三场耦合作用相关试验及耦合强度量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度场、渗流场和变形场是岩体物理地质力学环境的重要组成部分,这三个场之间存在高度非线性的复杂耦合作用,即THM耦合作用。近20年来,三场耦合理论取得了很大的进展,但作为一个新兴的交叉研究领域,三场耦合理论的研究还存在不少问题。本文结合国家自然科学基金项目,对当前三场耦合研究领域中存在的一些问题进行了研究。
     论文进行的主要工作及取得的主要结论以及创新性成果包括:
     (1)从三场耦合作用模式、三场耦合数学模型和相关试验研究3个方面比较全面地总结了三场耦合的国内外研究现状。
     (2)根据连续性方程、线动量平衡方程和能量守恒方程以及相应的物性方程推导了饱和岩体温度场-渗流场-变形场三场耦合作用控制方程组。在推导控制方程组时舍弃了“局部热平衡”假设,采用了热弹塑性本构关系,考虑了温度梯度对地下水渗流的影响(类Soret效应)以及地下水的粘性耗散对岩体温度场的影响。
     (3)在不同温度水平和不同有效应力水平下,进行了砂岩的孔隙度试验。试验结果表明,有效应力对砂岩孔隙度的影响较大,在温度一定的情况下,砂岩的孔隙度随有效应力的增加而呈负指数规律减小;而温度变化(本试验中的温度变化范围为37.6℃)对砂岩孔隙度的影响很小。
     (4)在不同温度水平和不同有效应力水平下,进行了砂岩的渗透率试验。试验结果表明,温度的升高或(和)有效应力的增加都将导致砂岩渗透率的减小。在温度一定的条件下,砂岩的渗透率和水力传导系数均随有效应力的增加而呈负指数规律减小,但在有效应力一定的条件下,水力传导系数与温度之间的关系函数并非单调函数。
     (5)根据对试验结果的分析,初步提出了温度和有效应力对渗透率的影响机理。就本试验所用砂岩而言,有效应力对渗透率的影响主要在于有效应力对孔隙,尤其是对喉道的压缩作用;而温度对渗透率的影响则主要在于随温度升高而加剧的粘土矿物的分散作用以及砂岩骨架的热膨胀对喉道的压缩作用。
     (6)进行了围压升降过程中砂岩岩样和单裂隙试件的渗透率试验。试验结果表明,在围压升降过程中,砂岩和单裂隙花岗岩的渗透率均随有效应
    
    西南交通大学博士研究生学位论文
    第日页
    力的增加呈负指数规律减小,但单裂隙试件的渗透率对有效应力的敏感程度
    远大于砂岩,而砂岩渗透率的恢复程度则远大于单裂隙试件。在围压下降过
    程中,砂岩和单裂隙试件渗透率的恢复均存在明显的应力滞后效应。
     (7)根据多方收集到的资料,考察了温度和压力对岩石和地下水物性
    参数的影响。研究表明,与压力的影响相比,温度对岩石和地下水物性参数
    的影响更大。本文给出了地下水物性参数与温度之间精度较高的关系式。
     (8)在前人研究的基础上,根据试验研究给出了比较全面的三场祸合
    作用模式;根据祸合作用实现方式的不同,将三场藕合机理分为两类:“力
    学”祸合和“参数”祸合。
     (9)进行了温度场、渗流场和变形场三场两两祸合作用强度的量化研
    究,发展并完善了6个祸合强度量化参数,为三场祸合数学模型的合理简化
    提供了一种依据,对推进三场祸合理论的工程应用具有一定的现实意义。
As the important components of physical geologic environment for rock mass, temperature field, seepage field and stress or strain field are coupled, namely coupled Thermal-hydro-mechanical(THM) behaviour, which is highly non-linear and complex. Over the past twenty years, great advances have been made in the area of THM coupling theory. However, as a rising interdisciplinary subject, there are several shortages in this area. Funded by NSF,this thesis develops the research on several shortages in the area of THM coupling theory.
