微波强化硅藻土矿提纯机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物深加工及制品是当今国际非金属行业发展的主要趋势,利用微波特性提纯硅藻土矿是矿物深加工的一种新方法。本论文以硅藻土矿为研究对象,开展“微波强化硅藻土矿提纯机理研究”,探讨微波对硅藻土矿酸浸提纯反应的影响规律。
     实验表明硅藻土矿、硫酸溶液和水在微波作用下温度升高。研究发现硅藻土矿的升温和纯金属矿物的升温有所不同,硅藻土矿的升温不存在“失控现象”;硅藻土矿在微波场中的升温过程可分为线性升温期、对数升温期两个阶段,可采用一元三次多项式来描述;水和硫酸溶液在微波场中的升温行为可用一元二次多项式来描述。研究发现微波场中水和硫酸稀溶液的电导率均高于常规条件下的电导值,微波对水和硫酸稀溶液存在“非热效应”。
     微波提纯机理研究表明:在微波场中的矿粒在电磁场作用下其内部形成传导电流,发生电子积聚,有利于克服禁带宽度;矿浆体系中的粒子或溶液离子在微波场作用下发生转动和取向极化,促进电子的交换。同时微波能使矿粒产生裂纹、比表面积增加、使药剂深入矿粒内部、增加反应机会,提高反应体系液相物质的电导率、提高了矿浆的温度,促进反应的进行。
     通过理论分析和数据处理,建立了微波和加热作用下硅藻土矿稳态酸浸提纯的动力学模型:
     微波:
     常规:
    
    式中:T一反应温度,K;x一硅藻土矿铁的浸出率,%;t一反应时间,s;R-
    摩尔气体常数,8.314)/(mole.K)。
     微波和常规加热作用下化学控制阶段的活化能分别为59.OSKJ/mol和
    28.49KJ/mol,频率因子之比为Kl。/K常0=77049.24;混合控制阶段的活化能
    分别为In.09 kJ/mol和64.63 kJ/mol。微波场作用虽然使化学反应的活
    化能升高,但是使频率因子大大增加,施加的微波场从抑制和促进反应两方面
    影响反应体系,最终增大了化学反应速率。实验结果表明微波作用下硅藻土矿
    稳态酸浸速率是常规作用的3一10倍。
     结合工业生产实际,开展了微波非等温浸出过程研究,建立了硅藻土矿酸
    浸提纯的反应动力学模型。
     In[(1一x)‘,/(n一1)1
     =In[(A po-,)·(E’/R)〕一2.314一0.4567(E/RT)
     A二一2X10-s w3+0.0137w2一2.8785w+199.76
     E== 0.0586w3一25.693w2+2854.4w+18831
     p二e叮伪,E,=E+aR,p。二e‘
     a=一0.0033w3+1.5138w2一207.08w+11128
     b二10一3一0.0047犷+0.6614贮34887
     式中:n=2/3;E、E’为反应活化能,J/mole;x为硅藻土矿铁的浸出率,
    %;T为反应体系的温度,K;,为微波作用功率,W;A为频率因子;p为升
    温速率:a,b为与微波功率w有关的温度常数。
     研究发现在不同微波功率的作用下,反应体系的升温速率是时间的函数,
    升温速率与温度呈非线性关系;发现微波对化学反应的影响是非线性关系,微
    波作用可以改变反应的活化能和频率因子,随着微波功率的增加,反应的活化
    能和频率因子降低,降到一定程度后,反应的活化能和频率因子升高。
     研究提出了硅藻土微波提纯新工艺,通过实验确定了硅藻土微波酸浸提纯
    工艺的较佳工艺条件:硫酸浓度飞既,浸出时间45分,微波功率26湃,这为
    微波技术在矿物工程、冶金工程领域的应用奠定了一定的基础.
