粉砂土地基盾构施工开挖面稳定性及环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法作为地铁隧道施工中一种最主要的施工方法已在我国得到广泛应用。土压平衡盾构施工的安全性控制以及施工所引起的环境变化是盾构隧道设计和施工中非常关心的问题,由于粉砂土性质介于砂土和粘土之间,其在盾构施工过程中表现出的工程特性难以掌握,因此在粉砂土地基中该问题显得尤为突出。本文的主要研究工作包括:
     (1)针对土压平衡盾构双线隧道施工引起的周边土体环境变化进行了现场实测。测试结果表明,土体中孔隙水压力随着盾构掘进呈锯齿形的上升下降变化,后掘进隧道对先掘进隧道具有挤压作用,合理的注浆参量有利于控制盾构隧道周围的土体变形。
     (2)分析了土压平衡盾构施工中盾构与土体的相互作用,通过Mindlin解进行坐标转化,推导了刀盘和土体之间的摩擦所引起的土体变形计算公式,修正了土体损失引起的土体变形计算公式,完善了盾构施工引起的地表变形计算公式,验证了刀盘扭矩引起地表沉降非对称分布的现象,该方法适合于施工阶段。
     (3)利用三维有限差分法对在饱和粉砂土地基中土压平衡盾构在施工状态下的稳定性问题进行了研究,得出了饱和粉砂土地基施工状态下盾构开挖面的极限支护压力设置范围,并分析了隧道埋深、地下水位、停机时间以及土体性质对盾构开挖面极限支护压力的影响。
     本文通过现场实测总结了粉砂土地基中双线盾构隧道施工引起的周围土体环境变化规律,利用基于Mindlin解推导的盾构施工地表变形公式分析了盾构施工引起的土体变形,并通过数值分析方法得出了粉砂土地基中盾构开挖面极限支护压力的设置范围,为粉砂土地基中的盾构隧道施工安全提供了参考。
The shield tunneling method, as one of the main construction methods of metro tunneling, has been used widely in China. The safety control of excavation face and variation of soil environment induced by shield tunneling is the main issue during shield tunnel design and construction. Because the property of sandy silt is usually between that of sand and that of clay, it is hard for engineers to understand the engineering property of sandy silt during shield tunneling. The main research contents are as follows:
     (1) Relevant in-situ measurement is executed during Hangzhou metro tunneling in sandy silt. From the results, it is concluded that variation of pore pressure against distance is a Zigzag-shape distribution against distance. The latter shield tunneling has thrust influence on earlier shield tunneling, and reasonable grouting helps to control soil deformation around shield tunnel.
     (2) The interaction between soil and shield is analyzed. The formulation of soil deformation induced by torque between soil and cutterhead is obtained derived from Mindlin solution which could verify the phenomenon that the settlement trough is assymmetric. By revising formulation of soil deformation induced by soil loss, the total formulation of soil deformation is obtained which is useful in construction stage.
     (3) A three-dimensional fast Lagrangian differential finite element method is used to simulate the deformation and failure of excavation face considering the influence of ground water. The limited face pressure of excavation face is obtained by a great deal of analysis, and the influence of tunnel depth, the depth of ground level, time of shield stopping and soil property is also analyzed by using numerical model.
     In this thesis, the variation regularity of soil stress and deformation induced by parallel shield tunneling is concluded by field measurements, and surface settlement is analyzed by formulation derived from Mindlin solution, and the set range of face pressure in sandy silt is obtained by numerical analysis. All of the conclusions provide some relevant suggestion for shield tunneling in sandy silt.
引文
[1]张凤祥,朱合华,傅德明.盾构隧道.北京:人民交通出版社,2004.
    [2]Broms B B,Bennermark H.Stability of clay at vertical openings[J].Journal of the Soil Mechanics and Foundations Division,1967,96(1):71-94.
    [3]Peck R B.Deep Excavations and Tunneling in Soft Ground[C]//Proc 7~(th) International Conference of soil Mechanical and Foundation Engineering.Mexico City:State of the Art,1969,(93):225-290.
