胸椎膨胀式椎弓根螺钉的研制及其在骨质疏松椎体内生物力学和钉道界面组织学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎弓根螺钉内固定技术是脊柱内固定的核心技术之一,目前已广泛应用于脊柱疾病的后路融合手术。椎弓根螺钉固定的可靠性取决于钉-骨界面的稳定性,但对于骨质疏松(Osteoporosis,OP)患者,由于骨密度(Bone mineral density,BMD)降低、骨小梁稀疏、钉-骨界面不牢固,常面临着螺钉松动或脱出的风险,将会导致脊柱融合内固定失败。随着中国人口老龄化社会的加剧,需要进行脊柱内固定手术的OP患者逐年增多。如何在骨质条件较差的条件下,有效地强化椎弓根内固定的稳定促进脊柱融合,是目前研究的热点。本课题组前期研制了用于腰椎的膨胀式椎弓根螺钉(expandable pedicle screw,EPS),简化了术中强化的操作过程,避免了添加生物材料强化引起的术中及远期并发症,并已用于临床治疗各种腰椎疾病合并OP的患者。但是当患者存在OP时,胸椎椎弓根螺钉内固定也存在松动的风险,且OP引起的椎体骨折常发生在胸腰段脊柱。关于胸椎椎弓根螺钉的强化方面目前研究较少,且临床上应用的EPS无法应用于胸椎。
     目的:研制可用于强化稳定的胸椎膨胀式椎弓根螺钉(Thoracic Expandable Pedicle Screw, TEPS),系统评价其强化稳定和耐疲劳的生物力学性能,评价其在OP椎体内稳定机制及取钉钉道的相关参数,为OP条件下胸椎的椎弓根螺钉的强化提供一种安全有效的解决方案。
     方法:1.根据胸椎椎弓根的解剖特点研制外径4.5mm TEPS。进行单根螺钉的轴向拔出试验、周期抗屈试验和三点弯曲试验。按美国材料与试验协会F1717-09的标准,对TEPS脊柱内固定系统组件进行了静态拉、压和动态压缩疲劳试验。并与同直径、同长度的普通椎弓根螺钉内固定系统(Spinal Implant New Option Screw,SINOS)对比,系统评价TEPS的强化稳定及耐疲劳性能。2.建立OP绵羊的动物模型。将TEPS和SINOS植入OP绵羊腰椎,饲养4个月后取材。进行在体4个月后的螺钉的轴向拔出试验。应用Micro-CT技术和包含螺钉的硬组织切片技术,研究在OP绵羊椎体内TEPS钉-骨界面以及EPS膨胀缝隙内的组织学情况。应用Micro-CT技术对旋出TEPS后的钉道进行了重建和测量,研究在TEPS取出过程中是否造成椎弓根的破坏。
     结果:1.体外的生物力学试验部分:①轴向拔出试验中,以模拟两种不同骨质条件下的Sawbones聚氨酯人工骨试验块为载体,测试了TEPS和SINOS最大轴向拔出力。TEPS与同直径、长度的SINOS相比,最大轴向拔出力分别提高了15.44%和48.83%。②周期抗屈试验中,选用骨量减低的人的新鲜尸体胸椎为载体,测试了TEPS和SINOS周期载荷下的松动率及松动位移,TEPS与同直径、长度的SINOS相比,松动率明显降低、周期载荷下的位移减小。③三点弯曲试验中,膨胀后的TEPS可承受的最大抗折断载荷与同直径、长度的SINOS相比无明显差异。④成组TEPS的静态压缩弯曲、拉伸弯曲和动态压缩弯曲疲劳试验表明,TEPS系统的力学性能可满足胸椎椎弓根内固定系统的要求。2. TEPS植入OP绵羊椎体内4个月后的实验:①TEPS在OP绵羊腰椎4个月后的轴向拔出试验,结果显示TEPS与同直径、长度的SINOS相比,最大轴向拔出力有显著的提高;并且在体4个月组与即刻组相比,最大轴向拔出力亦有进一步提高。②将Micro-CT技术和包含TEPS的硬组织切片技术相结合,分析了在OP的椎体内TEPS的钉-骨界面以及TEPS膨胀段周围的组织学情况。发现TEPS对周围骨质的膨胀加压提高了周围骨质的质量,同时骨小梁逐渐可长入膨胀间隙、增大了骨整合的接触面积、形成了钉-骨绞锁固定的模式,共同实现了TEPS在OP条件下即刻的和长期的稳定。③通过对TEPS在体外膨胀后直径的测量和取出TEPS后钉道的各部位直径的Micro-CT分析测量,发现了TEPS具有植入时有限地膨胀、取钉时可部分回缩的特点。测得的TEPS在椎弓根处的直径为4.72mm,较初始直径增加了4.9%,在安全范围之内。
     结论:1. TEPS具有强化稳定的作用,在体内可维持即刻的和长期的稳定。2. TEPS的力学性能和耐疲劳性能可满足胸椎椎弓根内固定系统的要求。3.应用TEPS时只要操作得当是可以安全取出而不破坏椎弓根的。因此,应用TEPS系统内固定,可成为OP条件下强化胸椎椎弓根螺钉稳定的一种解决方案。
Pedicle screw instrumentation is one of the most commonly used and rapidly growing forms of stabilization for spinal fusion. Transpedicular fixation, however, can be very challenging in the osteoporotic (OP) spine as mechanical stability of the pedicle screws is determined by the bone mineral density (BMD). In addition, poor rigidity of the bone-screw contact can lead to loosening of