冷却速度对Al-Cu合金微观组织及熔化潜热的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以不同Cu含量Al-Cu合金为研究对象,研究了不同Ti含量对亚共晶Al-5wt.%Cu合金的微观组织细化,对比研究了常规铸造条件下和不同冷却速度下不同Cu含量Al-Cu合金的微观组织,通过DSC分析了冷却速度对不同Cu含量Al-Cu合金熔化潜热的影响。研究结果包括以下几个方面:
     (1)不同的Ti含量对亚共晶Al-5wt.%Cu合金的微观组织晶粒细化:随着Ti含量的逐渐增大,晶粒尺寸变小。当Ti含量为0.1wt.%时晶粒尺寸最小。当Ti含量大于0.1wt.%以后,晶粒细化效果呈下降趋势。
     (2)不同Cu含量Al-Cu合金微观组织对比:亚共晶Al-Cu合金中,随着Cu含量的增加,初生α-Al相所占比例逐渐减小,共晶组织所占比例增加;共晶Al-Cu合金是共晶组织(a-Al相+0-Al2Cu相),呈片层状分布。
     (3)冷却速度对过共晶Al-40wt.%Cu合金微观组织的影响:随着冷却速度的增大,初生θ-Al2Cu相由方块状变得更加细小,晶粒尺寸由45μm左右减小到10μm左右。其主要原因是冷却速度增大时,会造成合金内部的过冷度增大,抑制了初生θ-Al2Cu相的析出和长大。从冷却速度和晶粒尺寸标准差的关系图看出,要想获得晶粒尺寸分布均匀性好的材料,需要提高合金的冷却速度。
     (4)通过对不同Cu含量Al-Cu合金DSC曲线的观察分析得出:常规铸造条件下,亚共晶Al-Cu合金中,随着Cu含量的增加,共晶组织比例增加,其熔化对应的峰值温度在升高。在含Cu量为5wt.%-40wt.%的范围内,随着Cu含量的增加,Al-Cu合金的熔化潜热逐渐减小。
     (5)距楔形试样尖端1cm处,冷却速度较大,亚共晶以及共晶Al-Cu合金的DSC曲线中初生α-Al相和共晶组织所对应的熔化吸热峰的温度逐渐增大,相同Cu含量Al-Cu合金的熔化潜热比常规铸造条件下减小。
     (6)随着冷却速度逐渐增大,亚共晶Al-20wt.%Cu合金的熔化开始温度、低温吸热峰、高温吸热峰、熔化终止温度逐渐增大,合金的熔化潜热逐渐减小。
     (7)随着冷却速度的增大,亚共晶Al-20wt.%Cu合金的硬度逐渐增大,过共晶Al-40wt.%Cu合金的硬度反而逐渐减小。
Al-Cu alloy with different Cu contents were investigated in this paper. Firstly, the effects of different Ti contents on microstructure refinement of hypoeutectic Al-5wt.%Cu alloy were studied, secondly, microstructures of Al-Cu alloy with different Cu contents were comparative studied in conventional casting conditions and different cooling rates conditions, finally, the effects of cooling rate on the latent heat in Al-Cu alloy with different Cu contents by DSC were analyzed. The results showed that as follows:
     (1)Grain refinement of microstructures on hypoeutectic Al-5wt.%Cu alloy with different Ti contents:With the increasing of Ti contents, the grain was refined, when the Ti content was 0.1wt.%,the grain size was smallest; when the Ti contents were more than 0.1wt.%,the grain refinement was in downward trend.
     (2) Microstructures of Al-Cu alloy with different Cu content were in contrast:In hypoeutectic Al-Cu alloy, with the increasing of Cu contents, the primary phaseα-Al percentage decreased, the proportion of eutectic increased;eutectic Al-Cu alloy was the eutectic (a-Al phase+θ-Al2Cu phase), showed laminar distribution.
     (3) The effects of cooling rate on the microstructures of hypereutectic Al-40wt.%Cu alloy:with the increasing of cooling rate,θ-Al2Cu phase became more refined, the grain size reduced from about 45μm to 10μm. The main reason was that the increasing of cooling rate will cause undercooling increased and restrain the primary phase precipitation and growth. The graph of the relationship between cooling rate and standard deviation of grain size showed that in order to get material with good distribution of grain size, it need to increase the cooling rate of the alloy.
     (4) The DSC curves of Al-Cu alloy with different Cu content were observed and analyzed:In conventional casting conditions, with the increasing of Cu contents, the proportion of eutectic increased in hypoeutectic Al-Cu alloy,which peak temperature increased.The latent heat of Al-Cu alloy decreased with the increasing of Cu contents raging from 5wt.%to 40wt.%.
     (5) 1cm from the wedge tip with high cooling rate, the peak temperature of melting endothermic of the DSC curves in hypoeutectic and eutectic Al-Cu alloy increased, the latent heat of Al-Cu alloy with same Cu contents became smaller.
     (6) With the increasing of cooling rate, the beginning of melting temperature, the low temperature endothermic peak, the high temperature endothermic peak and the ending of melted temperatures of hypoeutectic Al-20wt.%Cu alloy increased, the latent heat decreased.
