厚壁高墩水化热温度应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁的破坏大多从裂缝开始的。在计算机及有限元计算理论出现以前,设计不合理是导致桥梁破坏的主要原因;在计算机以及有限元计算理论结合后,施工不当常常引起混凝土开裂。如今,混凝土裂缝大多出现在施工阶段,或是施工方法不对,或是养护措施不到位。
     混凝土从浇注到随后的一周时间里,混凝土将放出大量的水化热,其温度逐渐升高,生热率逐渐减小,混凝土与周围空气的温差逐渐加大。混凝土通过对流与空气传递热量,混凝土与空气的温差又逐渐减小。混凝土内部温度呈非线性分布,从内到外,温度由高到低分布。混凝土由于热胀冷缩作用,温度升降将引起体积将增大与缩小。由于温度呈非线性分布,以及混凝土内部约束作用或者外部约束,体积变形将引起温度应力。
     本文通过对混凝土水化热分析,研究厚壁高墩早期温度场,应力场的规律,以便指导混凝土施工。下面介绍本文主要内容:
     1)本文从固体热传导方程入手,介绍了分析的基本关系式,初始条件,四类边界条件,温度场分析的方法,详细介绍了目前流行的有限单元法。
     2)热分析的首要任务就是确定必要的热力学参数。本人通过现场实测及经验算法,确定混凝土生热率、热传导系数、对流系数。
     3)对实测数据进行分析,发现水化热温度场规律;通过前面确定的热力学参数,进行水化热温度场模拟分析;实测数据与模拟分析对比。
     4)从影响混凝土中心温度的混凝土用量、水泥品种、入模温度三个方面进行分析,得到影响中心温度的具体数据;通过蓄水养护、铺砂、贴塑料泡沫三种表面保温措施,得到影响内外温差的具体数据,以供混凝土施工中运用。
     5)混凝土水化热分析过程中,其材料性能都在急剧变化。本文采用应力增量法计算混凝土徐变应力。蓄水养护不仅影响混凝土温度场,也影响应力场。
     通过以上分析,可以得到以下结论:
     1)混凝土水化热导致混凝土内部温度升高50℃以上,在对流作用下内部温度缓慢降低,表面温度迅速下降,内外温差逐渐增大。
     2)减小混凝土用量,采用低水化热水泥,降低入模温度可以有效降低混凝土中心最高温度。蓄水养护,铺干砂,贴塑料泡沫可以有效减小混凝土内外温差。
     3)混凝土水化热温度应力在浇注后48小时左右达到最大,然后逐渐减小,其原因为混凝土在浇注后在48小时内放出大量水化热,导致体积膨胀,表面出现拉应力。蓄水养护可以有效地减小混凝土内外温差且保持内外温差在40小时后基本恒定,故可以有效地减低混凝土水化热内外温差应力。
Damage to concrete bridge starts from cracks. That designs were unreasonable led to bridges’destruction before computer and theory of finite element invented. After computer and theory of finite element invented,cracks appeared in most of the construction stage because construction methods were incorrect,or conservation measures are not in place.
     Concrete will release a large of concrete hydration heat from pouring to the next week, and gradually reducing the heat rate .At the same time, from the beginning of pouring concrete, the temperature gradually increased, concrete and ambient air temperature gradient gradually increased, the concrete and air through the convection to transfer heat, with the passage of time, the temperature gradient between the concrete and the air also decreased. Concrete internal temperature was non-linear distribution, from the inside out, the temperature distribution of high to low。Because that substances expand when heated and contract when cooled ,temperature changes will cause the volume increasing or reducing. As a result of non-linear temperature distribution, as well as the concrete role of the internal constraints or external constraints, volume deformation will cause thermal stress.
     Based on the analysis of concrete hydration heat, study the law of temperature field and stress field of thick-walled high pier of early concrete so that the use of concrete construction. Here are the main contents of this article:
     1) In this paper, starting with solid heat conduction equation on an analysis of the basic relationship between the initial conditions, four types of boundary conditions, the temperature field analysis method, described in detail the popular finite element method.
     2) thermal analysis of the primary task is to determine the thermodynamic parameters necessary. I measured and experience through on-site algorithm to determine the concrete heat rate, thermal conductivity, convection coefficients.
     3) an analysis of measured data found that the law of temperature field in heat of hydration; through the thermodynamic parameters to be determined , simulating hydration heat; simulation analysis compare to measured data
     4) From three aspects (amount of cement ,varieties of cement, mold temperature)affecting the center temperature of the concrete to get specific data to impact center temperature of concrete; through three surface conservation measures (water conservation and laying sand, plastic foam folder) to get specific data to affect temperature gradient between inside and outside for use in concrete construction.
     5) In the process of thermal analysis of concrete hydration, its material properties are rapidly changing. In this paper, the incremental method to calculate the stress of concrete creep stress and found the law of stress field of concrete。water conservation not only affect the concrete temperature, also affect the stress field.