    The main efforts, conclusions and innovative results gained can be expressed as follows.
    (1) From research achievements obtained on coupling mechanisms, mathematical model and test studies, state-of-the-art of studies on thermo-hydro-mechanical coupling in rock and soil mass are systematically reviewed.
    (2) On the basis of continuity equation, momentum conservation equation, energy conservation equation, and substantial equation, coupled THM governing equations are derivated with giving up the assumption of local thermal equilibrium, adopting thermal elasto-plastic constitutive relation, taking the effect of temperature gradient on groundwater seepage(analogous to Soret diffusion) and the effect of viscous dissipation of groundwater on temperature field of rock mass into account.
    (3) The porosity test for sandstone was conducted at various temperature level and various effective stress level. The testing results show that the porosity of sandstone decreases with increasing effective stress at the fixed temperature level, following the law of negative exponent. However, at the fixed effective stress level, the effect of temperature on the porosity of sandstone is very small (37.6℃ temperature variation).
    (4) The permeability test for sandstone was conducted at various temperature level and various effective stress level. The testing results show that the permeability of sandstone decreases with rising temperature and/or increasing effective stress. At the fixed temperature level, both the permeability and hydraulic conductivity of sandstone decrease with the
    
    
    
    increasing effective stress, following the law of negative exponent. At the fixed effective stress level, however, the function between hydraulic conductivity and temperature is not a monotone one.
    (5) According to the analysis on tests results, the effect mechanism of temperature and effective stress on the permeability is put forward. As far as the sandstone adopted, the effect of effective stress on permeability lies in pressure effect of effective stress on pore and throat, and that of temperature lies in aggravating disaggregation of clay mineral with rising temperature and pressure effect of skeleton expansion on throat.
    (6) The permeability tests for sandstone and granite with a single fracture were conducted in the process of loading-unloading for confining pressure. The test results show that both the permeability of sandstone and that of granite with a single fracture decrease with increasing effective stress, following the law of exponential decay. The permeability sensitivity of granite to effective stress is more stronger than that of sandstone, but the permeability recovery capability of sandstone is more stronger than that of granite. Moreover, for sandstone and granite with a single fracture, there is obvious hysteresis effect for the restitution of permeability in the process of unloading for confining pressure.
    (7) Based on the collected data, the effect of temperature and pressure on physical properties of rock and groundwater is researched. The effect of temperature is more greater than that of pressure. The high-precision formula between physical properties of groundwater and temperature are presented.