the implant in osteoporotic patients. With rapid advances in the field of spinal surgery and the aging of the population, an increasing proportion of elderly patients undergo surgical treatment for their spinal disorders. To address these issues, we had designed expandable pedicle screws (EPS). Biomechanical studies have demonstrated that the use of EPS significantly improved the fixation strength compared with conventional pedicle screws. Clinical results have indicated that these screws are particularly useful in the OP lumbar spine. However, this kind of screw cannot be used in the OP thoracic spine, and no systemic study has been reported concerning the augmentation of thoracic pedicle screw.
     Objective: The aim of this study was to design a thoracic expandable pedicle screw (TEPS), to evaluate its stability and feasibility and to offer a novel strategy for the augmentation of pedicle screw in the OP thoracic spine.
     Methods: 1. The TEPS was developed according to the anatomy of the thoracic spine. The Axial pull-out test, the cyclic bending resistance test and the three-point bending test were performed to compare the properties of stabilization of the single TEPS with a standard pedicle screw (SINOS). Static and dynamic mechanical tests of the TEPS assemblies and the SINOS assemblies were employed based on the guidelines of the American Society for Testing and Materials (ASTM) F1717-09 using polyethylene blocks as the test vertebral bodies. 2. The OP sheep model was induced by an ovariectomy and continual injections of methylprednisolone, and was confirmed by dual energy X-ray absorptiometry (DEXA). TEPSs and SINOSs were inserted on the vertebral bodies in OP sheep. After four months, the axial pull-out test was performed to compare the holding strength of these pedicle screws. A high-resolution micro-computed tomography (Micro-CT) was performed for three-dimensional (3D) image reconstruction of the screws and the bone. The same length of regions of interest (ROI) surrounding the anterior part of the TEPS and the SINOS were reconstructed and analyzed in the same threshold. A thorough microscopic analysis was performed on sections of these specimens. The safety and reliability of removal of the TEPS was evaluated by the measurement of trajectory using Micro-CT imaging and a 3D reconstruction.