     Through the above analysis, we can get the following conclusions:
     1) Hydration heat of concrete led to an internal temperature above 50℃. The internal temperature slowly decreased and the surface temperature decreased rapidly and the temperature Difference between inside and outside temperature is gradually increasing under convection
     2) Reducing the amount of concrete, using the low hydration heat of cement, reducing the pouring temperature can effectively reduce the maximum temperature of concrete center. Water conservation, Shop dry sand, plastic foam can be affixed to reduce the temperature difference between inside and outside the concrete.
     3) thermal stress of concrete hydration heat in about 48 hours after pouring reached maximum and then gradually decreased, the reason is that a large of hydration heat released in 48 hours after pouring concrete, resulting in volume expansion, leading to surface tension stress. Water conservation can effectively reduce the temperature difference between inside and outside the concrete and maintain that internal and external temperatures are constant after 40 hours, so it can be very effective in reducing the temperature difference between inside and outside concrete and reducing hydration heat stress.
引文
[1]朱伯芳,大体积混凝土温度应力与温度控制[M].北京:中国电力出版社, 1999.
    [2]王铁梦,工程结构裂缝控制[M].北京:中国建筑工业出版社, 2000.
    [3]袁勇,混凝土结构早期裂缝控制[M],科学出版社, 2004.
    [4]韩重庆,冯健,吕志涛.大面积混凝土梁板结构温度应力分析的徐变应力折减系数法[J].工程力学(第20卷第1期, 2003年2月).
    [5]季韬,郑作樵,林旭健.钢筋混凝土楼板早期开裂的计算模型[J].福州大学学报(自然科学版,第30卷第3期, 2002年6月).
    [6]王正波,宋修广,吴子平,刘滨:混凝土基础底板温度场及温度应力分析[J].南京建筑工程学院学报. 2002(9):55-58.
    [7]朱伯芳,考虑温度影响的混凝土绝热温升表达式[J].水利发电学报. 2003(2): 69-73.
    [8]张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[J].河海大学学报(自然科学学报). 2002(3):1-6.
    [9]张志贺,项彦勇,李成学.浇筑混凝土温控仿真参数的研究[J].铁道建筑.2005 (3 ): 84-86.
    [10]阮静.大跨径连续箱梁混凝土的水化热研究[D].东南大学硕士学位论文. 2001.
    [11]刘文燕,赵勇.混凝土结构基本热工参数研究进展[J].工程力学(增刊). 2001 (1): 23-27.
    [12]李东,潘育耕.混凝土水化热瞬态温度场数值计算过程中的水化放热规律及水化速率问题[J].西安建筑科技大学学报, 1999 (3 ): 277-279.
    [13]刘连新,黄世敏,高性能混凝土水化热试验研究[J],建筑技术, 2003(1): 26-28.
    [14]袁广林,黄方意等.大体积混凝土施工期的水化热温度场及温度应力研究[J].混凝土. 20 (2): 86-88.
    [15]刘兴法.混凝土结构的温度应力分析[J].北京:人民交通出版社. 1999
    [16] Moorty, C. w. Roeder. Temperature-dependent bridge movements[J]. Journal of Structural Engineering, 1992. (3): 20-23
    [17]王歇成,邵敏.有限单元法基本原理和数值方法[M].第2版,北京:清华大学出版社, 1996. (7): 135-137
    [18]周校先.工程中瞬态温度场的有限元分析[J].华南理工大学学报(自然科学版). 1994 (1 ): 127-132.
    [19]时旭东.钢筋混凝土结构的温度场[J].工程力学. 1996(1): 35-43.
    [20]樊小卿,吴为.武汉国际会展中心的温度作用设计[J].建筑结构, 2002, (01).
    [21] Podolny, W. Jr. The cause of cracking in post-tensioned concrete box girder bridges and retrofit procedures[J]. PCI Journa1, 1985, Vo1. 30. No. 2.
    [22] Zuk, W. Thermal and Shrinkage Stresses in Composite Beams[J]. ACI Journa1. 1961, Vo1. 58.
    [23] Elbadry, M. M/Ghali, A. :Temperature variations in concrete bridges[J]. Journal of Structural Engineering, ASCE, 1983, Vo1. I09, No. 10.
    [24]梅甫良.混凝土结构非稳态温度场的新解法[J].水利学报. 2002, (9):74-76.
    [25]陈尧隆,何劲.用三维有限元浮动网格法进行碾压混凝土重力坝施工期温度场和温度应力仿真分析[J].水利学报. 1998 (s1).
    [26]李守义,冯海波,陈尧隆.浇筑温度对碾压混凝土重力坝温度应力的影响[J].中国农村水利水电. 2003(8).
    [27]李守义,张晓飞,陈尧隆.碾压混凝土坝上游面设短缝对温度应力的影响[J].水利水电技术. 2003(7).
    [28] Chen Yaolong. Wang Changjiang, Li Shouyi, Wang Ruijun, He Jing. Simulation analysis of thermal stressof RCC dams using 3-D finite element relocating mesh method[J] Advances in Engineering Software2001, 32 (9): 677一682.
    [29]曹为民,谢先坤,朱岳明.过渡单元和层合单元在混凝土三维温度场仿真计算中的应用[J].水利水电技术. 2000, 33 (4): I -4.