    关键词:微波;非金属矿;硅藻土;提纯;反应;工艺;动力学
The main trend in modern non-metallic mineral industry is deepening processing for minerals and production of these products. It is one of new methods on mineral deepening for using microwave technology to purify diatomite .We decided on adopting diatomite in this paper, performing "the study on the mechanism in purification of diatomite ore by microwave strengthening" then probing into the regular patterns on purification of diatomite processing by microwave strengthening.The results of the experiment indicated that temperature of diatomite ore and water and diluted sulfuric acid solutions would raise in microwave field. We found that raising temperature of diatomite is different from that of pure metallic minerals, has not "getting out of control " phenomenon; raising temperature process of diatomite in microwave field can be divided into two stages ie. linear raising temperature period and logarithmic one, and can be described by onespot third order multinomial. Raising temperature behavior of water and sulfuric acid solutions in microwave field can be described by onespot second order multinomial. Investigation found that the conductivity of water and diluted sulfuric acid solution both are higher than conductivity in conventional condition and microwave has a "non-heating effect" for water and diluted sulfuric acid solutions.The results of the researches on the mechanism on purification of diatomite ore by microwave strengthening indicated that conductible current in diatomite particles was formed and electrons were accumulated under electromagnetic field
    
    action, this is advantageous to overcome the width of forbidden band; particles or solution ions in pulp system take place turn and orientation polarization, therefore promote electrons exchange and reaction; at same time, microwave can result in mineral particles cracking, specific surface area rising, reagents entering interior of mineral particles, increasing reaction opportunity, raising conductibility of liquid matter in reaction system , raising pulp temperature, and promoting reaction going on.Based on theory and experiment research, kinetic model of isothermal stable state reaction of acid leaching purifying for diatomite was established.Microwave:Conventional :There, T is reaction temperature, K; x is leaching rate of iron from diatomite,% ; t is reaction time, s; R is molar gas constant, 8.314 J/(mole. K).Activation energies of chemical control for microwave action and conventional heating action are 59.05 KJ/mole and 28.49KJ/moIe respectively, frequency factor ratio Kmic/Kconv=77049.24. Activation energies of mixed control for microwave action and conventional heating action are 111. 09 kJ /mol and 64.63 kj/mol respectively, Under microwave field action, activation energy of chemical reaction increased, but frequency factor greatly increased, microwave field has influenced on reaction system by depressing and promoting and increased chemical reaction rate last. The results of the experiment indicated that the reaction velocity of microwave reaction is 3-10 times with that of conventional heating reaction.The study on non-isothermal leaching process was performed with industrial production, kinetic equation of acid leaching purifying for diatomite was established.
    
    there n=2/3; E or E' is activation energy, J/mole; x is leaching rate of iron from diatomite, %; T is temperature in reaction system, K; w is microwave interaction power, W; A is frequency factor; is raising temperature rate ;a and b are temperature constants related with microwave power ,w.The investigation has indicated that raising temperature rate of reaction system with microwave is a function of time, the relationship between raising temperature rate and temperature is nonlinear; and has found that the influence of microwave on chemical reaction is a non-linear relationship. Activation energy and factor of reaction can be changed by microwave interaction, and decreased along with microwave power increases, after reaching to a certain degree, they raise.A new technology for purificati
引文
1.S.J.莱方德主编,叶元鑫,王伯瑛,莫超仪等译,工业矿物和岩石[M].北京:中国建筑工业出版社,1984.8。
    2.“非金属矿产开发利用领域‘十五’科技计划及2015年远景规划”(内部资料)。
    3.中国科学院地球化学研究所,若干非金属矿产资源及矿物材料的开发利用.1989.5。
    4.中国矿物岩石地球化学学会等四家单位,迎接新的石器时代的挑战—1990非金属矿物资源与矿物材料学术讨论会论文(摘要)汇编.贵阳:1990。
    5.宋瑞祥主编,96中国矿产资源报告[M].北京:地质出版社,1997.3。
    6.寿嘉华主编,国土资源知识800问[M].北京:地质出版社,1999.3。
    7.郭守国,何斌,非金属矿产开发利用.武汉:中国地质大学出版社,1991。
    8.四川省矿物岩石地球化学学会等五家单位,全国工业矿物原料深加工及综合开发利用学术讨论会论文集[M].重庆:重庆大学出版社,1993.4。
    9.田煦,周开灿,文化川.非金属矿产地质学.武汉:武汉工业大学出版社,1989。
    10.彭金辉,杨显万,微波能技术新应用[M].昆明,云南科技出版社,1997,6.