    (8) On the basis of previous studies, improved pattern of THM coupling is put forward. Ground on different coupling mode, THM coupling mechanism are classified two sorts as mecha
引文
[1] 国际标准汉字大词典.金山词霸2002[CD].金山软件股份有限公司.2002
    [2] Hart R.D., John C.M.ST. Formulation of a Fully-coupled Thermal-Mechanical-Fluid Model for Non-linear Geologic Systems[J]. Int.J.Rock.Meeh.Min.Sic.& Geomech.Abstr. 1986, 23 (3): 213-224
    [3] 中国核信息网.2001-2002年世界核动力状况一览表[OL].http://www. atominfo. com.cn/zhbd/hxw/200208%D7%DB9. htm. 2002-08-01
    [4] 石丁.中国核废料放在哪里[J].环球时报.2003-5-12
    [5] Jing L,, Tsang C.-F., Stephansson O., DEXCOVALEX-an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J]. Int.J.Rock.Mech.Min.Sic.& Geomech. Abstr. 1995, 32 (5):389-398
    [6] Guvanasen V., Chan Tin. A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass [J]. Int.J.Rock. Meeh.Min.Sic. 2000, 37(1/2):89-106
    [7] Millard A.,Durin M., Stietel A. et al. Discrete and Continuum Approaches to Simulate the Thermo-Hydro-Mechanical Couplings in a Large, Fractured Rock Mass[J]. Int.J.Rock.Mech.Min.Sic.& Geomeeh.Abstr. 1995, 32 (5):409-434
    [8] Abdallah G., Thoraval A., Sfeir A. et al. Thermal Convection of Fluid in Fractured Media[J]. Int.J.Rock.Mech.Min.Sic.& Geomech.Abstr. 1995, 32 (5):409-434
    [9] 杨立中,黄涛.初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J].水文地质工程地质.2000,27(2):33-35
    [10] Noorishad J., Tsang C.F. and Witherspoon P.A. Coupled Thermal-Hydraulic-Mechanical Phenomena in Saturated Fractured Porous Rocks: Numerical Approach [J]. J.Geophysical Res. 1984, 89(B12): 10365-10373
    [11] Nguyen T.S., Selvadurai A.P.S. Coupled Thermal-Mechanical-Hydrological Behaviour of Sparsely Fractured Rock: Implications for Nuclear Fuel Waste Disposal[J]. Int.J.Rock.Mech.Min.Sic.& Geomech.Abstr. 1995, 32 (5):465-479
    [12] Thomas H.R., He Y., Sanson M.R., et al. On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils[J]. Engineering
    
    Geology. 1996, 41(1):197-218
    [13] Gatmiri B.,Delage P. A formulation of fully coupled thermal-hydro-mechanical behavior of saturated porous media-numerical approach[J]. Int.J. Num. & Anal. Methods in Geomech. 1997, 21(3): 199-225
    [14] Bower K.M., Zyvoloski G.. A Numerical Model for Thermo-hydro-mechanical Coupling in Fractured Rock[J]. Int.J. Rock.Mech.Min.Sic. 1997, 34(8):1201-1211
    [15] 黄涛,杨立中.工程岩体地下水渗流-应力-温度耦合作用数学模型研究[J].西南交通大学学报.1999,34(1):11-15
    [16] Neaupane K.M., Yamabe T., Yoshinaka R.. Simulation of a fully coupled thermohydro-mechanical system in freezing and thawing rock[J]. Int.J.Rock.Mech. Min. Sic. 1999, 36(5):563-580
    [17] 赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报.1999,21(5):529-533
    [18] 刘亚晨,刘泉声,吴玉山等.核废料贮存围岩介质不可逆过程热力学和热弹性[J].岩石力学与工程学报.2000,19(3):361-365
    [19] Rutqvist J., Brgesson L., Chijimatsu M., et al. Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models[J]. Int.J.Rock.Mech. Min.Sic. 2001, 38(1): 105-127
    [20] 梁冰,孙可明,薛强.地下工程中的流-固耦合问题的探讨[J].辽宁工程技术大学学报.2001,20(2):129-134