     Results: 1. Biomechanical studies in vitro:①The axial pull-out tests showed that the TEPS can increase pull-out strength by 15.44% and 48.83%, compared with the SINOS, in these two polyurethane test blocks of different densities.②In the cyclic bending resistance tests, the TEPS withstood a greater number of cycles or loads with less displacement before loosening.③In three-point bending test, there was no significant difference in the maximum load between the TEPS and the SINOS.④Furthermore, compressive bending, tensile bending and dynamic compressive bending fatigue tests demonstrated that the TEPS assembly can provide biomechanical stability of the thoracic pedicle screw fixation. 2. Experiments after the four-month insertion on the vertebral bodies in the OP sheep:①All the OP sheep were euthanized and the lumbar spines including TEPSs and SINOSs were harvested. The TEPSs provided a significant increase in maximum axial pullout strength over the SINOSs in the four-month group and this increase was also significantly higher than that of them in an immediate group.②A Micro-CT image reconstruction showed that these 3D parameters were significantly better in the expandable portion of the TEPSs than those in the anterior portion of the SINOSs. The persistent pressure provided by the expanded fins could act as regulators of bone remodeling, leading to increased interfacial BMD. Histological, newly formed bone tissues grew into the groove of the fins. These bone tissues constructed two compartments and increased the contact area of the osteointegration in the screw-bone interface. As shown by the unique 3D structure, compared with SINOS, the bone and the screw grew into each other, which could further improve the pull-out strength of the TEPS.③Though the diameter of the expanded TEPS was indeed larger than the original diameter, expansion was less than that measured by in vitro studies, due to compression of the surrounding trabecular bone. During extraction from the vertebral body to the pedicle, the expanded fins of the TEPS gradually shrunk in diameter. The diameter of the EPS trajectory in the pedicle was 4.72mm, which was a 4.9% increase from the original diameter. Furthermore, the limited expansion indicated that the EPS could be backed-out safely and reliably.
     Conclusions: 1. TEPS could provide a significant stabilization in the osteoporotic spine because of its superior biomechanical properties. 2. The mechanical properties of TEPS and the TEPS assembly demonstrated TEPS assembly can provide biomechanical stability of a thoracic pedicle screw fixation. 3. The TEPS could be backed-out safely without fracturing the pedicle. Therefore, the TEPS assembly could be a novel approach for increasing the pedicle screw fixation in the osteoporotic thoracic spine.
引文
[1] LEI Wei,WU Zi xiang. Biomechanical evaluation of an expandable pedicle screw in calf vertebrae. Eur Spine J .2006,15(3): 321-326.
    [2] LEI Wei,WU Zi xiang. Biomechanical evaluation of an expandable pedicle screw in calf vertebrae .Chin J Traumatol.2005,8 (1): 39-45.
    [3]桑宏勋,吴子祥,雷伟,马真胜,樊勇,王海强,刘绪立.新型可膨胀椎弓根螺钉在骨质疏松性腰椎融合手术中初步临床应用研究.中华骨科杂志.2009,29(9):822-826.
    [4] Anderson GF, Hussey PS. Population aging: a comparison among industrialized countries. Health Aff (Millwood). 2000,19(3):191-203.
    [5] Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD.Effects of bone mineral density on pedicle screw fixation. Spine. 1994, 19(21): 2415-2420.
    [6] Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech. 2004,17(4):306-311.
    [7] Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability. Spine, 1993, 18(15): 2240-2245.
    [8] Brantley AG, Mayfield JK. The effects of pedicle screw fit. An in vitro study. Spine, 1994, 19(15):1752-1758.
    [9] Skinner R, Maybee J, Transfeldt E, Venter R, Chalmers W. Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine.1990;15(3):195-201.
    [10] Polly DW Jr, Orchowski JR, Ellenbogen RG. Revision pedicle screws. Bigger, longer shims-what is best? Spine.1998, 23(12):1374-1379.
    [11] Weinstein JN, Spratt KF, Spengler D,, Brick C, Reid S. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine, 1988, 13(9):1012-1018.
    [12]王正,沈国平,陈伟兵,王以进.椎弓根螺钉内固定稳定性的生物力学测试.医用生物力学,2002,17(2):80-84.
    [13] Panjabi MM, Abumi K, Duranceau J, Crisco JJ. Biomechanical evaluation of spinal fixation devices. Spine, 1988, 13(10):1135-1140.