    11.金钦汉主编,微波化学[M].北京,科学技术出版社,2001,2.
    12.张兆镗,钟若青编译,微波加热技术基础[M].北京:电子工业出版社,1996.10。
    13.汤建伟,微波电磁场对磷矿酸解液固反应影响的研究[D].成都:四川大学博士论文,2003。
    14.国家自然科学基金委员会,国家自然科学基金“十五”优先资助领域[M].北京:原子能出版社,2001.9。
    15.国家自然科学基金委员会,2003年国家自然科学基金项目指南[M].《中国科学基金》,VOL17.北京:科学出版社2003。
    16.毕德显,电磁场理论[M].北京:电子工业出版社,1996。
    17.王先冲,电磁场理论和应用[M].北京:科学出版社,1981.12。
    18.王志符等,电磁振荡 电磁波和辐射[M].北京:人民出版社,1981.12。
    19.陈丰,矿物物理学概论[M].北京:科学出版社,1985。
    20.吴大猷,量子力学(乙部)[M].北京:科学出版社,1983。
    
    21.黄昆编著,固体物理学[M].北京:人民教育出版社,1979.1。
    22.何福城,朱正和编,结构化学[M].北京:人民教育出版社,1979.1。
    23.华南工学院无机化学教研组,无机化学[M].北京:人民教育出版社,1979.11。
    24. Walkiewicz, J. W., Ka jected minerals and compounds[J]. Mineral and Metallurgical Processing , 1988, 5 (1): 39~42.
    25. Walkiewicz, J. W., Clark, A. E., McGill, S. L., Microwave assisted grinding. IEEE Transactions on industry applications, 1991, 27 (2): 339.
    26. Wlalkiewicz, J. W., Lindroth, D. P., Clark, A. E., Iron ore grindability improved by heating[J]. Engineering and Mining Journal, 1996, 19 (7).
    27.刘全军等,微波在铁矿选择性磨细中的应用机理研究[J].云南冶金,1997,Vol 26(3):25~2。
    28.刘全军等,石英—磁铁矿体系选择性磨细研究[J].昆明工学院学报,1994,(6):85~89。
    29. Varster, W., Rowson, N. A., Kingman, S. W., The effect of microwave radiation upon the processing of Neves Corro copper ore[J]. Int. J. Miner. Process, 2001, 63 (1): 29~44.
    30. Kingman, S. W., The influence of mineralogy on microwave assisted grind[J]. Minerals Engineering, 2000, 13 (3): 313~327.
    31. Kingman, S. W., Rowson, N. A., Microwave treatment of minerals_a review[J]. Minerals Engineering, 1998, 11 (11): 1081~1087.
    32. Marland, S., Han, B., Merchant, A., Rowson, N. A, Effect of microwave radiation on coal grindability[J]. Fuel, 2000, 79(11): 1283~1288.
    33.范先锋,N.A.Rowson,微波能在钛铁矿选矿中的应用[J].国外金属矿选矿,1999,(2):2~7。
    34. Kingman, S. W., Rowson, N. A., Eeffects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian illmenite ore[J] . Magnetic and Electrical separation, 1999, 9 (3): 131~148.
    35. Fan, X., Rowxon, N. A., Fundamnted investigation of microwave pretreatment on the flotation of massive ilmenite ores. Developments in Chemical Engineering and Mineral processing, 2000, 8(1): 167~182.
