苹果水心病及褐变光学无损伤检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用自制差分仪对苹果水心病进行无损伤检测分级研究,同时也利用可见近红外连续光谱仪对苹果水心病、内部褐变进行了发病面积比例预测和分级研究。对苹果不同放置位置、不同方法检测水心病和褐变的效果进行了比较。研究结果发现密度法只能分离好果与严重水心病果(4级),无法对相邻的级之间进行分离。而根据自制差分仪所得的OD810、OD760值做判别分析,果柄向上位置200个样品分到5个组的正确率达到68.5%;果柄向下时达到69%。霉心病果影响OD值,去除霉心病果后,果柄向上位置的总误判率减少到28.19%。连续光谱判断5个级别的水心病可达到83%准确率,果柄向上和向下有相似的结果,果柄水平位置的判断结果较其它两个位置差。逐步多元回归(SMLR)和偏最小二乘(PLS)预测水心病发病面积相关系数为0.932、0.925。水心病果在贮藏过程中700~900nm光谱随时间OD值变大,到第11周时开始有下降的趋势。连续光谱预测褐变面积比例时,果柄水平位置预测效果SMLR和PLS(R~2=0.898、0.765;RMSEP=9.35、11.9)模型都稍好于果柄向上位置(R~2=0.893、0.745;RMSEP=9.65、13.9),而ΔOD(715-750)和ΔOD(715-810)非线性模型的预测效果几乎相同(RMSEP=9.74、9.75;RMSEP=10.0、10.07)。两位置SMLR模型预测效果最好,ΔOD(715-750)和ΔOD(715-810)非线性模型次之,PLS模型预测效果相对较差。若选择715nm、750nm、810nm作为特征波长判别分析结果可以正确分离97.32%的褐变果和91.38%的好果。
In this thesis, some primary work was done for the study of detecting the watercore-apple by using the self-made difference-meter, and predicting the internal disorder degreed of watercore and breakdown by using visible-near-infrared spectroscopy. The result displayed that density-methods can classify sound apple and serious watercore apple (class4) only. A classifier based on the discriminant analysis both OD810nm and OD760nm was used to segregate 200 samples to each grade. It is corrected classified 68.5% at the place of stem-up, and 69% at the place of calyx-up. Apple mould core affected the optical density. Excluded the mould core apple, total misclassification decreased to 28.19%. The continuous spectrum correctly classified the five grades watercore was 83%. The stem-up and calyx-up have the similar result, but the result of the stem-level place is worse than them. SMLR and PLS calculation models applied to independent prediction sets gave R=0.932, 0.925. Spectral OD value increase was observed in the rage 700~900nm during the watercore apple storage, but it became to decline after 11 th weeks. Using the continuous spectrum predicted the internal browning disorder rate, SMLR and PLS models at stem-up place (R2=0.898, 0.765; RMSEP=9.35, 11.9) were better than another place(R2=0.893, 0.745; RMSEP=9.65, 13.9). However, the A OD(715-750) and OD(715-810) non-linear regression models had the similar predicted result at both places (RMSEP=9.74, 9.75; RMSEP=10.0, 10.07). SMLR model was the best at all of calculation models. Two non-linear models took second place. If 715nm, 750nm, 810nm three waves were selected as the character wave, 97.32% of the breakdown apple and 91.38% of sound apple were correctly classified by discriminant analysis.
引文
[1] FAO yearbook, production 2003, 57: 176
    [2] 中华人民共和国统计局编 中国统计年鉴 北京:中国统计出版社 2001.9
    [3] 中华人民共和国统计局编 中国统计年鉴 北京:中国统计出版社 2002.9
    [4] 中华人民共和国统计局编中国统计年鉴北京:中国统计出版社 2003.9
    [5] FAO Yearbook, Production 2001, 55: 174
    [6] 农业部 农产品加工业发展行动计划 2002.7.29
    [7] 韩东海,刘新鑫,涂润林.果品无损检测技术在苹果生产分级中的应用.世界农业,2003.1:42~45
    [8] 关军锋.果品品质研究河北:河北科学技术出版社 2001.6
    [9] 中华人民共和国商业部.SB/T 10064-92.中华人民共和国行业标准-苹果销售质量标准 1992-12-1
    [10] 陕西省DB61-B31.073-90.陕西省地方标准.1990.