    [14] Lehman RA Jr, Kuklo TR, Belmont PJ Jr, Andersen RC, Polly DW Jr. Advantage of pedicle screw fixation directed into the apex of the sacral promontory over bicortical fixation: a biomechanical analysis. Spine. 2002, 27(8):806-811.
    [15] Barber JW, Boden SD, Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord, 1998, 11(3):215-220.
    [16] Sterba W, Kim DG, Fyhrie DP, Yeni YN, Vaidya R. Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech. 2007,22(4):385-391
    [17]魏美钢,王坤正,侯德门,倪国骅.椎弓根螺钉器械应力分析.西安交通大学学报(医学版),2002,23(6):547-549.
    [18] McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS. Characteristics of pedicle screw loading.Effect of surgical technique on intravertebral and intrapediclar bending moments. Spine, 1999, 24(1):18-24.
    [19] Suzuki T, Abe E, Okuyama K, Sato K. Improving the pullout strength of pedicle screws by screw coupling.J Spinal Disord. 2001, 14(5):399-403.
    [20] Sarzier JS, Evans AJ, Cahill DW.Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg, 2002, 96(3):309-312.
    [21]樊仕才,朱青安,王柏川,赵卫东,周燕莉,金大地,刘大庸.聚甲基丙烯酸甲酯强化对骨质疏松椎弓根螺钉固定的生物力学作用.中华骨科杂志, 2001,21(2): 93-96.
    [22]樊仕才,刘世学,邓月兴,黄蔼丽,王旭,章敏之.强化骨质疏松椎弓根螺钉对脊柱稳定性影响的生物力学研究.中国修复与重建外科杂志,2004,18(3):168-170.
    [23] Wittenberg RH, Lee KS, Shea M, White AA 3rd, Hayes WC .Effect of screw diameter,insertion technique,and bone cement augmentation of pedicular screw fixation strength.Clin Orthop. 1993,(296):278-287.
    [24] Lotz JC, Hu SS, Chiu DF, Yu M, Colliou O, Poser RD. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine. 1997, 22(23):2716-2723.
    [25] Yerby SA, Toh E, Mclain RF. Revision of failed pedicle screws using hydroxyapatite cement.A biomechanical analysis. Spine. 1998, 23(15): 1657-1661.
    [26] Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine. 1997, 22(15): 1696-1705.
    [27]杨述华,傅德皓,刘昌胜,李进,刘国辉,许伟华,杨操,李鲲,汪岚.磷酸钙骨水泥强化椎弓根螺钉对骨质疏松性椎体骨折的意义.中国矫形外科杂志.2003,11(23):1616-1618.
    [28] Leung KS,Siu WS,Li SF,Qin L,Cheung WH,Tam KF,Lui PP. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed Mater Res B Appl Biomater,2006,78(1):153-160.
    [29] Bai B, Kummer FJ, Spivak J.Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosphate bone substitute.Spine.2001. 26(24):2679-2683.
    [30]邵景范,Sarkar MR,Claes LE,Kinzl L,罗永湘.可吸收陶瓷改善椎弓根螺钉稳定性的体外生物力学试验.中华骨科杂志,2001,21(10):319-621.
    [31] Rohmiller MT, Schwalm D, Glattes RC, Elalayli TG, Spengler DM. Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J, 2002, 2(4):255-260.
    [32] Milcan A, Ayan I, Zeren A, Sinmazcelik T, Yilmaz A, Zeren M, Kuyurtar F. Evaluation of Cyanoacrylate Augmentation of Transpedicular Screw Pullout Strength. Spinal Disord Tech, 2005, 18(6):511-514.
    [33] Wuisman PI, Van Dijk M, Staal H, Van Royen BJ.Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique. Eur Spine J. 2000,9(6):28-533.
    [34] Hsu CC,Chao CK,Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.J Orthop Res. 2005, 23(4):788-794.
    [35] McKoy BE,An YH.An injectable cementing screw for fixation in osteoporotic bone. J Biomed Mater Res, 2000, 53(3):216-220.
    [36] Klein SA, Glassman SD, Dimar JR 2nd, Voor MJ. Evaluation of the fixation and strength of a“rescue”revision pedicle screw. J Spinal Disord Tech. 2002, 15(2):100-104.