    [4]Peck R B,Hendron A J,Mohraz B.State of the Art of Soft Ground Tunneling[C]//In:Proceedings of the Rapid Excavation and Tunneling Conference.Chicago:IL,1972,(1):259-280.
    [5]Kimura T,Mair J R.Centrifugal testing of model tunnels in soft clay[C]//Proc.10~(th) Int.Conf Mechanical and Foundation Engineering.Stocklom:1981:319-322.
    [6]Davis E H,Gun M J,Mair R J,et al.The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4):397-416.
    [7]Leca E,Dormieus L.Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J].Geotechnique,1990,40(4):581-606.
    [8]Abdul H S.Three-dimensional face stability analysis of shallow circular tunnel[C]//In:International Conference on Geotechnical and Geological Engineering.Australia:Melboume,2000.
    [9]Lee I M,Nam S W.The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J].Tunnels and Underground Space Technology,2001,16(1):31-40.
    [10]Lee I M,Nam S W.Jae H A.Effect of seepage force on tunnel face stability[J].Canadian Geotechnical Journal,2003,40:342-250.
    [11]Lee I M,Lee J S,Nam S W.Effect of seepage force on tunnel face stability reinforced with muti-step pipe grouting[J].Tunnels and Underground Space Technology,2004,19:551-565.
    [12]Janssen H A.Versuche uber Getreidedruck in Silozellen[J].Seitschrift des Vereins deutscher Ingenieure,ⅩⅩⅩ-Ⅸ,1895,(35):1045-1049(in German).
    [13]Horn M.Horizontaler Erddruck auf senkrechte Abschlussflachen von Tunneln[M].Budapest:Landeskonferenz der ungarischen Tiefbauindustrie,1961(in German).
    [14]Jancsecz S,Steiner W.Face support for a large mix-shield in heterogeneous ground conditions[C]//In:Conference proceeding Institute of Mining and Metallurgy and British Tunneling Society.London:[s.n.]1994:531-549.
    [15]Monnet J,Chaffois S,Chapeau C.Theoretical and experimental studies of a tunnel face in gravel site[M]//In:Pietruszczak S,Pande G N.Numerical Models in Geomechanics.Numog Ⅲ,1989:497-514.
    [16]Anagnostou G,Kovari K.The face stability of slurry-shield-driven tunnels[J].Tunnels and Underground Space Technology,1994,9(2):165-174.
    [17]Anagnostou G,Kovari K.Face stability conditions with earth-pressure-balanced shields[J].Tunnels and Underground Space Technology,1996,11(2):165-173.
    [18]Broere W.Face stability calculations for a slurry shield in heterogeneous soft soils[C]//In:Nego,Jr.& Ferreira.Tunnels and Metropolises,Sao Paolo,Bazil,1998:215-218.
    [19]Broere W and van Tol.A F.Influence of infiltration and groundwater flow on tunnel face stability[C]// In:Kusakabe O,Fujita K,Miyazaki Y.Geotechnical Aspects of Underground Construction in Soft Ground.Balkema,2000:339-344.
    [20]Broere W,van Tol A F.Time-dependent infiltration and groundwater flow in a face stability analysis[C]//In:Adachi T,Tateyama K.Kimura M.Modern Tunneling Science and Technology.Balkema,2001:629-634.
    [21]魏纲.顶管工程土与结构的性状机理论研究[博士学位论文][D].杭州:浙江大学,2005.
    [22]Chambon P,Corte J F.Shallow tunnels in cohesionless soil:Stability of tunnel face[J].Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [23]Mair R J.Centrifuge modeling of tunnel construction in soft clay[D].London:Cambridge university,1979.
    [24]Mair R J,Taylor R N.Theme lecture:bored tunneling in the urban environment[C].In:Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering.Rotterdam,1997:2353-2385.
    [25]周小文,濮家骝,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报,1999,16(4):9-14.
    [26]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559-563.
    [27]程展林,吴忠明,徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J].岩 土力学,2002,23(5):559-563.
    [28]Buhan P de,Cuvillier A,Dormieux L,et al.Face stability of shallow circular tunnels driven under the water table:A numerical analysis[J].International Journal for Numerical and Analytical Methods in Geomechanics,1999,(23):79-95.