    [21] 王瑞凤,赵阳升,胡耀青.高温岩体地热开发的固流热耦合三维数值模拟[J].太原理工大学学报.2002,33(3):275-278
    [22] Chijimatsu M., Fujita T., Sugita Y. et al. Fields experiment, results and THM behavior in the Kamaishi mine experiment[J]. Int.J.Rock.Mech.Min.Sic.2001, 38(1):67-78
    [23] 张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工学院学报.1995,24(4):65-68
    [24] 程瑞端,陈海焱,鲜学福.温度对煤样渗透系数影响的实验研究[J].煤炭工程师.1998,(1):13-16
    [25] 刘亚晨,蔡永庆,刘泉声等.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报.2001,23(2):196-200
    [26] Selvadurai A.P.S., Nguyen T.S. Scoping analyses of the coupled thermalhydrological-mechnaical behaviour of the rock mass around a nuclear fuel waste
    
    repository[J]. Engineering Geology. 1996, 47:379-400
    [27] SHAO J.F. A Numerical Solution for a Thermo-hydro-mechanical Coupling Problem with Heat Convection[J]. Int.J. Rock.Mech.Min.Sic. 2000, 37(1/2):51-61
    [28] 李宁,陈波,党发宁.裂隙岩体介质温度、渗流、变形耦合模型与有限元解析[J].自然科学进展.2000,10(8):721-728
    [29] 陈波,李宁,禚瑞花.多孔介质的变形场-渗流场-温度场耦合有限元分析[J].岩石力学与工程学报.2001,20(4):467-472
    [30] 陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991
    [31] R.A.弗里泽,J.A.彻里[加].地下水[M].吴静方译.北京:地震出版社,1987
    [32] Mctigue D.F. Thermoelastic Response of Fluid-Saturated Porous Rock[J]. J.of Geophysical Research. 1986, 91(B9):9533-9542
    [33] Palciauskas V.V., Domenico P.A. Characterization of Drained and Undrained response of Thermally Loaded Repository Rocks[J]. Water Resources Research. 1982,18(2):281-290
    [34] 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学.1998,19(2):92-98
    [35] 雅·贝尔.地下水水力学[M].许涓铭等译.北京:地质出版社,1985
    [36] A.班恩,B.A.马克西莫夫[苏].岩石性质对地下液体渗流的影响[M].张朝琛译.北京:石油工业出版社,1981
    [37] 王瑗,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000,19(2):177-181
    [38] 刘建军,刘先贵,胡雅扔等.低渗透储层流—固耦合渗流规律的研究[J].岩石力学与工程学报.2002,21(1):88-92
    [39] 景岷雪,袁小玲.碳酸盐岩岩心应力敏感性实验研究[J].天然气工业.2002,20(增刊):114-117
    [40] 王嫒.单裂隙面渗流与应力的耦合特性[J].岩石力学与工程学报.2002,21(1):83~87
    [41] 陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001
    [42] 许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报.2000,22(3):332-335
    [43] 林睦曾.岩石热物理学及其应用[M].重庆:重庆大学出版社,1991
    [44] [德].高压下岩石的温度传导性[A].伏拉罗维奇等[苏].高温高压下岩石和矿物物理性质的研究[M].蒋风亮,于允生译.北京:地震出版社,1982:109-113
    [45] 姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985
    
    
    [46] 高家锐.动量、热量、质量传输原理[M].重庆:重庆大学出版社,1987
    [47] 西南交通大学水力学教研室.水力学(第三版)[M].北京:高等教育出版社,1983
    [48] Chan T., Khair K., Jing L., et al. International Comparison of Coupled Thermo-Hydro-Mechanical Models of a Multiple-Fracture Bench Mark Problem: DECOVALEX Phase Ⅰ, Bench Mark Test 2[J]. Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr. 1995, 32(5): 435-452
    [49] 叶镇国.水力学及桥涵水文[M].北京:人民交通出版社,1996
    [50] 苑莲菊,李振栓,武胜忠等.工程渗流力学及应用[M].北京:中国建材工业出版社,1996
    [51] 陈顒.地壳岩石的力学性能—理论基础与实验方法[M].北京:地震出版社,1988
    [52] 孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999
    [53] 王补宣.工程传热传质学[M].北京:科学出版社,1982
    [54] 顾泽同,葛永乐,翁中杰等.工程热应力[M].北京:国防工业出版社,1987
    [55] Zimmerman.R.W. Coupling in poroelasticity and theroelasticity [J]. Int.J.Rock Mech. Min.Sci. 2000, 37(1/2): 84-87
    [56] 刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社,2000
    [57] 潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995