     (7) With the increasing of cooling rate, the hardness of hypoeutectic Al-20wt.%Cu alloy increased gradually, but the hardness of hypereutectic Al-40wt.%Cu alloy decreased gradually.
引文
[1]朱光明,秦华宇.材料化学[M].北京:机械工业出版社,2007.2
    [2]陆树荪,顾开道,郑来苏.有色铸造合金与熔炼[M].北京:国防工业出版社,1983.153-162
    [3]梁艳峰,周敬恩,董晟全等.新型铸造铝铜合金的热处理[J].金属热处理,2007,32(6):88-91
    [4]潘志勇.半固态铸造高Cu含量Al-Cu合金的微观组织[J].湖南师范大学自然科学学报,2008,31(3):61-64
    [5]李庆丰,王利波,于宝义等.工艺参数对间接挤压铸造Al-Cu合金力学性能及热裂倾向的影响[J].铸造,2006,55(12):1271-1274
    [6]宋鸿武,包春玲,于宝义等.Al-Cu合金压铸工艺研究[J].铸造技术,2006,27(1):15-18
    [7]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1996
    [8]司乃潮,吴强,李国强.Ti对Al-4.5%Cu合金热疲劳性能的影响[J].铸造,2006,55(7):731-735
    [9]刘友良.V含量对高铜Al-Cu合金组织和性能的影响[D].中南大学硕士学位论文,2006
    [10]李元元,郭国文,张卫文等.Zr和V对铝铜合金力学性能的影响[J].特种铸造及有色合金,2002,(3):4-6
    [11]黄良余,张少宗.铝合金精炼要点和工艺原则[J].特种铸造及有色合金,1998,(2):40-42
    [12]葛良琦.高Al-Si合金中初晶Si形态控制研究进展[J].材料导报,2007,21(3):70-73
    [13]S.Viswanathan,H.D. brody. Microporosity in Grain-refined Aluminum-4.5% Copper alloy sand it's Relation to Casting Practice[J].AFS Trans,1992,100:685-696
    [14]乔进国,刘想法,刘相俊.Ca对共晶Al-Si合金P变质效果的影响[J].铸造,2004,53(1):38-40
    [15]A. T. Spnda. Aluminum Casters Discuss Porosity Melt Quality[J].Modern Casting,1999, (2):58-60
    [16]刘达利,齐上襄.新型铝活塞[M].北京:国防工业出版社,1999.8,418
    [17]刘伏梅,刘志坚.Fe在铝合金中的有害作用及其控制[J].内燃机配件,2002,(4):7-11
    [18]李云良.铝合金熔体氢含量的影响因素及除气净化技术的对比研究[J].郑州大学硕士学位论文,2008
    [19]章四琪,黄劲松.有色金属熔炼与铸锭[M].北京:化学工业出版社,2005
    [20]管任国,马伟民.金属半固态成形理论与技术[M].北京:冶金工业出版社,2005
    [21]张华顺.激光表面熔凝处理对铸造Al-Si合金的表层组织及疲劳扩展行为的影响[D].郑州大学硕士学位论文,2007
    [22]H.K. Feng,S.R. Yu,Y.L. Li.Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy[J].Journal of materials processing technology,2008,208:330-335
    [23]De-hong Lu,Ye-hua Jiang,Gui-sheng Guan. Refinement of primary Si in hypereutectic Al-Cu alloy by electromagnetic stirring[J].Journal of materials processing technology, 2007,189:13-18
    [24]米国发,龚海军,文涛.高强韧铸造Al-Cu合金的研究现状[J].热加工工艺,2006,35(21):91-95
    [25]王三军,王明星,刘志勇等.电解低钛铝合金微观组织细化及在铸造Al-Si合金制备中的应用[J].有色金属,2006,58(1):26-30
    [26]P.S.Mohanty,J.E.Gruzleski.Mechanism of Grain Refinement in Aluminum[J]. Aluminum,1995,87(5):2001-2012
    [27]王明星.电解低钛铝合金工业试验及其组织与性能的研究[D].中国科学院合肥与离子研究所,2002
    [28]陈子勇,舒群,陈玉勇.高强铸造铝铜合金显微组织与力学性能的影响[J].材料科学与工艺,2007,15(5):718-722
    [29]李彦霞,倪东惠,赵海东等.不同压力下挤压铸造铝铜合金的组织和性能[J].铸造,2005,54(8):764-768
    [30]潘志勇.半固态加工Al-Cu合金的组织及性能的研究[D].湖南大学硕士学位论文,2007
    [31]宋维锡.金属学[M].北京:冶金工业出版社,1979.20-26
    [32]D.Aletenpohl.Aluminium[C].1996,72(5):341
    [33]周振平,李荣德.凝固条件对铝铁合金凝固组织的影响[J].沈阳工业大学学报,2003,25(2):101-104