    [29]秦建设.盾构施工开挖面变形与破坏机理研究[博士学问论文][D].南京:河海大学,2005.
    [30]黄正荣,朱伟,梁精华,秦建设.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-116.
    [31]O'Reilly M P,New B M.Settlements above tunnels in the United Kingdom-their magnitude and prediction[C]// Proc.Tunneling 82 on Institution of Mining and Metallurgy,London:1982,173-181.
    [32]Loganathan N,Poulos H G.Analytical prediction for tunneling-induced ground movements in clay[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):846-856.
    [33]刘建航,侯学渊.盾构法隧道.北京:中国铁道出版社,1991,45-49.
    [34]Attewell P B,Woodman J P.Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil[J].Ground engineering,1982,15(8):13-22,36.
    [35]Sagaseta C.Analysis of undrained soil deformation due to ground loss[J].Geoechnique,1987,37(3):301-320.
    [36]Verruijt A,Booker J R.Surface settlements due to deformation of a tunnel in an elastic half plane[J].Geotechnique,1996,46(4):753-756.
    [37]Loganathan N,Poulos H G & Stewart D P.Centrifuge testing of tunneling-induced ground and pile deformations.Geotechnique,2000,50(3):283-294.
    [38]Chou W I,Bobet A.Prediction of ground deformations in shallow tunnels in clay[J].Tunneling and Underground Space Technology,2002,17(1):3-19.
    [39]Park K H.Elastic solution for tunneling-induced ground movements in clays[J].International Journal of Geomechanics,2004,4(4):310-318.
    [40]Park K H.Analytical solution for tunneling-induced ground movement in clays[J].Tunneling and Underground Space Technology,2002,17(1):3-19.
    [41]方从启.基于半解析元法研究顶管施工引起的地层移动[博士学位论文][D].上海:同济大学,1998.
    [42]曾小清,张庆贺.隧道施工过程的解析与数值结合方法[J].岩土工程学报,1998,20(1):14-17.
    [43]吴修锋.顶管施工引起的地层移动与变形控制研究[D].南京:南京工业大学,2004.
    [44]廖少明,余炎,彭芳乐.盾构近距离穿越相邻隧道施工的数值解析[J].岩土力学,2004,25(supp2):223-226.
    [45]魏纲,徐日庆.软土隧道盾构施工引起的纵向地面变形预测[J].岩土工程学报,2005,27(9):1077-1081.
    [46]Atkinson J H.The stability of a shallow circular tunnel in dense sand during surface excavation or filling[J].Geotechnique,25(3):591-592
    [47]Atkinson J H & Potts D M.Stability of a shallow circular tunnel in cohesionless soil[J].Geotechnique,27(2):203-215.
    [48]Mair R J.Centrifuge modeling of tunnel construction in soft clay[D].London:Cambridge University,1979.
    [49]Kimura T,Mair J R.centrifugal testing of model tunnels in soft clay[C]// Proc.10~(th) Int.Conf.Mechanical and Foundation Engineering.Stocklom:1981:319-322.
    [50]Kim S H,Burd H J & Milligan G W E.Model testing of closely spaced tunnels in clay.Geotechnique,1998,48(3):375-388.
    [51]Komiya K,Soga K,Akagi H,Jafari M R & Bolton,M D.Soil consolidation associated with grouting during shield tunneling in soft clayey ground.Geotechnique,2001,51(10):835-846;Shirlaw J N.Discussion.2003 51(10).
    [52]Lee K M,Rowe R K.Finite element modeling of the three dimensional ground deformations due to tunneling in soft cohesive soils.Part Ⅰ.Methods of analysis.Computers and Geotechnics,1990a,2(2):87-110.
    [53]Lee K M,Rowe R K.1990b.Finite element modeling of the three dimensional ground deformations due to tunneling in soft cohesive soils.Part Ⅱ.Results.Computers and Geotechnics,1990b,2(2):111-138.
    [54]Simpson B,O'Riordon N J,Croft D D.A computer model for the analysis of ground movements in London clay[J].Geotechique,1992,42(4):541-576.
    [55]Dasari G R,Rawlings C G,Bolton M D.Numerical modeling of a NATM tunnel construction in London clay[C].// In:Mair R J,Taylor R N,Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground.Balkema,London,1996,pp:491-496.
