    [110] Regen S, Watanabe S J. Dendrimers as Building Blocks for Multilayer Construction. J Am Chem Soc, 1994, 116: 8855-8856
    [111] Tsukruk V V, Rinderspacher F, Bliznyuk V N, et al. Self-Assembled Multilayer Films from Dendrimers.Langmuir,1997, 13(8): 2171-2176
    [112] 王金凤,贾欣如,李盈,等.树枝状大分子的自组装超薄膜.高等学校化学学报,2001,22(10):1773-1775
    [113] Sui Guodong,Mustapha M,Ma Yuqiu,et al. Journal of Colloid and Interface Science. A Structural Study of Amphiphilic PAMAM (Poly(amido amine)) Dendrimers in Langmuir and Langmuir-Blodgett Films. 2002,250(2):364-370
    [114] Fu Rongqiang, Xu Tong~en, Cheng Yiyun, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part Ⅲ. Effect of starburst dendrimer PAMAM on water dissociation at the interface of a bipolar membrane. Journal of Membrane Science, 2004, 240(1-2):141-147
    [115] Li X, Curry M,Wei G,et al. Nanotribological studies of dendrimer-mediated metallic thin films. Surface and Coatings Technology, 2004,(177-178):504-511
    [116] Miller L L,Tully D C, Duan R G, et al. Electrically Conducting Dendrimers. J Am Chem Soc, 1997,119(5): 1005-1010
    [117] Gong Aijun, Lin C Y, Chen YM, et al. A novel dendritic anion conductor: quaternary ammonium salt of poly(amidoamine) (PAMAM). Macromol Rapid Commun, 1999,20(9): 492-496
    [118] 周贵忠,谭惠民,罗运军等.TNT红水处理新方法.工业水处理,2002,22(6):14-16
    [119] 周贵忠,谭惠民,罗运军等.聚酰胺胺树形分子在染料废水处理中的应用研究.环境科学与技术,2003,26(1):1-2,25
    [120] 张崇淼,张大伦,罗运军.聚酰胺胺(PAMAM)树形分子在洗煤废水处理中的应用研究.能源环境保护,2003,17(4):20-24
    [121] 于洗,徐文国,周贵忠,谭惠民等.新型高分子絮凝剂处理含油废水的研究.北京理工大学学报,2003,23(2):260-264
    [122] Zeng Huadong, Newkome G R, Hill C L. Poly(polyoxometalate) Dendrimers: Molecular Prototypes of New Catalytic Materials. Angew Chem In Ed,2000,39(10):1771-1774
    [123] Plault L, Hauseler A, Nlate S,Astrue D,Ruiz J,Gatard S,Neumann R. Synthesis of Dendritic Polyoxometalate Complexes Assembled by Ionic Bonding and Their Function as Recoverable and Reusable Oxidation Catalysts. Angew Chem Int Ed,2004,43(22):2924-2928
    [124] Nlate S, Astruc D, Neumann R. Synthesis, Catalytic Activity in Oxidation Reactions, and Recyclability of Stable Polyoxometalate-Centred Dendrimers. Adv Synth Cata,2004,346(12): 1445-1448
    [125] Cheng Long, Pacey G E, Cox J A. Preparation and electrocatalytic applications of a multilayer nanocomposite consisting of phosphomolybdate and poly(amidoamine). Electrochim Acta, 2001,46(26-27):4223-4228
    [126] Chung Young-Min, Rhee Hyun-Ku. Dendrimer-templated Ag---Pd bimetallic nanoparticles. J Colloid Interf Sci,2004,271(1):131-135
    [127] Klajnert B, Stanislaeska L, Bryszewska M,Paleez B. Biochimt Biophys Acta, 2003, 1648:115-126.
    [128] Devarakonda B, Hill R A, de Villiers M M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm, 2004,284(1-2):133-140.
    [129] Li Fengyan,Xu Lin, Wei Yongge,Wang Xinlong,Wang Wenju,Wang Enbo. Arsenicum- centered Molybdenum-Vanadium polyoxometalates bearing transition metal complexes: Hydrothermal syntheses, crystal structures and magnetic properties. J Mol Struct, 2005,753(1-3):61-67
    [130] Shi Zhenyu,Gu Xiaojun,Peng Jun, Chen Yanhui. Controlled assembly of two new bicapped bisupporting Keggin-polyoxometalate derivatives: [M(2,2'-bpy)_2(H_2O)]_2 [SiMoVI_8MoV_4VIV_2 O_(42)], J Solid State Chem, 2005,178(6):1988-1995
    [131] DONG Shao-Jun(董绍俊),CHE Guang-Li(车广礼),XIE Yuan-Wu(谢远武).Chemically Modified Electrode(化学修饰电极).Beijing(北京):Science Press(科学出版社),2003:39
    [132] Tomalia D A, Baker H, Dewald J,Hall M,Kallos G,Martin S,Roeck J,Ryder J,Smith P. Dendritic macromolecules: synthesis of starburst dendrimers Macromolecules, 1986,19(9): 2466-2468
    [133] Che M, Fournier M, Launay J P. The analog of surface molybdenyl ion in Mo/SiO_2 supported catalysts: The isopolyanion [Mo_6O_(19)]~(2-) studied by EPR and UV-visible spectroscopy.Comparison with other molybdenyl compounds. J Chem Phys, 1979,71(4): 1954-1960
    [134] LUO Geng-Geng(骆耿耿).Thesis for the masterate of Fujian Normal Universit),(福建师范大学硕士学位论文).2006:25
    [135] LI Qiang(李强),WEI Yong-Ge(魏永革),WANG Yuan(王远),GUO Hong-You(郭洪猷).多酸有机亚胺衍生物的紫外-可见光谱及其取代基效应.Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(6):923-926
    [136] Qiu Yungfeng, Xu Lin, Gao Guanggang, Wang Wenju,Li Fengyan.A new arylimido derivative of polyoxometalate (Bu_4N)_2[Mo_6O_(17)(NAr)_2][Ar=2,6-(CH_3)_2C_6H_3]: Synthesis, structure and physicochemical properties. Inorg Chim Acta,2005,359(2):451-458
    [137] Sharma A, Rao M, Miller R, Desai A. Fluorometric assay for detection and quantitation of polyamidoamine dendrimers. Anal Biochem,2005,344(1):70-75
    [138] WANG Xiu-Li(王秀丽),KANG Zhen-Hui(康振辉),LAN Yang(兰阳),WANG En-Bo(王恩波).Journal of Northeast Normal University(东北师范大学学报自然科学版),2002,34(1):117
    [139] Hohen BG, TomamdI.G.J.Matern.Res.,1992, 7(3):546-548.
