长杆射弹对混凝土的侵彻特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用半经验分析方法和空腔膨胀解析分析模型,分别得出了弹体侵彻混凝土时侵彻阻力、侵彻深度与弹体结构、靶体特性参数和侵彻速度等主要影响因素的关系式。通过收集和分析国外实验数机,拟合出了强度系数S与混凝土强度σ的简单关系,并由此得到侵深半经验公式。空腔膨胀模型计算表明,弹头尖锐程度和靶的强度对侵深都有一定程度的影响。
     分析表明,如果缩比模型利原型弹靶材料一样,弹体形状几何相似,且忽略尺寸效应时,侵深符合几何相似律。但是如果缩比系数很大,因为存在由尺寸效应引起的应变率效应和断裂尺寸效应强烈,分析弹靶的承载强度时不能忽略尺寸效应的影响,同时侵深的几何相似律不成立。
     在气炮上,用小尺寸模型弹进行了侵深与速度、侵深与弹体质量、侵深与靶强度关系的实验。实验数据表明:(1)柱形空腔膨胀模型计算结果比实验值偏高,但是变化趋势基本与实验曲线一致。利用球形空腔膨胀模型,认为靶是可以压缩的计算结果比实测结果偏大,但变化趋势与实测曲线的一致性良好。(2)由半经验分析法得到的侵深经验公式能较好预估射弹的侵彻深度。(3)小比例模型实验间存在良好的几何相似性。
     分析了侵地战斗部的爆炸、爆破、震动三种主要毁伤效应,可根据这三种效应来评估武器毁伤能力。
     通过对原有气炮的大规模改造,建立了一个比较完整的气炮侵彻实验系统,为进一步研究侵深规律、弹体材料与结构、侵彻防扩结构、弹内引信生存、装药结构等创造了实验条件。
The relationships among penetration resistance, penetration depth, projectile shapes, concrete properties and penetrating velocity are analyzed approximately by means of semi-empirical methods and cavity-expansion penetration models. By collecting and analyzing Forrestal's penetrating experiments data, a simple relation expression between concrete strength constant S and concrete strength a is obtained. Our experiments indicate that if the S obtained from the expression is substituted into the penetrating depth equation deduced from the semi-empirical method, a good agreement with experimental penetrating depth will be received.
    A series of scaling penetrating experiments have been conducted on gas guns, and penetrating depth curves have been fitted to experimental data. Comparing predicted depth curves from cavity-expansion models with experimental depth curves, it can be find that the two kinds of depth curve have a similar trend, but the predicted depth value is larger than the experimental depth value slightly. Using cavity-expansion models to analyze the penetration process, we find that the sharpness of a projectile head and concrete strength will affect the penetrating depth notably.
    The similarity between prototype and model experiments is analyzed theoretically. The analysis indicates if the size effects are neglected, prototypes and models are built up in same material, and prototypes and models are similar in geometry, the penetrating depth will accord with scaling law. But if the size effects mayn't be neglected, the tenability of scaling law will be imperfect. Because of the stress ratio effect and fracture size effect induced by size effects, the capability of anti-fracture of a prototype is lower than that of a model. This implies that when the studying goal is at the limited structural strength of a penetrator or a target, the size effects should be taken into account, and the credibility of a prototype shouldn't be deduced from model experiments directly.
    Three main damage effects of earth penetrating warheads, including explosion, blasting and earthquake, are analyzed respectively. These analyzing results will be useful to evaluate the destroy effects of earth penetrating weapons.
    A penetrating experimental system based on gas guns had been built up. This system not only has been used to conduct penetrating experiments successfully, but also will be used to conduct the advance experimental studies on penetration and protection, penetrator structure, fuse survival, charge configuration and so on.