    [58] 吴家龙.弹性力学(新一版)[M].上海:同济大学出版社,1993
    [59] 赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    [60] V.S.阿巴兹,P.S.拉森.对流换热[M].顾传保,罗棣庵,李心桂译.北京:高等教育出版社,1992
    [61] 朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990
    [62] 姜培学,司广树,任泽霈.粘性耗散及变物性对多空介质中对流换热的影响研究[J].工程热物理学报.2000,21(5):590-594
    [63] 张志军,杜建华,王补宣.多孔介质强迫对流传热中粘性耗散的影响[J].上海交通大学学报.1999,33(8):979-982
    [64] 张志辉,吴吉春,薛禹群等.含水层热量输运中自然热对流和水-岩热交换作用的研究[J].工程地质学报.1997,5(3):269-275
    [65] 仵彦卿.地下水与地质灾害[J].地下空间.1999,19(4):303-316
    [66] 刘建军,刘先贵.有效应力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报.2001,7(1):41-44
    [67] 彭苏萍,孟召平,王虎等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报.2003,22(5):742-746
    
    
    [68] Bourbie, Coussy A. Acoustics of Porous Media[M]. Gulf Publishing Co., 1987
    [69] BANDIS S.C., LUMSD-EN A.C., BARTON N.R. Fundamentals of Rock Joint Deformation[J]. Int.J.Rock.Mech.Min.Sic.& Geomech. Abstr.1983, 20(6):249-268
    [70] 郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报.1999,18(2):133-136
    [71] 郑少河,段康廉,赵阳升.有效应力作用下单裂隙渗透规律的实验研究[J].山西矿业学院学报.1997,15(3):283-288
    [72] BARTON N., BANDIS S., BAKHTAR K. Strength, Deformation and Conductivity Coupling of Rock Joints[J]. Int,J.Rock.Mech.Min.Sic.& Geomech. Abstr. 1985, 22(13): 121-140
    [73] Zhao J., Brown E.T. Hydro-thermo-mechnaical properties of joints in the Carnmenellis granite[J]. Q.J.of Engineering Geology. 1992, 25:279-290
    [74] 仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994
    [75] Olsson R., Barton N. An improved model for hydromechanical coupling during shearing of rock joints[J]. Int.J.Rock.Mech.Min.Sic.2001,38(3): 317-329
    [76] 蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [77] Denis Farbe, Jerzy Gustkiewicz. Poroelastic Properties of Limestones and Sandstones under Hydrostatic Conditions[J]. Int.J.Rock.Mech.Min.Sic. 1997, 34(1):127-134
    [78] 葛洪魁,陈颙,林英松.岩石力学特性通用预测模型及地球物理评价方法[A].中国岩石力学与工程学会编,第六次全国岩石力学与工程学术大会论文集[C].北京:中国科技出版社.2000:238-242
    [79] 葛洪魁,韩德华,陈颙.砂岩孔隙弹性特性的试验研究[J].岩石力学与工程学报.2013,1,20(3):332-337
    [80] Stempon, A.W. The Pore pressure coefficient A and B[J]. Geotechnique. 1954, 4: 143-147
    [81] Bishop, A.W. The influence of an undrained change in stress on the pore pressure in porous media of low compressibility[J]. Geotechnique. 1973, 23:435-442
    [82] Cheng A.H.-D., Abousleiman Y. Review of Some Poroelastic Effects in Rock Mechanics[J]. Int.J.Rock.Mech.Min.Sic.& Geomech. Abstr.1993, 30(7):1119-1126
    [83] Zimmerman R W, Somerton WH, King MS. Compressibility of porous rocks[J]. J. Geophys Res. 1986, 91(12): 765-777
    [84] Noris A. Stoneley-Wave attenuation and dispersion in permeable formation[J].
    
    Geophysics. 1989, 54:330-341
    [85] 冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发.1997,24(3):61-65
    [86] Y.S.拖鲁基安,W.R.贾德,R.F.罗伊等[美].岩石与矿物的物理性质[M].单家增,李继亮等译.北京:石油工业出版社,1990
    [87] 王洪纲.热弹性力学概论[M].北京:清华大学出版社,1989
    [88] 陆明万,罗学富.弹性理论基础(第二版)上册[M].北京:清华大学出版社,施普林格出版社,2001
    [89] 李灏,颜汉洪.热弹性学[M].武汉:湖北教育出版社,1988
    [90] 《工程地质手册》编写委员会.工程地质手册(第三版)[M].北京:中国建筑工业出版社,1992
    [91] 沈珍瑶,李国鼎,李安安等.高压实膨润土热湿力性能测试[J].水文地质工程地质.1998,25(2):8-9.