    [37] Herbert TJ, Fisher WE. Management of the fractured scaphoid using a new bone screw. J Bone Joint Surg [Br],1984,66(1):114-123.
    [38] Mummaneni PV, Haddock SM, Liebschner MA, Keaveny TM, Rosenberg WS. Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae. J Spinal Disord Tech. 2002, 15(1):64-68.
    [39]杨述华,胡勇,陈中海,杜靖远,杨操,许伟华,肖宝均,邵增务,李进,胡天喜,汪岚.空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究.中华创伤杂志,2002,18(1): 17-22.
    [40] Sanden B, Olerud C, Petren-Mallmin M, Larsso S. Hydroxyapatite coating improves fixation of pedicle screws. A clinical study. J Bone Joint Surg Br, 2002,84(3):387-391.
    [41] Fini M, Giavaresi G, Greggi T, Martini L, Aldini NN, Parisini P, Giardino R. Biological assessment of the bone-screw interface after insertion of uncoated and Hydroxyapatite-coated pedicular screws in the osteopenic sheep.J Biomed Mater Res, 2003, 66(1):176-183.
    [42] Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim TH, An HS. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporoticcanine lumbar spine model: a pilot study. Spine J. 2005,5(3):239-243.
    [43] Wan SY, Lei W, Wu ZX, Wan J, Lv R, Fu SC, Li B, Zhan C. Micro-CT evaluation and histological analysis of screw-bone interface of expandable pedicle screw in osteoporotic sheep. Chin J Traumatol. 2008,11(2):72-77
    [44]万世勇,雷伟,吴子祥,王军,吕荣,付索超,李波,战策.膨胀式椎弓根螺钉在骨螺钉界面的显微CT评价及组织学分析,中华外科杂志,2007,45(18):1271-1273
    [45]张伟,雷伟,吴子祥,膨胀式椎弓根螺钉的强度测试,科学技术与工程,2008,8(16):4635-4637
    [46]杨彬奎雷伟王军吴子祥刘达李运明,钉道强化提高椎弓根螺钉固定强度的生物力学研究,中华骨科杂志,2008,28(10):850-853
    [47]郭卫春,彭昊,陶海鹰,明江华.强化膨胀式椎弓根螺钉翻修作用的生物力学评价,临床外科杂志,2006,14(8):508-509.
    [48]王祥善,孙保国,刘建民,陈金华,母心灵,雷哲,郭小伟.膨胀式椎弓根螺钉在骨质疏松椎体的生物力学研究.实用诊断与治疗杂志,2005,19(8):552-554.
    [49]王祥善,鲍朝辉,赵卫东,孙保国,刘建民.膨胀式脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究,中国脊柱脊髓杂志,2005,15(7):436-439.
    [50] Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS 3rd. Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis.Spine J. 2001, 1(2):109-114.
    [51] Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD.Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J. 2004 , 4(4):402-408.
    [52] Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J , 2004 , 4(4):402-408.
    [53] Cook SD, Salkeld SL, Whitecloud TS 3rd, Barbera J.Biomechanical testing and clinical experience with the OMEGA-21 spinal fixation system.Am J Orthop.2001, 30(5):387-394.
    [54] Yahiro MA. Comprehensive literature review: pedicle screw fixation devices. Spine 1994, 9(Suppl 20):2274–2278.
    [55]李宏伟,马远征,鲍达,孙继桐,陈兴,刘海容.膨胀与普通椎弓根钉治疗脊柱胸腰段骨折合并骨质疏松的对比研究,中国骨质疏松杂志,2006,12(1):13-16.
    [56]高明暄,刘兴炎,甄平,薛云,田琦.膨胀式椎弓根螺钉联合椎间融合器治疗腰椎滑脱症,中国修复与重建杂志,2009,23(8):904-907
    [57] Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure inconical and cylindrical pedicle screws after full insertion and back-out. Spine J. 2001,1(6):408-414.