    36
    
    36. Haque, K. E., Microwave energy for mineral treatment processes a brief review[J]. Int. J. Miner. process, 1999, 57 (1): 1~24.
    37.K.E.Haque,难处理金精矿的微波辐射预处理.黄金冶金[M].北京:原子能出版社,1988年,438~447。
    38.谷晋川,刘亚川,谢扩军,张允湘,难选冶金矿微波预处理研究[J].《有色金属》,2003,55(2):61-63。
    39.谷晋川,杨强,难选冶金矿微波预处理工艺研究[J].地球学报,1998,vol 19,增刊:141~147。
    40.谷晋川,难选冶金矿微波预处理研究[J].湿法冶金,1998,(3):50~52。
    41.魏明安,张锐敏.微波处理难浸微细粒包裹金的试验研究[J].矿冶,2001,10(1):74-77。
    42.刘全军,唐荣,微波预处理含碳微细粒金矿石的试验研究.第四届全国青年选矿学术会议论文集[M].昆明:云南科技出版社,1996.
    43.马宠,寇建军,含铂钯铜镍精矿湿法冶金处理新工艺[J].矿产综合利用,1999,(5):47~48。
    44.谢扩军,微波预处理包裹型复合铂钯矿技术,专利申请号:99114716.2。
    45. PR Kruesi, etal., US Patent, 4324582, 1982, Apr. 13.
    46. WH Kruesi, etal., 25th Annual conference of Metallurgists, CIM, 1986.
    47. Tao Dongping, Liu Chunpeng, [J]. China. J. Met. Sci. Technol., 1992, 8 (2): 115.
    48.华一新等,微波加热低品位氧化镍矿石的FeCl_3氯化[J].有色金属,2000,52(1):59~61。
    49.张晓云摘译,2000年最受关注的一些矿业新技术[J].矿业快报,2001,(21)。
    50. Standish, N. and worner, H., Microwave power and ElectromagneticEnergy, 1990, 25 (3): 177.
    51. Chunpeng, L., Yousheng, X., Yixin, H., Application of microwave radiation to extractive metallurgy[J]. Chin. J. Met. Sci. Technol. 1990, 6 (2): 121~124.
    52. Standish, N., Worner, H., Microwave application in the reduction of metal oxides with carbon[J]. Iron and steel Maker, 1991, 18 (5): 59~61.
    53.彭金辉,刘纯鹏,微波幅照下PbS和PbO的升温速率及其反应动力学[J].中国有色 金属学报,1993,3(1):25~27。
    54
    
    54. Chunpeng, L., Zhuze, Z., Yousheng, X., Jinhui, P., A novel combined process for obtaining high grade Ni-Cu matte from Ni-Cu sulfide concentrate directly. In: Reddy, R. G., Weizenbach, R. N. (Eds.), Extractive metallurgy of Copper, nickel and cobalt. Vol 1, Fundamental Aspects, TMS and CIM 1993, pp1063~1080.
    55. Chunpeng, L., Jinhui, P., The physicochemical properties of nickel bearing pyrrhotite and kinetics of elemental sulphur produced under controlled oxygen potential in the microwave field. In: Hager, J. P. (Ed.), Proc. of TMS EPD SYMP. 1993, Denver, CO..
    56.彭金辉,刘纯鹏,微波辐照下镍磁黄铁矿空气氧化动力学[J].昆明工学院学报,1993,18(2):64~67。
    57.酒井均,利用微波能碳热还原各种氧化矿和碳酸盐矿[J].资源素材,1993,109(8):645~650。
    58. Kocakusak, S., etal., Metallurgical Processes for Early Twenty-First Century TMS, 1994: 456.
    59.孙来几,微波技术及其在Ba(OH)_2·8H_2O脱水中的应用研究[J].西北大学学报(自然科学),1995,25(3):274~276。
    60.武文华等,微波干燥和焙烧球团[J].北京科技大学学报,1994,(2):118~121。
    61. Chatteriee, I., Misra, M., Electromagnetic and thermal modeling of microwave drying of fine coal[J]. Minerals & Metallurgical processing, 1991, 8 (2): 110~114.