    [92] 陈大梅,姜泽春,蒋九余.贵州高岭土的物质成分和热物理特性研究[J].高校地质学报.2000,6(2):298-305
    [93] 张菊明,熊亮萍.有限单元法在地热研究中的应用[M].北京:科学出版社,1986
    [94] 王贤能,黄润秋.深埋长隧洞温度场的评价预测[J].水文地质工程地质.1996,23(6):6-10
    [95] 黄润秋,王贤能,唐胜传等.深埋长隧道工程开挖的主要地质灾害问题研究[J].地质灾害与环境保护.1997,8(1):50-68
    [96] 张发旺,王贵玲,侯新伟等.地下水循环对围岩温度场的影响及地热资源形成分析[J].地球学报.2000,21(2):142-146
    [97] 柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水.1997,19(2):59-62
    [98] 朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用[J].岩石力学与工程学报.2001,19(3):261-264
    [99] 王庆良,王文萍,梁伟锋等.应力~耗散热地温前兆机理研究[J].地震学报.1998,20(5):529-534
    [100] Yow J.L., Hunt J.R. Coupled processes in rock mass performance with emphasis on nuclear waste isolation[J]. Int.J.Rock.Mech.Min.Sic. 2002, 39(1): 1-7
    [101] G.邦特巴恩著[联邦德国].地热学导论[M].易志新,熊亮萍译.北京:地震出版社,1988
    [102] 王颖轶,张宏君,黄醒春等.高温作用下大理岩应力-应变全过程的试验研究[J].岩
    
    石力学与工程学报.2002,21(增2):2345-2349
    [103] 洪世铎.油藏物理基础[M].北京:石油工业出版社,1985
    [104] F.A.Dullien,现代渗流物理学[M].范玉平,赵东伟等译.北京:石油工业出版社,2001
    [105] 王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995
    [106] 杨立中,周训等.深层地下水渗流的研究[M].成都:成都科技大学出版社,1995
    [107] 向阳.油气储集层岩石特殊物理研究方法[M].成都:四川科学技术出版社,1994
    [108] 盛金昌,速宝玉,王嫒等.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报.2000,19(3):304-309
    [109] Bai M., Meng F., Elsworth D. et al. Analysis of Stress-dependent Permeability in Nonorthogonal flow and deformation fields[J]. Rock Mech.Rock Engng. 1999,32(3):195-219
    [110] Wu Yu-Shu, Pruess K. Integral solution for transient fluid flow through a porous medium with pressure-dependent permeability[J]. Int.J.Rock.Mech.Min.Sic. 2000, 37(1/2):51-61
    [111] Liu J., Elsworth D., Brady B.H. et al. Strain-dependent Fluid Defined Through Rock Mass Classification Schemes[J]. Rock Mech.Rock Engng. 2000, 33(2):75-92
    [112] 李洪升,刘增利,梁承姬.冻土水热力耦合作用的数学模型及数值模拟[J].力学学报.2001,33(5):621-627
    [113] 何平,程国栋,俞祁浩.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土.2000,22(2):135-138
    [114] YIN H., NUR A., MAVKO G. Critical Porosity-A Physical Boundary in Poroelasticity[J]. Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr. 1993, 30(7):805-808
    [115] Andrew Norris. On the correspondence between poroelasticity and thermoelasticity[J]. J.Appl.Phys. 1992, 31(3):1138-1141
    [116] 徐向华,范学平.油藏多相流体渗流流-固耦合数学模拟研究[J].岩石力学与工程学报.2002,21(1):93~97
    [117] 刘建军,刘先贵,胡雅礽等.低渗透储层流-固耦合渗流规律的研究[J].岩石力学与工程学报.2002,21(1):88~92
    [118] Detournay E., Cheng A.H.-D. Poroelasticity Considerations in In Situ Stress Determination by Hydraulic Fracturing[J]. Int.J.Rock.Mech.Min.Sic.& Geomech. Abstr. 1989,26(6): 507-513
    [119] Warpinski N.R., Teufel L.W. Laboratory Measurements of the Effective-Stress-
    