    [140] Spanhcl L, Andcrson M A.. Twisted intramolecular charge-transfer fluorescence of aromatic amides: conformation of the amide bonds in excited states. J.Am.Chem.Soc. 1991, 113(8):2833-2838.
    [141] Cheng B,samnlski E T. Hydrothermal synthesis of one-dimensional ZnO nanostruetures with different aspect ratios. Chem.Commun.,2004(8):986-987.
    [142] 韩冬,任湘菱等.纳米ZnO的制备及其光催化性能研究.感光科学与光化学,2005,23(6):414-420.
    [143] Young-Min Chung,Hyun-Ku Rhee. Dendrimer-templated Ag-Pd bimetallic nanoparticles. Journal of Collid and Interface Science.2004,271:131-135
    [144] Chunyan Bao,Ming Jin, Ran Lu, et al. Preparation of Au nanopartieles in the presence of low generational poly(amidoamine) dendrimer with surface hydroxyl groups. Materials Chemistry and Physics. 2003,81(1):160-165.
    [145] Yanhui Niu,Richard M.Crooks. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C.R.Chimie.2003,6(8-10):1049-1059.
    [146] 丛日敏,罗运军,李国平等.PAMAM树形分子与Cd~(2+)的配位作用研究及CdS/PAMAM纳米复合材料的制备与表征.化学学报,2005,63(5):421-426
    [147] 骆耿耿,林深等.树形分子为模板低温制备纳米硫化锌空心球.无机化学报,2005.(21):1767-1771
    [148] Zhou Gui-Zhong(周贵忠).PAMAM树形分子合成、改性及在水处理中的应用研究.北京理工大学博士学位论文.2003.
    [149] 艾仕云,金利通,周杰等.均一形貌的ZnO纳米棒的制备及其光催化性能研究.无机化学学报,2005,21(2):270-272
    [150] Zhang Fan(张凡).以树枝形聚合物为模板制备生物陶瓷粉体材料.上海师范大学硕士学位论文.2005.
    [151] Vinodgopal K,Kamat P V. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO_2/TiO_2 Coupled Semiconductor Thin Films.Environ Sci Technol, 1995,29(3):841-845
    [152] Vinodgopal K, Bedja I, Kamat P V. Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO_2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation ofa Textile Azo Dye. Chem Mater, 1996, 8(8): 2180-2187
    [153] Liu Q J, Wu X H, Wang B L, Liu Q. Preparation and super-hydrophilic properties of TiO_2/SnO_2 composite thin films. Mater Res Bull,2002,37(14): 2255-2262
    [154] 彭峰,任艳群.TiO_2-SnO_2复合纳米膜的制备及其光催化降解甲苯的活性.催化学报,2003,24(4):243-247
    [155] 颜秀茹,白天,霍明亮,张月萍,郭秀盈.核.壳式纳米SnO_2/TiO_2光催化剂的制备和性能.催化学报,2004,25(2):120-124
    [156] 施利毅,古宏晨,李春忠,房鼎业,张怡,华彬.SnO_2-TiO_2复合光催化剂的制备和性能.催化学报,1999,20(3):338-342
    [157] Kwon Y T, Song K Y, Lee W I, Choi G J,Do Y R. Photocatalytic Behavior of WO_3-Loaded TiO_2 in an Oxidation Reacti on. J.Catal,2000,191(1):192-199
    [158] Li X Z, Li FB, Yang C L, Ge W K. Photocatalytic activity of WOx-TiO_2 under visible light irradiation. J Photochem Photo biol A,2001,141(2-3):209-217
    [159] 成英之,张渊明,唐渝.WO_3-TiO_2薄膜型复合光催化剂的制备和性能.催化学报,2001,22(2):203-205
    [160] Wang C,Zhao J C,Wang X M,Mai B X,Sheng G Y, Peng P A,Fu J M. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO_2 coupled photocatalysts.Appl Catal B,2002,39(3):269-279
    [161] Bandara J,Tennakone K, Jayatilaka P P B. Composite Tin and Zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes. Chemosphere, 2002,49(4):439-445
    [162] 翁秀兰.金属掺杂磷铝分子筛的制备及其光催化性能研究.福建师范大学硕士学位论文,2006
    [163] 王存,王鹏,徐柏庆.ZnO-SnO_2纳米复合氧化物光催化剂催化降解对硝基苯.催化学报,2004,25(12):967-972
    [164] 姜洪泉,王鹏,卢丹丹,吴兰英,线恒泽.TiO_2/Gd_2O_3纳米粉体的制备、表征及光催化活性.无机化学学报,2006,22(1):73-78
    [165] 王存.纳米ZnO/SnO_2复合氧化物光催化剂的合成、表征及其光催化降解有机污染物的初步研究.中国科学院广州地球化学研究所博士学位论文.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700