引文
[1] C. W. Young, Depth Prediction for Earth-Penetrating Projectiles, J. of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, 1969, 803-817
    [2] C. W. Young, Equation for predicting earth penetration by projectiles: an update, SAND-88-0013
    [3] C.W.Young, Penetration Equations, SAND-97-2426, 4-5
    [4] C. W. Young, The development of empirical equation for predicting depth of an earth penetrating projectile, SC-DR-67-60, 1967
    [5] R. S. Bernard, Depth and motion prediction for earth penetrators, S-78-4, 1978
    [6] R. S. Bernard, Deep penetration theory for homogeneous and layered targets, 5-7. 5-9, 1975
    [7] R. F. Bishop, R. Hill and N. F. Mott, The theory of indentation and hardness, Proceedings of the Physical Society, 1945,57, 147-159
    [8] J. N. Goodier, On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres,Proceedings of the 7~(th) Symposium on Hypervelocity Impact III,1965,215-259
    [9] M J.Forrestal, Penetrors into Dry Porous Rock, International Journal of Solids and Structures, 1986,22, 1485-1500
    [10] M. J. Forrestal and V.k.Luk, Penetration into soil Targets, Int. J. Impact Engineering, 1992, 12, 427-444
    [11] M. J. Forrestal, D. Y. Tzou, E. Askari, B. D. Longcope, Penetration inyo Ductile Metal Targets with Rigid Spherical-nose Rods, Int. J. Impact Engineering, 1995, 16, 699-710
    [12] M. J.Forrestal, D.J.Frew, S.J.Hanchak and N.S.Brar, Penetration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles, Int. J. Impact Engineering, 1996, 18(5) , 465-476
    [13] N. T. Davie, A method for describing nearly penetration of an ogive nosed penetrator into terrestial targets, SAND-79-0721
    [14] Lubomyra N. Kmetyk, Paul Yarrington, Cavity dimensions for high velocity penetrarion events-A comparison of calculation results with data, SAND-88-2693
    [15] P. Yarrington, A one-dimensional Approximate technique for earth penetration calculations,
    
    
    [16] Larry, A. Schoof, Numerical method to predict projectile penetration, SAND-89-0266C, 1989
    [7] 何唐甫,美国钻地武器研究发展状况及钻地分析计算,防护工程,1998,3
    [18] 陶玉十泽,英国为美国提供摧毁地下掩体的常规远距离导弹战斗部,弹箭技术,1988,4, 50-52
    [19] M.J.Forrestal, B. S. Airman, J. D. Cargile, S. J. Hanchak, An Empirical Equation for penetration depth of Ogive-nose Projectiles into Concrete Targets, Int. J. Impact Engineering, 1994, 15, 395-405
    [20] M.J.Forrestal, D.J.Frew, et al, Penetration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles, Int. J. Impact Engineering, 1996, 18, 465-476
    [21] M.J.Forrestal, B.S.Altman, J.D.Cargile and S.J.Hanchak, An Empirical Equation for Penetration Depth of Ogive-Nose Projectiles, into Concrete Targets, SAND-92-1948C
    [22] C. W. Young, and E. R. Young, Analytical model of penetration with lateral loading, SAND-84-1635
    [23] 尹放林,王明洋,钱七虎等,弹丸斜入射对侵彻深度的影响,爆炸与冲击,1998,18(1) , 69-76
    [23] C.W.Young, Penetration Equations, SAND97-2426, 4-5
    [24] F. E. Heuze, Overview of projectile penetration into geologic materials, with emphasis on rocks, Int. J. Rock Mech. Min. Sci. ,1990, 27(2)
    [25] Department of Army, Fundamental of Protective Design for Conventional Weapons, Technical Manual, TM5-855-1, 1986
    [26] M.J.Forrestal and D.B.Longcope and F.R.Norwood, A Model to Estimate Forces on Conical Penetrors into Dry Porous Rock, Journal of Applied Mechanics, 1981, 48, 25-29
    [27] V. K. Luk, M. J. Forrestal and D. E. Amos, Dynamic spherical cavity expansion of strain-hardening materials, Journal of Applied Mechanics, 1991, 58, 1-6
    [28] M.J.Forrestal, F.R.Norwood and D.B.Longcope, Penetration into Targets Described by Locked Hydrostats and Shear Strenth, Int. J. Solids Structures, 1981, 17, 915-924
    [29] D. B. Longcope and M. J. Forrestal, Penetration of targets described by a Mohr-Coulomb failure criterion with a tension cutoff, Journal of Applied Mechanics, 1983, 105, 327-333
    [30] M. J. Forrestal and V.k.Luk, Dynamic Spherical Cavity-expansion in a Compressible elastic-plastic Solid, Journal of Applied Mechanics, 1988, 55, 275-279
    [31] M. J. Forrestal and D.B.Longcope, Target Strenth of Ceramic Material for High-velocity
    
    Penetration, Journal of Applied Physics, 1990, 67, 3669~3672
    [32]M. J. Forrestal, D. Y. Tzou, A Spherical Cavity-Expansion Penetration Model For Concrete Targets, Int. J. Solids Structures, 1997, 34, 4127~4146
    [33]Zdenek Bazant, Er-Ping Chen, 结构破坏的尺度律(王文标等译),力学进展, 1999,29(3),383~433