    62. Avraamides, J., Miovski, P., Van Hooft, P., Thermal reactivation of carbon used in the recovery of gold from cyanide pulps and Solutions. Research and Development in Extractive Metallurgy, The Aus. I. M. M, Adelaide Branch, 1987.
    63. Bradshaw, S. M., Van Wyk, E. J., deSwardt, J. B., Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process. J. Microwave Power and Electromagnetic Energy, 1997, 32 (3): 131~144.
    
    64.王家强,洪品杰,戴树珊,微波用于载金活性炭的洗脱[J].现代化工,1994,(6):26~27.
    65. Hua Yixin, Acta Metallurgica Sinica (English Letters), 1997, 10 (6), 1.
    66.陈克巧,徐勇,矿物及化合物微波化学理论与应用研究进展述评[J].云南冶金,1998,27(4):32~36。
    67.陶东平,刘纯鹏,碱式碳酸镍在微波辐照下的热分解动力学[J].有色金属,1992,44(4):49。
    68.朱祖泽等,在5KVA微波炉中焙解碳酸镍[J].有色金属(冶炼部分),1993,(3):27~30。
    69. Zhu, Z., Huang, Y., Calcination of Basic Nickel Carbonate in a 5.5kw Microwave Oven. Mineral processing and Extractive Metallurgy Review, 1996: 181~189.
    70.张达欣,于爱民,金钦汉,微波-炭还原法处理二氧化硫(SO_2)的研究[J].微波学报,1998,14(4):341~346。
    71.张达欣,于爱民,金钦汉,微波-炭还原法处理一氧化氮的研究[J].高等学校化学学报,1997,18(8),1271~1274。
    72. Harkness, J. B. L., Plasma-Chemical waste-treatment process for hydrogen sulphide. Proc. 29th Microwave Power Mymposium. Chicago, IL. 1994.
    73. Xia, D. K., Pickles, C. A., Microwave caustic leaching of electric arc furnace dust[J]. Minerals Engineeing, 2000, 13(1): 79~94.
    74. Ionesu, D., Meadowcraft, T. R., Barr, P. V., Classification of EAF dust and ZnO content and an assessment of leach performance, Can. Metall. Quart, 1997, 36 (4): 269~281.
    75.翁斯灏等,微波辐照增强原煤磁分离脱硫机理探讨[J].燃料化学学报,1992,20(4):368~373。
    76.翁斯灏等,化学方法除去原煤夫机硫的穆斯堡尔谱研究[J].环境科学学报,1993,13(2):233~238。
    77.杨笺康等,煤微波脱硫与试样介电性质的关系[J].华东化工学院学报,1988,14(6):713~718。
    78.王杰等,煤微波法脱硫过程中铁—硫化合物的变化[J].华东化工学院学报,1990, 16(1):45~48。
    79
    
    79.翁斯灏等,辐照时间对原煤微波脱硫的影响[J].科学通讯,1991,(5)。
    80.彭金辉等,微波场中FeCl_3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):46~49。
    81. Peng, J., Liu. C., The kinetics of ferric Chloride leaching of sphalerite in the microwave field. Transc. Of Nonferrous Metals Soc. of China, 1992, 2 (1): 53~57.
    82. Peng Jinhui, Liu Chunpeng, Trans. Non ferrous Met. Soc. China, 1997, 7 (3): 152.
    83.彭金辉等,微波辐照下硫化铅矿常压溶解动力学[J].有色金属,1993,45(2):68~71。
    84. Weian, D., Leaching behaviour of complex sulphide concentrate with ferric chloride by microwave irradiation. Rare Metals, 1997, 16 (2): 152~155.