    [11] Mehlschau J J, Chen P, Claypool L L. A deformeter for nondestructive maturity detection of pears. Trans. ASAE, 1981,24(5): 1368~1371, 1375
    [12] Nahir D, Z Schmilovitch, and Ronen B. Tomato grading by impact force response. ASAE Paper 1986.No. 86-3028.
    [13] Finney E E. Mechanical resonance within Red-Delicious apples and its relation to fruit texture. Transactions of the ASAE, 1970,13(2): 177~180.
    [14] Armstrong P R, Brown G K, and Timm E J. Non-destructive firmness measurement of soft fruit for comparative studies and quality control. ASAS Paper No. 1995.95-6172.
    [15] 金同铭.苹果中主要糖类的非破坏分析.食品科学,1996,17:60~64.
    [16] Slaughler D C. Nondestructive determination of internal quality in peaches and nectarines. Trans of the ASAE, 1995,38(2): 617~623
    [17] Brown G K, Segerlind L J, and Robert summit. Near-Infrared Reflectance of Bruised Apples. Trans. ASAE, 1974,17(1): 17~19,
    [18] Miller B K, Delwiche M J. Spectral analysis of peach surface defects. Trans of ASAE, 1991, 34(6): 2509~2515
    [19] 李里特.食品物性学 北京:中国农业出版社,1998.1
    [20] 韩东海.用X射线自动检测柑橘皱皮的研究.农业机械学报,1998,29(4):97~101.
    [21] Barcelon E G. X-ray computed to mography for internal quality evaluation of peaches. Journal of Agricultural Engineering Research, 1999,73(4): 323~330.
    [22] 胥芳.无损检测桃子电特性的试验研究.农业工程学报,1997,13(1):202~205.
    [23] 张立彬.苹果内部品质的电特性无损检测研究.农业工程学报,2000,16(3):104~105.
    [24] Chen P. Development of a high- speed NMR technique for sensing maturity of avocados. Trans of the ASAE, 1996,39(6): 2205~2209.
    
    
    [25] 陈玉福,仪农,曾桂兰.苹果水心病症状特征病因及简易预防.青海农林科技,1998,2:56
    [26] Marlow G C, Loescher W H. Watercore. Hortic. Reviews, 1984, 6: 189~251.
    [27] 张秀兰,戴清霞.苹果水心病的识别与防治.植物医生,1999,4:15
    [28] USDA Agricultural Marketing Service. U.S. Standards for grades of apples. ER.Doc. 64-7406. Washington, D. C. USDA Food Safety and Quality Service. 1976.
    [29] Fidler J C, Wilkinson B G, Edney K L, et al. The Biology of Apple and Pear Storage. Commonwealth Agricultural Bureau, England. 1973, 113~116.
    [30] Porritt S W, McMechan A D, and Williams K. Note on a flotation method for segregation of water core apples. Can. J. Plant Sci, 1963,43: 600~602
    [31] Cavalieri R P, Hyde G M and MacQuarrie P R. Hydraulic sorting of watercore apples. PH'96 International Postharvest Science Conference, Taupo, 1996. 4-9: 78~86
    [32] Throop J A, Rehkugler G E. Application of computer vision for detecting watercore in apples. Transactions ofASAE. 1989, 32(6): 2087~2092.
    [33] Throop J A, Aneshansley D J, and Upchurch B L. Camera system effects on detecting watercore in 'Red Delicious' apples. Trans. ASAE. 1994, 37: 873~877
    [34] Schatzki Y F, R P Haff, Young R, et al. Defect detection in apples by means of X-ray imaging. In: Proceedings from the Sensors for Nondestructive Testing International Conference and Tour. Orlando, 1997, 18~21 February. pp. 161~171.
    [35] Clark C J, Bieleski R L. Application of NMR imaging to detection of watercore in Fuji apple post-harvest. In: Proceedings from the Sensors for Nondestructive Testing International Conference and Tour. Orlando, 1997, 18-21 February. 211-220.