    Law for Carbonate Rocks under Deformation[J]. Int.J.Rock.Mech.Min.Sic.& Geomech. Abstr.1993, 30(7): 1169-1172
    [120] Berge P.A., Wang H.F., Bonner B.P. Pore Pressure Buildup Coefficient in Synthetic and Natural Sandstones[J]. Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr. 1993, 30(7): 1135-1141
    [121] Giraud A.Rouset G. Thermoelastic and thermoplastic response of a porous space submitted to a decaying heat source[J]. Int.J.for Num.& Anal.Methods in Geomech.1995, 19:475-495
    [122] Carroll M.M. An Effective Stress Law for Anisotropic Elastic Deformation[J]. Journal of Geophysical Research. 1979, 84(B 13):7510-7512
    [123] Bernabe Y. The Effective Pressure Law for Permeability in Chelmsford Granite and Barre Granite[J]. Int.J.Rock.Mech.Min.Sic.& Geomech. Abstr. 1986,23(3): 267-275
    [124] Budhi Sagar, Akshai Runchal. Permeability of Fractured Rock: Effect of Fracture Size and Data Uncertainties[J]. Water Resources Research. 1982, 18(2):266-274
    [125] Katsube N., Carroll M.M. The Modified Mixture Theory for Fluid-Filled Porous Materials:Theory[J]. Journal of Applied Mechanics. 1987, 54:35-40
    [126] Katsube N., Carroll M.M. The Modified Mixture Theory for Fluid-Filled Porous Materials:Applications[J]. Journal of Applied Mechanics. 1987, 54:41-46
    [127] Katsube N. The Constitutive Theory for Fluid-Filled Porous Materials[J]. Journal of Applied Mechanics.1985, 52:185-189
    [128] CHENG A.H.-D. Material Coefficients of Anisotropic Poroelasticity[J]. Int.J.-Rock.Mech.Min.Sic. 1997, 34(2):199-205
    [129] Wei Z.Q., Egger P., Descoeudres F. Permeability Predictions for Jointed Rock Masses[J]. Int.J.Rock. Mech.Min.Sic.& Geomech. Abstr. 1995, 32(3):251-261
    [130] Garg S.K. and Nur A. Effective stress laws for fluid-saturated porous rocks[J]. J. Geophys.Res. 1973, 78(26):5911-5921
    [131] Booker JR. Savvidou C. Consolidation around a point heat source[J]. Int. J.for Num. & Anal. Methods in Geomech.1985;9:173~184
    [132] Seneviratne HN. Carter JP. Booker JR. Analysis of fully coupled thermo-mechanical behavior around a rigid cylindrical heat source buried in clay[J]. Int.J.for Num. & Anal. Methods in Geomech. 1994, 18:177-203
    [133] 王自明,杜志敏.变温条件下弹塑性油藏中多相渗流的流固耦合数学模型与数值
    
    模拟[J].石油勘探与开发.2001,28(6):68-72
    [134] 仵彦卿,高荣芳.影响油气运移的应力场地温场渗流场耦合的双重介质模型[J].西安理工大学学报.1998,14(2):113-143
    [135] 仵彦卿,高荣芳.影响油气运移的应力场地温场渗流场耦合的连续介质模型[J].西安理工大学学报.1997,13(3):204-209
    [136] Tang C.A., Tham L.G., Lee P.K.K.,et al. Coupled analysis of flow, stress and damage (FSD) in rock failure[J]. Int.J.Rock.Mech.Min.Sic. 2002, 39(4):477-489
    [137] Rutqvist J., Wu Y.-S., Tang C.-F., et al. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. Int.J.Rock.Mech.Min.Sic.2002, 39(4): 429-442
