槽波导谐振腔微波化学反应器的优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯和乙炔是化学工业中最重要的基础原料,随着石油资源的日益匮乏,利用天然气生成乙烯和乙炔已经成为当今世界研究的热点。由于传统法甲烷制C2炔需要高温、高能,故无产业化前景;而利用微波化学方法从甲烷偶联制C2炔有着明显的优越性。但目前的微波化学实验主要是在矩形波导或矩形波导构成的谐振腔内进行的,从而存在微波化学反应用谐振腔体积小,C2炔产量低等缺陷。针对这种缺陷,本论文提出了槽波导谐振腔结构的微波化学反应器,并对槽波导谐振腔微波化学反应器进行了详细分析和优化。本论文的研究内容有主要以下两点:
     1.在中心频率为2.45GHz的条件下,利用横向谐振法分别对矩形和圆形槽波导的色散特性进行理论分析推导,得到相应的色散方程。并利用MATLAB软件编程计算,得到矩形和圆形槽波导的截止特性和波导波长,通过与其他文献的比较,验证了本文求解槽波导传输特性的方法和编程计算的正确性和有效性。另外,还利用MATLAB软件编程对矩形和圆形槽波导谐振腔进行优化设计,得到其归一化截止波长趋于一个稳定值时所对应的腔体结构尺寸。
     2.根据理论分析,在中心频率为2.45GHz,功率为1W条件下,利用基于有限元法的HFSS软件分别对矩形和圆形槽波导谐振腔微波化学反应器进一步优化设计。从仿真计算结果来看,不仅验证了横向谐振法求解结果的正确性,而且得到最优结构尺寸的微波化学反应器。在最优结构尺寸下,矩形槽波导谐振腔微波化学反应器内的最大电场强度可达到104V/m,且区域较大;而圆形槽波导谐振腔微波化学反应器内的最大电场强度仅2000V/m。因此矩形槽波导谐振腔微波化学反应器更适合用来甲烷偶联制C2炔。在高功率和激励器的作用下,矩形槽波导谐振腔微波化学反应器内的甲烷气体在常压下就可以产生微波放电,使甲烷转化成C2炔。
Ethylene and acetylene are the most important basic materials of chemical industry, with the scarcity of petroleum resources, using natural gas to generate ethylene and acetylene is becoming the research focus of world. Because making methane to C2 alkynes by traditional methods need high temperature and high energy, so which don’t have industrialization prospect. And making methane to C2 alkynes by microwave chemistry methods have obvious advantages. But most of microwave chemistry experiments are carried out in rectangular waveguide or resonator made of rectangular waveguide. So microwave chemistry methods exist some defects, such as smaller of microwave reaction resonator and lower of C2 alkynes output. In order to solve these defects, we put forward microwave chemistry reactor made of groove waveguide resonator, and we do a lot of studies. Research contents of this paper include the following several:
     In the first side, I make theoretical derivation about dispersion characteristics of rectangular groove guide and circular groove guide by transverse resonant method in 2.45GHz, and obtain corresponding dispersion equation. Then we use MATLAB software to programming calculation, and obtain the cut-off characteristic and waveguide wavelength of rectangular groove guide and circular groove guide. By comparison with other paper, it proves the validity and efficiency of our method. Another, we use MATLAB software to optimize the rectangular groove guide reactor and the circular groove guide reactor, and obtain the stable value of normalized cut-off wavelength in optimal structure and size.
     According to theoretical analysis, we use HFSS software to further optimize microwave chemistry reactor made of rectangular groove guide reactor and microwave chemistry reactor made of circular groove guide reactor in 2.45GHz and 1W. From the simulation solution, we prove out the correctness of solving method, and get the optimal structure and size of microwave chemistry reactor. Under the optimal structure and size, the maximum field strength of microwave chemistry reactor made of rectangular groove guide reactor reaches 104V/m, and exist larger region. But the maximum field strength of microwave chemistry reactor made of circular groove guide reactor only has 2000V/m. So microwave chemistry reactor made of rectangular groove guide reactor is more suitable to make methane to C2 alkynes. Under the effect of high power and actuator, it can form microwave discharge, and make methane to C2 alkynes in microwave chemistry reactor made of rectangular groove guide reactor under atmospheric.