    [30]黄达海,宋玉普,赵国藩.碾压混凝土坝温度徐变应力仿真分析的进展[J].土木工程学报.第33卷第4期97一100.
    [31]黄达海,殷福新,宋玉普.碾压混凝土坝温度场仿真分析的波函数法[J].大连理工大学学报. 2000, 40 (2 ): 214一217.
    [32]方义琳,卓家寿等.用刚体界面元法分析温度场、温度应力及徐变应力[J].水利学报. 1998 (7).
    [33]方义琳,卓家寿.传热场的界面元法[J].河海大学学报. 1998 (4).
    [34]李荣湘,马杰.大体积混凝土温度场计算的边界元法[J].水利学报, 1991 (8).
    [35]刘宁,刘光廷.大体积混凝土结构随机温度徐变应力计算方法研究[J],.力学学服, 1997.
    [36]朱岳明,贺金仁.混凝土温升试验及热力学特性参数反演分析[J].水利学报.2001(11).
    [37]朱岳明,徐之青,贺金仁等.混凝土水管冷却温度场求解的一种正确算法等[J].浙江大学学报, 2003.
    [38]朱伯芳,蔡建波.混凝土坝水管冷却效果的有限元分析[J].水利学报. 1985 (4): 27一?6.
    [39]丁宝瑛.人体积混凝土与冷却水管间水管温差的确定[J].水利水电技术. 1997(3).
    [40]张涛,黄达海,清湘等.沙牌碾压混凝土温度徐变应力仿真计算[J].水利学报. 2000(4).
    [41]高虎,刘光廷.考虑温度对于弹模影响效应的大体积混凝土施工期应力计算[J].清华大学学报. 2000(4):99-102
    [42]高虎,刘光廷,陈凤岐.混凝土双轴压缩徐变实验初步研究[J].清华大学学报, 2001(12):61-63.
    [43]刘宁,刘光廷.大体积混凝土结构温度场的随机有限元算法[J].清华大学学报(自然科学版), 1996, 36(1):41-47.
    [44] Chen H-T, Lin J-YApplication of the hybrid method to transient heat conduction in one-dimensionalco mpositela yers[J]. Computersa ndS tructures. 1991, 39(5):451-458.
    [45] B. A Price and T. RSmith. Thermal response of composite building envelopes account for thermalr adiation[J]. Energy Convers Mgmt. 1995, 36(1):23-33.
    [46] Sami AAl-Sanea. Thermal performance of building roof elements[J]. Building and Enviroment. 2002, 37(7):665-675.
    [47]魏光坪.单室预应力混凝土箱梁温度场及温反应力研究[J].西南交通大学学报, 1989(4).
    [48]戴国强.混凝上收缩温度应力及构造措施[J].建筑结构. 1997 (1):8-11.
    [49]刘开国.超长框架温度变形与温度应力[J].建筑结构. 2000, 30(2):36-40.
    [50]叶甲淳.混凝土小型空心砌块建筑裂缝控制的温度效应研究[D].浙江大学博士学位论文. 2003年5月.
    [51] Zarr R. A history of testing heat insulators at the National Institute of Standards and Technology[J]. In: ASHRAE Transactions 2001.
    [52] Morabito P. Thermal properties of concrete. Variations with the temperature and during the hydration phase[J]. 1PACS document, Subtask 2. 3, 2001.
    [53] Lura P, Breugel K. Thermal properties of concrete: sensitivity studies[J]. IPACS document, Subtask 2. 5, 2001.
    [54] Breugel K. Prediction of temperature development in hardening concrete[J]. Prevention of thermal cracking in concrete at early ages. Report 15, R. Springenschmid, 1998.
    [55]郝志军,钱英欣等.超长混凝土板内无粘结预应力温度配筋分析[J].施工技术. 2001, 30(7):25-27.
    [56]韦宏,周汉香.广州国际会展中心混凝土楼盖温度应力计算与控制[J].建筑结构, 2002, 32(12):30-34.
    [57]朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数[J].水利学报. 1985 (09):54-61.
    [58]吴胜兴,周氏.混凝土徐变度及应力松弛系数的估算方法综述与建议[J].水利学报. 1991.(10):65-70.
    [59]吴胜兴,周氏.大体积混凝土温度应力松弛系数的优化确定[J].河海大学学报(自然科学版). 1993(02):47-53.
    [60]邹小江,寿楠椿,江素华,邹巧鸿.混凝土徐变系数与徐变度的对比分析[J].郑州工业大学学报. 2001, (01):46-49.
    [61]郑晓芬,程雄涛,郑毅敏.环形超长混凝土结构温度问题研究[J].结构工程师. 2006 (06):11一14.
    [62] Reinhardt H, Blaauwendraad J, Jongedijk J. Temperature development in concrete structures taking account of state dependent properties[J]. In: International conference concrete at early ages, Paris, France, 1982.
    [63]徐文纪.考虑龄期与养护条件的混凝土强度推算方法[J].华东公路, 1992(3)23-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700