    [138] 王补宣,胡柏耿.非均一多孔介质中的水热迁移研究[J].工程热物理学报.1996,17(1):64-68
    [139] 薛守义.论连续介质概念与岩体的连续介质模型[J].岩石力学与工程学报.1999,18(2):230-232
    [140] 张琰,崔迎春.低渗气藏应力敏感性及评价方法的研究[J].现代地质.2001,15(4):453~457
    [141] 刘亚晨,蔡永庆,刘泉声等.温度饱和水下的裂隙岩体力学特性研究[J].岩石力学与工程学报.2002,21(2):233-237
    [142] 陈剑平.岩土体变形的耗散结构认识[J].长春科技大学学报.2001,31(3):288-293
    [143] 柴军瑞.论连续介质渗流与非连续介质渗流[J].红水河.2002,21(1):43-45
    [144] Rutqvist J., Brgesson L., Chijimatsu M., et al. Coupled Thermo-hydromechanical of analysis of a heater test in fractured rock and bentonite at Kamaishi Mine — comparison of field results to predictions of four finite element codes [J]. Int.J.Rock.Mech.Min.Sic.2001, 38(1):129-142
    [145] Hudson J.A., Stephansson O., Anderssbn J. et al. Coupled T-H-M issues relating to radioactive waste repository design and performance[J]. Int.J.Rock.Mech.Min. Sic. 2001, 38(1):129-142
    [146] Rehbinder G. Analytical solutions of stationary coupled thermo-hydro-mechnical problems[J]. Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr. 1995, 32(5):453-464
    [147] Jiao Y., Hudson J.A. The fully-coupled model for rock engineering systems[J]. Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr. 1995, 32(5):491-512
    [148] Claesson J., Follin S., Hellstrm G. et al. On the use of the diffusion equation in test case 6 of DECOVALEX[J]. Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr. 1995,
    
    32(5):525-528
    [149] Brgesson L., Chijimatsu M., Fujita T., et al. Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses[J]. Int.J.Rock.Mech.Min. Sic.2001, 38(1):95-104
    [150] 武文华,李锡夔.热-水力-力学-传质耦合过程模型及工程土障数值模拟[J].岩土工程学报.2003,25(2):188-192
    [151] 杨明举,关宝树.地下水封裸洞储存LPG耦合问题的变分原理及应用[J].岩石力学与工程学报.2003,22(4):515-520
    [152] 罗文波.含缺陷物体形变过程中的能量耗散及其分形分析[J].湘潭大学自然科学学报.1997,19(4):26-30
    [153] 吉小明,王宇会.岩体地下流固耦合理论的研究综述[J].石家庄铁道学院学报.2002,15(2):27-31
    [154] 王洪涛,王恩志.各向异性裂隙岩体渗透系数计算方法探讨[J].武汉水利电力大学学报.1997,30(2):49-53
    [155] 王洪涛,聂永丰,李雨松.耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J].清华大学学报.1998,38(12):23-26
    [156] 周创兵,熊文林.不连续面渗流与变形耦合的机理研究[J].水文地质工程地质.1996,23(3):14-17
    [157] 周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报.1996,15(4):338-344
    [158] 朱珍德,孙均.裂隙岩体非稳态渗流场与损伤场耦合分析模型[J].水文地质工程地质.1999,26(2):35-41
    [159] 沈振中,徐志英,雒翠.三峡大坝坝基粘弹性应力场与渗流场耦合分析[J].工程力学.2000,17(1):105-113
    [160] 高海鹰,夏颂佑.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报.1997,19(2):102-105
    [161] Wilson R.K. Aifantis Elias C. On The Theory Of Consolation With Double Porosity[J]. Int.Engng Sci. 1982, 20(9):1009-1035
    [162] 赵坚.岩石裂隙中的水流-岩石热传导[J].岩石力学与工程学报.1999,18(2):119-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700