引文
[1]师江柳,张继炎,等.甲烷-CO2制取合成气研究现状评述[J].天然气化工, 1995, 20(2):35-43
    [2]李文钊.天然气化学转化新途径[J].化学进展, 1995, 7(3):201-204
    [3] G.E.Keller, M.M.Bhasin. Synthesis of Ethylene via Oxidative Coupling of Methane [J]. J. Catal., 1982, 73(1):9-19
    [4]化学部天然气化工信息站.国内碳-化学进展-甲烷化学及合成气化学[J].天然气化工, 1995, 20(3):44-49
    [5]朱爱民,宫为民,张秀玲,等.脉冲电晕等离子体应用于甲烷偶联的探索研究[J].天然气化工, 1997, 22(2):1-5
    [6] Gross B, Crycz B, Miklossy K.等离子体技术[M].北京:科学出版社, 1980:422
    [7] C Marun, L D Conde, S L Suib. Catalytic Oligomerization of Methane via Microwave Heating [J]. J. Phys. Chem., 1999, 103(2):4332-4340
    [8] S I Mikhail, D P Stephen, K S W Jeffrey. High-power Pulsed Radio-frequency and Microwave Catalytic Processes: Selective Production of Acetylene from the Reaction of Methane over Carbon [J]. J. Catal., 1995, 151(3):349-355
    [9] Chang Moo Been, Huang Chun Po. Oxidative Conversion Methane via Plasma Processing with Dielectric Barrier Diacharges [J]. J. Adv. Oxid. Technal. , 1999, 4(3):333-338
    [10] R L Mccarthy. Chemical Synthesis from Free Radicals Produced in Microwave Fields [J]. J. Phys. Chem., 1954, 22(8):1360-1365
    [11] Y Kawahara. Decomposition of Hydrocarbons in a Microwave Discharge [J]. J. Phys. Chem., 1969, 73(6):1648-1651
    [12] S L Suib, R P Zerger. A Direct, Continuous, Low-power Catalytic Conversion of Methane to Higher Hydrocarbons via Microwave Plasma [J]. J. Catal., 1993, 139(7):383-391
    [13] J H Huang, S L Suib. Methane Dimerization via Microwave Plasmas [J]. Res. Chem. Intermed, 1994,20(8):133
    [14] G Bond, R B Moyes, D A Whan. Recent Applications of Microwave Heating in Catalysis [J]. Catal. Today, 1993, 17(6):427-437
    [15] J K S Wan, M Tse, H Husby. Microwave Power Electromagnetic Energy [J]. J. Catal., 1990, 8(6), 25:32
    [16] M S Ioffe, S D Pollington, J K S Wan. High-Power Pulsed Radio-Frequency and Microwave Catalytic Processes: Selective Production of Acetylene from the Reaction of Methane over Carbon [J]. J. Catal., 1995, 151(11): 349-355
    [17]张劲松, J K S Wan,曹丽华,等.微波诱导甲烷在活性炭/碳化硅上直接转化制C2炔[J].催化学报,1999, 20(1): 45-50
    [18]徐云鹏,田志坚,徐竹生,等.活性炭引发的常压连续微波放电下甲烷转化制C2烃[J].石油与天然气化工, 2002,31(1):15-17
    [19]徐春蕾.微波等离子体条件下催化甲烷偶联制C2炔:[硕士学位论文].南京:东南大学, 2004
    [20] K Hiraoka. A Study of Reaction Mechanism of Methane in a Radio-frequency Glow Discharge Plasma Using Radial and Ion Scavengers [J]. Can. J. Chem., 1985,63(3):2899-2905
    [21]杨鸿生,孙德坤.用于以天然气制乙烯的槽波导微波化学反应设备及制备方法.中国专利, 200610037890.9, 2007-12
    [22] F.J .Tischer. The Groove Guide a Low-loss Waveguide for Millimeter Waves [J]. IEEE Transactions on Microwave Theory and Techniques, 1963, 11(9):291~296
    [23] Y.M.Choi, D.J.Harri, K F Tsang. Theoretical and Experimental Characteristics of Single V-groove Guide for X-band and 100 GHz Operation [J]. IEEE Transactions on Microwave Theory and Techniques, 1988,36(4):715-723
    [24] T Nakahara, N Kurauchi. Transmission Mode in the Grooved Guide [J]. J. Inst. Elect. Comm. Eng. Jap. , 1964, 47(7):43-51
    [25] Y.M.Choi, D.J.Harri. Groove Guide for Short Millimeter Waveguide System [J]. Infrared and Millimeter Waves, Millimeter Component and Techniques, New York: Academic press, Part 3,1984,11:99-140
    [26] H S Yang, J L Ma, Z Z Lu. Circular Groove Guide for Short Millimeter and Sub Millimeter Wave [J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 42(2):324-330
    [27] Sachidananda. Rigorous Analysis of a Groove Guide [J]. Pro. IEEE,1992, 139(5):449-452
    [28] A.A.Oliner, P.L.Ampiello. The Dominant Mode Properties of Open Groove Guide: An Improved solution [J]. IEEE Transactions on Microwave Theory and Techniques, 1985, 33(9):755-764
    [29] Ma Zhewang, Eikichi Yamashita, Xu Shanjia. Modal Analysis of Open Groove Guide with Arbitrary Groove Profile [J]. IEEE Microwave and Guided Wave Letters, 1992,2(9):364-366
    [30]王文祥.微波工程技术[M].北京:国防工业出版社, 2009, 99-100
    [31]马阿宁.任意截面波导和槽波导传输特性的综合阶梯近似等效电路法分析:[硕士学位论文].兰州:兰州大学, 2006
    [32] C.G.Montgomery. Principles of Microwave Circuits [J]. MIT. Radiation Lab. Series, 1948, 8:176
    [33]黄永健.槽波导腔型微波应用器的研究:[硕士学位论文].成都:电子科技大学, 1987
    [34] Yang Hongsheng, Ma Jianglei, Lu Zhongzuo. The Characteristic Equation and Solution of Circular-groove Guide [J]. International Journal of Infrared and Millimeter Waves, 1991, 12(5):535-541
    [35]马江镭,杨鸿生,吴忠贤.圆形槽波导的另一种分析方法[J].东南大学学报, 1995, 25(3):30-33
    [36]金钦汉,黄卡玛,等.微波化学[M].北京:科学出版社,1999, 19-20
    [37]彭燕军.微波化学装置中相关技术的研究:[硕士学位论文].南京:东南大学, 2006
    [38]陈冬冬.模式变换器的优化设计:[硕士学位论文].南京:东南大学, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700