    [56]Leca E.Modeling and prediction of bored tunnels[C].// In:Mair R J,Taylor R N,Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Groud.Balkema,London,1996,pp:27-42.
    [57]Stallebrass S E,Grant R J,Taylor R N.A finite element study of ground movements measured in centrifuge model tests of tunnels[C].//In:Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Groud.Balkema,London,1996,pp:595-600.
    [58]Addenbrooke T I,Potts D M,Puzrin A M.The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction[J].Geotechnique,1997,47(3):693-712.
    [59]Cheng C Y,Dasari G R,Chow Y K,Leung C F.Finite element analysis of tunnel-soil-pile interaction using displacement controlled model[J].Tunneling and Underground Space Technology,2007,22:450-466.
    [60]李宏建,孙明磊,朱永全.北京地铁区间隧道施工过程三维动态数值模拟[J].石家庄铁道学院学报,2006,19(1):30-33.
    [61]张志强,何川,佘才高.南京地铁盾构掘进施工的三维有限元仿真分析.铁道学报,2005,27(1):84-89.
    [62]张玉军,熊传义.拟建武汉地铁盾构法施工的有限元数值模拟[J].岩土力学,2001,22(1):51-55.
    [63]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002,21(2):388-392.
    [64]姜忻良,崔奕,李园,赵志民.天津地铁盾构施工地层变形实测及动态模拟[J].岩土力学,2005,26(10):1612-1616.
    [65]于宁,朱合华.盾构施工仿真及相邻影响的数值分析[J].岩土力学,2004,25(2):292-296.
    [66]张印涛,陶连金,边金.盾构隧道开挖引起地表沉降数值模拟与实测分析[J].北京工业大学学报,2006,32(4):332-337.
    [67]石杰红,钟茂华,何理等.双线盾构地铁隧道施工地表沉降数值分析[J].中国安全生产科学技术,2006,2(3):51-54.
    [68]Kim C Y,Bae G J,Hong S W,Par C H,Shin H S.Neural network based prediction of ground surface settlements due to tunneling.Computers and Geotechnics 2001,28:517-547.
    [69]Neaupane K M,Adhikari N R.Prediction of tunneling-induced ground movement with the multi-layer perceptron.Tunneling and Underground Space Technology.2006 21:151-159.
    [70]安红刚,孙钧,胡向东,赵其华.盾构法隧道施工地表变形的小样本智能预测.成都理工大学学报(自然科学版).2005,32(4):362-366.
    [71]刘红兵,王李管等.基于人工神经网络技术的隧道地表沉降预测.矿业研究与开发,2007,27(2):26-28.
    [72]Harris D I,Mair R J,Love J P.Taylor R N & Henderson T O.Observations of ground and structure movements for compensation grouting during tunnel construction at waterloo station.Geotechnique 44(4):691-713.
    [73]Bezuijen A,Pruiksma J P,Van Meerten H H.Pore pressures in from of tunnel,measurements,calculations and consequences for stability of tunnel face[C].//Proc:Int.Symp.On Modern Tunneling Science and Techn,2001,Kyoto.
    [74]Clayton C R I,Van Der Berg,Thomas J P.Monitoring and displacements at Heathrow Express Terminal 4 station tunnels.Geotechnique,2006,56(5):323-334.
    [75]Clayton C R I,Van Der Berg,Heymann G,Bica,A V D & Hope V S.The performance of pressure cells for sprayed concrete tunnel linings.Geotechnique,2002,52(2):107-115.
    [76]Van Der Berg,Clayton C R I & Powell D B.Displacements ahead of an advancing NATM tunnel in the London clay.Geotechnique,2003,53(9):767-784.
    [77]韩煊,李宁,Standing J R.Peck公式在我国隧道施工地面变形预测中的适用性分析[J].岩土力学,2007,28(1):23-28,35.
    [78]陈馈,洪开荣,吴学松.盾构施工技术.人民交通出版社,2009.
    [79]Mindlin R D.Force at a point in the interior of a semi-infinite solid[J].Physics,1936,7(5):195-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700