    85.丁伟安,微波辐射作用下硫化铜精矿三氯化铁浸出[J].湿法冶金,1996(1):53~55。
    86. Antonucci, V., Correa, C., Sulphllric acid leaching of chalcopyrite concentrate assisted by application of microwave energy. Proc. of the Copper 95-Cobre 95, Int. Conf. 1995, Vol. 111, Santiago, Chile.
    87.苏永庆,刘纯鹏,微波加热下硫酸浸溶黄铜矿动力学[J].有色金属,2000,52(1):62~68。
    88. Peng Jinhui, Liu Chunpeng, Leaching of ilmenite with sulfuric acid by microwave irradiation. Proceedings of the TMS Fall Meeting, Proceedings of the 1997 126th TMS Annual Meeting, Sep. 1997: 14~18.
    89. Kelly, R. M., Rowson, N. A., Microwave reduction of oxidised ilmenite concentrates. Minerals Engineering, 1995, 8 (11): 1427~1438.
    90.周晓东,洪品杰,戴树珊,微波辐照—盐酸浸出制备高钛渣的探索[J].云南冶金,1997,26(3):34~380。
    91.周晓东,微波辐照—盐酸浸出制备酸溶性高钛渣的探索[J].云南冶金,1995,(6):35~40。
    92. Joret. L.. Cote. G.. Bauer. D.. Effect of microwaves on the rate of dissolution of metal oxides (Co_3O_4 and CeO_2) in nitric acid. Hydrometallurgy, 1997, 45 (1~2),: 1~12.
    93
    
    93. Carter, Michael: Bentley, stephen P, Practical guidelines for microwave drying of soils. Canadian Geotechnical Journal, 1986, 23(4): 598~601.
    94. Hwang, J. Y., Liu, x., Kramer, R. S., McDowell, S. D., Microwave heating characteristics of selected foundry sands and bentonite. Process Mineralogy ⅩⅢ, 1995 Mineral, Metals & Materials Soc, 307.
    95. Laforre, Victor R., Glenn, H. David, Microwave measurements of the water content of bentonite. 1991, High level Radioactive Waste Management, Proceedings of the 2nd Annual International Conference on High Levei Radioactive Hive Waste Management, Apt 28-May 3 1991, USA, 578~582.
    96. Warrier, K. G. K., Mukundan, P., etal., Microwave drying of beohmite sol intercalated smectites. Journal of Materials science, 1994, 29 (13): 3415~3418.
    97. Feldman, N. Ya, Calcination of expandable materials in microwave field. Zh. Prikl. Khim., 1998, 71(10): 1603~1607.
    98. Piotrovski, A., Use of microwaves for expansion of Vermiculite. Szklo ceram., 1998, 49 (1): 17~18.
    99.刘新锦,蔡君,黄铁钢,第一届全国微波化学学术讨论会论文集.长春,1996:24。
    100.汤建伟,钟本和等,微波作用下促进磷矿分解反应的研究[J].化工矿物与加工,2001,(5):13~17。
    101. Rao, -R. B., Novel approach for the benefication of ferruginous bauxite by microwave heating. Minerals & metallurgical Processing, 1996, 13 (3): 103~106.
    102.郭先健,王淀佐,丁伟安,微波作用下一水硬铝石型铝土矿溶出[J].有色金属,1995,47(4):55~57。
    103.回瑞发,徐玉书等,微波作用下硅藻土中氧化物析出量的实验研究[J].吉林大学自然科学学报,1994,(3):71~74。
    104.地矿部矿产综合利用研究所,四川省德昌县永郎硅藻土矿可选性试验研究报告 [R].1995.8。
    10
    
    105.华一新等,矿物及化合物在微波场中升温速率[J].中国有色金属学报,1996(3)。
    106.彭金辉,刘纯鹏,微波场中矿物及其化合物的升温特性[J].中国有色金属学报,1997,7(3):50~51,84。
    107. Ford, J, D., Pei, D. C. T., High temperature chemical processing Via microwave adsorption. J. Microwave power, 1967, 2 (2): 61~64.