    [58] Hasegawa K, Takahashi HE, Uchiyama S, Hirano T, Hara T, Washio T, Sugiura T, Youkaichiya M, Ikeda M. An experimental study of a combination method using a pedicle screw and a laminar hook for the osteoporotic spine. Spine. 1997,22(9):958-962.
    [59] Buhler DW, Berlemann U, Oxland TR, Nolte LP. Moments and forces during pedicle screw insertion: in vitro and in vivo measurements. Spine. 1998,23(11):1220-1228.
    [60] Ono A, Brown MD, Latta LL, Milne EL, Holmes DC. Triangulated pedicle screw construct technique and pull-out strength of conical and cylindrical screws. J Spinal Disord.2001,14(4):323-329.
    [61] Barber JW, Boden SD,Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord.1998,11(3):215-220.
    [62] Choi W, Lee S, Kim JW, Kim JK, Goel V. Assessment of pullout strength of various pedicle screw designs in relation to the changes in bone mineral density. In: 48th Annual Meeting of the Orthopaedic Research Society; 2002.
    [63] Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. Spine, 1993,18(15): 2231-2238.
    [64]黄纪明,白树民,朱德兵,质构仪在骨生物力学检测中的应用,中国骨质疏松杂志,2003,9(3):276-278.
    [65]刘静,程立东,方岱军,韩丹.胸腰段骨折术后椎弓根螺钉断裂及弯曲松动的探讨,中国矫形外科杂志,2003,11(1):63-64.
    [66]胡勇,谢辉,杨述华,徐荣明,章伟文,冯建翔,付德皓.椎弓根融合器添加磷酸钙骨水泥后的生物力学效果,中国骨伤,2007,20(2):103-105.
    [67]黎逢峰张庆宏黄野等,磷酸钙骨水泥强化椎弓根螺钉固定的周期抗屈试验研究,生物骨科材料与临床研究,2006,3(4):1-4.
    [68] Wikle HJ, Wenger K, Claes K. Testing criteria for spinal implants: recommendations for the standardization for in vitro stability testing of spinal implants.Eur Spine.1998,7(2):148-154.
    [69] Inceoglu S,Ferrara L,McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J. 2004; 4(5):513-518.
    [70]徐华梓,王向阳,池永龙,朱青安.增加载荷分享的动力椎弓根螺钉固定器的稳定性及其意义,中华外科杂志,2002,40(10):737-739.
    [71]孙宏慧,范清宇.脊柱内固定器的疲劳试验研究,医学研究生学报,2003,16(1):69-70.
    [72] Russell G, Lavoie G, Evenson R, Moreau M, Budney D, Raso VJ. A reproducible porcine vertebral fracture for biomechanical testing of spinal fixation devices. ClinOrthop Relat Res. 1992,284(11):267-272.
    [73]孔维清,徐建广,眭述平,张长青,曾炳芳. GSS与SSE椎弓根螺钉断钉原因的生物力学研究,脊柱外科杂志,2008,6(6):352-355.
    [74] Panjabi MM. Biomechanical evaluation of spinal fixation devices: I.A conceptual framework. Spine. 1988,13(10):1129-1134.
    [75] Stanford RE, Loefler AH, Stanford PM, Walsh WR. Multiaxial pedicle screw designs: static and dynamic mechanical testing. Spine 2004, 29(4):367-375.
    [76]宋铎.脊椎植入物组件静态和疲劳性能试验方法研究.理化检验-物理分册,2006,42(7):345-348
    [77] Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 2009,9(3):263-267.
    [78] Zindrick MR, Wiltse LL, Doornik A, Widell EH, Knight GW, Patwardhan AG, Thomas JC, Rothman SL, Fields BT. Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine. 1987, 12 (2):160-166.
    [79] Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine.2004, 29(3):333-342.
    [80]严军,宦坚,郑祖根,董启榕.上中胸椎椎弓根-肋单位的CT测量及其临床意义.中国临床解剖学杂志,2007,25(6):636-639.