    [34]G.J.戴维斯.凝固与铸造[M].北京:机械工业出版社,1981.12-13
    [35]邵国胜,沈宁福.Al-Si-Ti-Ce的快速凝固过程及微观组织[J].材料科学进展,1992,6(5):396-399
    [36]王佳夫,林清华,漆世泽等.冷却速度对高强度低合金钢组织和性能的影响[J].钢铁研究学报,2004,16(5):51-55
    [37]张建波.电解加钛ZL108合金的热处理工艺优化和快速凝固组织的研究[D].郑州大学硕士学位论文,2007
    [38]金安侠.Cu_(50)Zr_(42)Al_8合金铸态组织及其硬度研究[D].兰州理工大学硕士学位论文,2007
    [39]吴炜.快速凝固四元铝基金金显微组织及性能的研究[D].合肥工业大学硕士学位论文,2004
    [40]曹庆平.快速凝固AI-Ti-Fe基合金的显微组织和性能的研究[D].合肥工业大学硕士学位论文,2002
    [41]胡磊.Al_(85)Y_4Nd_4M_7(M=Fe、Co)和Al_(85)Zr_4Nb_4M_7(M=Fe、Co)快凝合金的组织和热稳定性[D].合肥工业大学硕士学位论文,2004
    [42]张红,高瑞平.快速凝固Al-Cu-Mg-Fe-Ni合金的微观组织和力学性能[J].热加工工艺, 2005,(5):11-14
    [43]王爱琴,谢敬佩,刘忠侠等.快速凝固Al-Si合金的组织形态和相结构[J].材料热处理学报,2008,29(2):99-102
    [44]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004.96-140
    [45]张大童,李元元,罗宗强.快速凝固铝硅合金材料的研究进展[J].轻合金加工技术,2001,(2):1-6
    [46]甄子胜,赵爱民,毛卫民等.喷射沉积高硅铝合金显微组织及形成机理[J].中国有色金属学报,2000,10(6):815
    [47]周涛,黄伯云,周科朝等.快速凝固耐热耐蚀铝合金的研究[J].稀有金属材料与工程,2004,(2):187-189
    [48]李红英,张建飞,耿进峰等.冷却速度对Al-Cu-Li系合金析出相及其硬度的影响[J].热加工工艺,2006,35(18):38-40
    [49]赵爱民,毛卫民,甄子胜.冷却速度对过共晶铝硅合金凝固组织和耐磨性能的影响[J].中国有色金属学报,2001,11(5):827-832
    [50]李余增.热分析[M].北京:清华大学出版社,1987.220
    [51]神户博太郎.热分析[M].北京:化学工业出版社,1982.5
    [52]黄钰香,庞承焕,林木良.DSC检测过程影响因素的探讨研究[J].广州化工,2008,36(5):1-6
    [53]M.I.波普,M.D.尤德.差热分析[M].北京:北京师范大学出版社,1981.35
    [54]梅新勇,高锦宏,徐小力.对传统差示热分析仪(D S C)的改进方法[J].北京机械工业学院学报,2005,20(3):35-37
    [55]魏齐龙,王永欣,陈铮.Al-Li合金相变的热分析动力学特征[J].稀有金属材料与工程,2006,35(6):942-945
    [56]陈秀梅,水嘉鹏.共析成分Zn-Al合金的相变内耗和DSC的研究[J].材料科学与工程,1998,16(3):71-75
    [57]骆苏华,李亚军.Ti50Ni40Cu10合金的相变潜热与相变热滞[J].材料科学与工程,2003,21(1):47-50
    [58]湖南大学铸造教研室.铸造工艺学[M].长沙:湖南人民出版社,1973.2
    [59]蔡宗德,张连芳,孙建荣.过共晶铝硅合金的生产及其应用[J].特种铸造及有色合金,1990,(4):37-40
    [60]杨志怀,张蓉.A357合金熔体结构变化的DSC分析[J].铸造技术,2009,30(4):528-531
    [61]Tao Feng,Lu-hai Wu,Song-mian Lou. DSC analysis of LT-3 aluminum alloy valuum brazing [J].Journal of shang hai jiao tong university,2005,10(2):182-185
    [62]Gui-li Geng,Yu-jun Bai,Qi-feng Deng. DSC study of martensitic transformation kinetics in a Cu-Zn-Al-Mn-Ni shape memory alloy[J].Acta metallurgica sinica(English letters),1996, 9(1):56-58
    [63]G. S. Xie,Y. Zeng,H.Ding. DSC and TEM study of ultra high strength aluminum alloy[J]. Acta metallurgica sinica(English letters),2004,17(4):554-559
    [64]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.68-112
    [65]郑洪亮,孔凡利,田学雷.Al-Cu合金成分变化对其凝固潜热影响的研究[J].山东大学学报,2008,38(2):11-14
    [66]杨伏良,张伟,易丹青等.快速凝固喷射沉积制备Al-40Si组织分析[J].粉末冶金技术,2006,24(3):166-169
    [67]刘振海.热分析导论[M].北京:化学工业出版社,1991.51-237
    [68]黄雅妮.固液混合铸造Al-Cu合金组织和力学性能的研究[D].湖南大学硕士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700