    108. Chen, T. T., etal., The relative transparency of minerals to microwave radiation. Can. Metall. Quart., 1984, 23 (1), 349~351.
    109. Peng Jinhui, Liu Chunpeng, Characteristics of temperature increase of titanium minerals and compounds by microwave irradiation. Proceedings of the TMS Fall Meeting, Proceedings of the 1997 126th TMS Annual Meeting, 1997, Sep 14~18.
    110. Hua Yixin, Liu chunpeng, Transactions of Nfsoc, 1996, 6 (1): 35.
    111. Walkiewicz, J. W., Kazonich, G., Mc Gill, S. L., Microwave heating characteristics of selected minerals and compounds. Mineral and Metallurgical processing, 1988, 5 (1), 39~42.
    112.段爱红等,金属氧化物吸收微波辐射的能力与其结构的关系[J].云南化工,1998,2。
    113.段爱红,晶体的缺陷结构与物质吸收微波的能力[J].云南师范大学学报,1998,18(3)。
    114.毕先钧,谢小光,王真,洪品杰,戴树珊,微波加热技术在有机合成和材料制备等方面的应用进展[J].云南化工,1998,(2):7~10。
    115.杨伯伦,贺拥军,微波加热在化学反应中的应用进展[J].现代化工,2001,21(4):8~12。
    116.东北工学院选矿教研室,磁电选矿[M].北京:冶金工业出版社,1981.3。
    117.北京矿冶研究院编,化学物相分析[M].北京:冶金工业出版社,1979.2。
    118.黄子卿,电解质溶液理论导论[M].北京:科学出版社,1983.8。
    119.庞思明,陶东平,文明芬,杨显万,一水硬铝石型铝土矿盐酸浸出脱铁过程表观动力学[J].有色金属,1999,51(3):49~53。
    120. Paspaliaris Y, Tsolakis Y., Hydrometallurgy[J]. 1987, 19: 259.
    
    121. Paspaliaris Y, Yiouli Y, Patermarakis G. Trans Inst Min Metall C[J]. 1989, 98: C21.
    122. Zivkovicz D, Strbac N D, Hydrometallurgy[J]. 1994, 36: 247.
    123. Sohn H Y, Wadsworth M E. Rate Process of Extractive Metallurgy[M]. New York: Plenum Press, 1979, 16.
    124.杨晓杰,张荣曾,陈开惠,高岭土浸出除铁试验及铁、铝溶解动力学分析[J].煤炭加工与综合利用,1997,(2):30~32。
    125.丁培墉等编著,物理化学[M].北京:冶金工业出版社,1979.7。
    126.林传仙,白正华,张哲儒,矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985。
    127.叶大伦编著,实用冶金过程热力学数据手册[M]北京:冶金工业出版社,1981.2。
    128.蒋汉瀛主编,湿法冶金过程物理化学[M].北京:冶金工业出版社,1987。
    129.孙康 编著,宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998。
    130.浸矿技术委员会,浸矿技术[M].北京:原子能出版社,。
    131.肖兴国,谢蕴国编著,冶金反应工程学基础[M] 北京:冶金工业出版社,1997.5。
    132.杨显万,邱定蕃著,湿法冶金[M].北京:冶金工业出版社,1998。
    133.莫鼎成,冶金动力学[M].长沙:中南工业大学出版社,1987。
    134.B.A.格列姆茨基,郑飞等译,王淀佐校,浮选过程物理化学基础[M].北京:冶金工业出版社,1985.6。
    135.萨梅金等著,刘恩鸿译,张宏福校,浮选理论现状与远景[M].北京:冶金工业出版社,1984.3。
    136.张允湘主编,磷化工理论及进展.成都:四川大学化工学院,2001.9。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700