    [81] DvorakM, MacDonald FS, Gurr KR, Bailey SI, Haddad RG. An anatomic radiographic, and biomechanical assessment of extrapedicular screw fixation in the thoracic spine. Spine. 199,18(12):1689-1694.
    [82] Husted DS, Yue JJ, Fairchild TA, Haims AH. An extrapedicular approach to the placement of screws in the thoracic spine: an anatomic and radiographic assessment. Spine.2003, 28(20):2324-2330.
    [83] Morgentern W, Ferguson SJ, Berey S, Orr TE, Nolte LP. Posterior thoracic extrapedicular fixation: a biomechanical study. Spine, 2003, 28(16):1829-1835.
    [84] White KK, Oka R, Mahar AT, Lowry A, Garfin SR. Pullout strength of thoracic pedicle screw instrumentation: comparison of thetranspedicular and extrapedicular techniques.Spine. 2006, 31(12): E355-358.
    [85]王欢喜,经肋横突结合区胸椎后路固定解剖学、影像学、生物力学研究[D],中南大学,2006.
    [86]谢陶敢,陈其昕,李方才,胸椎椎弓根-肋骨单元与椎弓根的CT测量,中国脊柱脊髓杂志. 2008,18(9):665-668.
    [87]邓旭林,老年人的健康杀手-骨质疏松症,家庭医学,1999,4:12
    [88] Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res.2010,21(2):213-220.
    [89] Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.Journal of Orthopaedic Research. 2005,23(4): 788-794
    [90] Hashemi A, Bednar D, Ziada S. Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J.2009, 9(5):404-410.
    [91] Krenn MH, Piotrowski WP, Penzkofer R, Augat P. Influence of thread design on pedicle screw fixation. Laboratory investigation. J Neurosurg Spine. 2008,9(1):90-95.
    [92] Cook SD, Salkeld L, WhitecIoud III S, Barbera J. Biomechanical evaluation and preliminary clinical experience with an expandable pedicle screw design Journal of Spinal Disorders. 2000, 13(3):230-236.
    [93] Ashman RB, Birch JG, Bone LB, Corin JD, Herring JA, Johnston CE 2nd, Ritterbush JF, Roach JW.. Mechanical testing of spinal instrumentation.Clin Orthop 1988;227:113-125.
    [94]李元超,ASTM F1717脊柱内固定器的静态及疲劳力学性能试验研究,2009,http://blog.51xuewen.com/lixue/article_15476.htm
    [95] Graichen F, Bergmann G, Rohlmann A. Patient monitoring system for load measurement with spinal fixation devices. Med Eng Phys 1996,18(2):167-174.
    [96] Rohlmann A, Graichen F, Bergmann G. Influence of load carrying on loads in internal spinal fixators. J Biomech. 2000,33(9):1099-1104.
    [97] Lim TH, An HS. Biomechanics of Spinal Instrumentation. Spinal Instrumentation. In: An HS, Cotler JM, eds. Spinal Instrumentation. Philadelphia: Lippincott Williams & Wilkins; 1996:68-69
    [98]崔露阳.骨质疏松症防治药物迎来上市高峰.世界临床药物,2004,25(9):51.
    [99]卢飙,邱明才,郑虎,翁玲玲,刘景生.四环素-雌酮和雌酮作用去势大鼠的骨形态计量学对照研究.中华妇产科杂志,1998,33(1):31-34.
    [100] Southard TE, Southard KA, Krizan KE, Hillis SL, Haller JW, Keller J, Vannier MW. Mandibular bone density and fractal dimension in rabbits with induced osteoporosis.Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 89 (2):244-249.
    [101] Fukuda S, Lida H. Effects of orchidectomy on bone metabolism in beagle dogs. J Vet Med Sci, 2000, 62 (1):69-73.
    [102]李良,陈槐卿,何成明,吴文超,谭建三,杨定焯,郑虎.双侧卵巢切除山羊不同时间段骨形态计量学与骨密度的变化.中国骨质疏松杂志,2000,6(2):10-12.
    [103] Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: Current status and comparison with other animal models. Bone, 1995, 16 (4 Suppl):277-284.