    [36] Tsuchikawa S, Kumad S. Application of time-of-flight near-infrared spectroscopy for detecting water core in apples. J. Amer. Soc. Hort. Sci, 2002, 127(2): 303~308
    [37] Lord W J, R A Damon. Internal breakdown development in water-cored Delicious apples during storage. Proc. Amer. Soc. Hort. Sci, 1966,88: 94~97.
    [38] Bramlage W J, Shipway M R. Loss of watercore and development of internal breakdown during storage of 'delicious' apples, as determined by repeated light transmittance measurement of intact apples. American Society for horticultural science, 1967, 90: 475~483
    [39] Zerbini P E, Grassi M, and Rinaldo. Nondestructive detection of brown heart in pears by time-resolve reflectance spectroscopy. Postharvest biology and technology, 2002, 25:87~97
    [40] 胥芳,张立彬,计时鸣.介电式水果品质分级机的原理及实现.浙江大学学报(农业与生命科学版),2002,28(3):325~330.
    [41] 张立彬 基于介电特性的苹果无损检测系统研究学位论文 杭州:浙江大学 2002
    [42] Birth G S, Hecht H G. The physics of near-infrared reflectance. In: P. Williams, K. Norris, eds. Near-infrared technology in the agricultural and food industries. Am. Assoc. Cereal Chemists, St. paul, MN, 1987, 1~15
    [43] Birth G S, Norris K H, yeatman J N. Non-destructive measurement of internal color of tomatoes by spectral transmission. Food Tech, 1957, 11(11): 552~557
    
    
    [44] Olson K H, Schomer A, and Birth G S. Detection and evaluation of waterocre in apples by light transmittance. In Proc. Washington State Hortic. Assoc, 1962, 28: 195~197
    [45] Birth G S, Olsen K L. Nondestructive detection of waterocre Delicious apples. Proc. Am Soc. Hort. Sci, 1964, 85: 74-84
    [46] 石建新,闫晓芳.苹果贮藏期间常见果肉褐变类型及防治.落叶果树,1995,3:35~36
    [47] Hung Y C, Tollner E W, and Upchurch B L. Physical properties of apples affected by watercore disorder. ASAE Paper No. 89-6507. ASAE, 1989,2950
    [48] 阮桂海.SAS统计分析实用大全.北京:清华大学出版社 2003,6:463~467。
    [49] 朱道元,吴诚鸥,秦伟良.多元统计分析与软件SAS.南京:东南大学出版社1999.8 363~370
    [50] 王东昌,郝秀青,辛玉成,等.红富士苹果霉心病的发生与生物防治.落叶果树,2001,2:57~58
    [51] Nicolet TQ Analyst User's Guide Madison: Therrno Eletron Corporation 2003
    [52] 周山涛.果蔬贮运学 北京:化学工业出版社.1998,7.
    [53] Roger Harker F, Christopher B, Watkins. Maturity and regional influences on watercore development and its postharvest disappearance in 'Fuji' apples. J. Amer. Soc. Hort. Sci., 1999,124(2): 166~172.
    [54] O'loughlin J B, Graham B R. Loss of late watercore from Fuji apples. Plant Protection Quarterly, 1993, 8(2): 67~48.
    [55] 刘新鑫,韩东海,涂润林,等.苹果水心病在贮藏期变化的无损检测.农业工程学报,2004,20:211~214
    [56] Simons R K, Lott T V. The Morphological and Anatomical Characteristics of Watercore in Apples. Proc. Amer. Soc. Hort. Sci, 1968, 93: 762~773.
    [57] 福田博之 Factors Affecting the Occurrence of Internal Breakdown of Apple Fruit Ⅱ.Relationship of Watercore Intensity and Chlorophyll Content of Apples to the Occurrence of Internal Breakdown. Bull. Fruit Tree Res. Stn.C, 1984,11: 27~37
    [58] Upchruch B L, Throop J A, and Aneshansley D J. Detecting internal breakdown in apples using interactance measurements. Postharvest Biology and Technology, 1997, 10: 15~19
    [59] Fearn T. A look at some standard pretreatments for spectra. NIR News, 1999,10: 10~11
    [60] Norris K H, Understanding and correcting the factors which affect diffuse transmittance spectra. NIR News, 2001, 12: 6~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700