    [104] Augat P, Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L.Glucocorticoid-treated sheep as a model for osteopenic trabecular bone in biomaterials research. J Biomed Mater Res A. 2003,66(3):457-462.
    [105] Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporosis International. 2002, 13 (6) :480-486.
    [106]程立明,丁铭,李子荣,王冉东.羊骨质疏松模型在人类骨科研究中的作用.中国骨质疏松杂志,2008;14(6):441-447.
    [107]刘忠厚.中国人原发性骨质疏松症诊断标准(试行).中国骨质疏松杂志, 1999,5(1):1-3.
    [108]李良,陈槐卿,陈孟诗,谭建三,吴文超,翁玲玲,郑虎.建立骨质疏松山羊模型初探.中国骨质疏松杂志,1998,4(2):12-16.
    [109]李亚男,刘洪臣,倪紫砚,杨丽.绵羊绝经后骨质疏松动物实验模型的建立.口腔颌面修复学杂志,2000,1(2):75-77.
    [110]秦林林,马海波,张卫,葛崇华,李大为,肖艳霞.中国北方汉族健康人骨密度正常值.中国骨质疏松杂志.2002,8(2):110-111.
    [111]刘忠厚,潘子昂,王石麟.原发性骨质疏松症诊断标准的探讨.中国骨质疏松志,1997,3(1):1.
    [112] Genant HK,Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C. Universal standardization of dual X-ray absorptiometry : patient and phantom cross-calibration results. J Bone Miner Res. 1994, 9(10):1503-1514.
    [113]陈兴,马远征,薛海滨.骨密度对椎弓根螺钉系统内固定影响的临床研究.中国骨质疏松杂志,2003,9(2):143-145.
    [114] Branemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997, 18(14):969-978.
    [115] Ding M, and Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone, 2000, 26(3): 291-295.
    [116] Muller R. The Zurich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging. 2002, 13(5):307-322.
    [117] Martin-Badosa E, Amblard D, Nuzzo S Elmoutaouakkil A, Vico L, Peyrin F. Excised bone structures in mice : imaging at three-dimensional synchrotron radiation microCT. Radiology. 2003, 229(3):921-928.
    [118] Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol, 2002, 20(8): 34-39.
    [119] David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexandre C, Ruegsegger P, Vico L. Noninvasive in vivomonitoring of bone architecture alterations inhindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res. 2003, 18(9):1622-1631.
    [120] Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for microcomputed tomography in small animals. Med Phys. 2003, 30(11):2869-2877.
    [121] Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, Aguado E, Daculsi G. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005, 26(27):5444-5453.
    [122] Ho ST, Hutmacher DW.A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006,27(8):1362-1376.
    [123] Jones AC, Sakellariou A, Limaye A.Investigation of microstructural features in regenerating bone using micro computed tomography. J Mater Sci Mater Med. 2004, 15(4):529-532.
    [124] Knackstedt MA, Arns CH, Senden TJ, Gross K. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials. 2006, 27(13):2776-2786.
    [125] Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007, 28(15):2491-2504.
    [126] Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone.Biomaterials 2004, 25(9): 1683-1696.
    [127] Yang J, Pham SM, Crabbe DL. High-resolution Micro-CT evaluation of mid- to long-term effects of estrogen deficiency on rat trabecular bone.Acad Radiol.2003, 10(10):1153-1158.
    [128] Hu JH, Ding M, Soballe K Bechtold JE, Danielsen CC, Day JS, Hvid I. Effects of short-term alendronate treatment on the three-dimensional microstructural , physical , and mechanical properties of dog trabecular bone. Bone. 2002, 31(5):591-597.
    [129] Mittra E, Rubin C, Gruber B, Qin YX. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, microCT,and DXA. J Biomech. 2008; 41(2): 368-375.
    [130] Stambough JL, El Khatib F, Genaidy AM, Huston RL. Strength and fatigue resistance of thoracolumbar spine implants: an experimental study of selected clinical devices. J Spinal Discord 1999;12(5):410-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700