    [34]G. R. Cowper, P. S. Symonds, Strain Hardening and Strain-rate Effects in the Impact Loading of Cantilever Beams, Brown University Division of Applied Mathematics Report, 1957, 28
    [35]王礼立,余同希,李永池,冲击动力学进展,中国科学技术大学出版社,1992,303~322
    [36]林俊德,地下核爆炸力学,89800部队内部出版,1999,129~149
    [37]M.J.Forrestal, D. J. Frew, S. J. Hanchak, N. S. Brar, Penetration of Grout and Concrete Targets with Ogive-nose Steel Projectiles, Int. J. Impact Engineering, 1996, 18,465~476
    [38]蒋浩纪,周兰庭,火箭战斗部设计原理,国防工业出版社,1982,276~326
    [39]王儒策,赵国志,弹丸终点效应,北京理工大学出版社,1993,8~9
    [40]钱伟长,叶开沅,弹性力学,科学出版社,1980,389~388
    [41]吴崇试,数学物理方法,北京大学出版社,1999
    [42]A. Tate, A theory for the deceleration of long rods after impact, J. Mech. Phys. Solids, 1967, 15,387~399
    [43]A. Tate, Further tesults in the theory of long rod penetration, J. Mech. Phys. Solids, 1969, 17, 141~150
    [44]B. D. Longcope, The prediction of loads on penetrator into rock via the spherical cavity-expansion approximation, SAND-87-0959, 1987
    [45]C. E. Anderson, and J. D. Walker, An examination of long-rod penetration, Int..J. Impact Engng., 1991, 11,481~501
    [46]C. H. Yew and P. P. Stirbis, Penetration of projectile into terrestrial targets, Journal of the Engineering Mechanics Division ASCE, 1978, 273~286
    [47]C. W. Livingston, F. L. Smith, Bomb Penetration Project, AD-A953 074/2
    [48]C. W. Young, A Simplified analytical model of penetration with lateral loading(Sampll)-an update, SAND-91-2175
    [49]C. W. Young, Empirical equation for predicting penetration performance in layered earth materials for complex penetrator configurations, SC-DR-0532
    [50]C. W. Young, Equation for predicting earth penetration by projectiles: an update, SAND-88-0013
    
    
    [51] C. W. Young, Prediction of sea ice by air-dropped projectile, SLA-74-0022,1974
    [52] C. W. Young, Status report on high velocity soil penetration program, SAND-76-0291, 1976
    [53] C. W. Young, The development of empirical equation for predicting depth of an earth penetrating projectile, SC-DR-67-60, 1967
    [54] D. B. Longcope and D. E. Grady, Initial response of a rock penetrator, Journal of Applied Mechanics, 1978, 45(3) , 559-564
    [55] D. B. Longcope, Oblique penetration modeling and correlation with field tests into a soil, SAND-96-2239, 1996
    [56] D. E. Grady and R. E. Hollenbach, Impact study on a Tonopah Test Range Welded Tuff, SAND-76-0104, 1976
    [57] D. R. Christman, and J. W. Gehring, Analysis of high-velocity penetration mechanics, J. App. Phys. 1966,37, 1579-1587
    [58] D.J.Frew, M.J.Forrestal et al, Penetration into Limestone with Ogive-Nose Steel Projeciles, SAND-96-2494C
    [59] F. R. Norwood, Cylindrical cavity expansion in a locking soil, SLA-74-0201
    [60] F. R. Norwood, Cylindrical cavity expansion in locking soil, SLA-74-0201, 1974
    [61] Heuze F. E. An Overview of Projectile Penetration into Geologic Material, With Emphasis on Rocks, Int J Rock Mech Min Sci, 1990, 27(2)
    [62] J. D. Walker, and C. E. Anderson, A time-dependent model for long-rod penetration, Int. J. Impact Engng, 1995, 16, 19-48
    [63] J. D. Walker, and C. E. Anderson, The influence of the initial nose shape in eroding penetration, Int. J. Impact Engng, 1994, 15, 139-148
    [64] J. Duffy, Some experimental results in dynamic plasticity, Mechanical Properties at High Rates of Strain, Institute of Physics Conference Series, 21, 72-80
    [65] J. K. Gran, D. J. Frew,射弹侵彻混凝土过程中动应力的量测与计算(李清献译),防护工程, 1998, 4, 91-99
    [66] J. N. Goodier, On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres, Proceedings of the 7~(th) Symposium on Hypervelocity Impact III, 1965, 215-259
    [67] J. Radin, W. Goldsmith, Normal projectile penetration and perforation of layered targets, Int. J. Impact Engineering, 1988, 7, 229-259
    [68] Joseph Sternberg, Material properties determining the resistance of ceramics to high velocity
    
     penetration, J. Appl,Phys. ,1989, 65(9) , 3417-3424
    [69J Kimsey, K. D. ; Jonas, G. H. ; Zukas, J. A. , Computer Simulation of Scaled MARK 84 Bomb Impact into Concrete, AD-A136 645/9
    [70] L. Thigpen, Projectile penetration of elastic-plastic earth media, Journal of the Geotechnical Engineering division, ASCE, 1974, 100, 279-294
    [71] M. J. Forrestal and V. K. Luk, Penetration into Grout Targets, Int. J. Impact Engineering, 1992, 12, 427-444
    [72] M. J. Forrestal and V.k.Luk, Penetration of 7075-T651 Aluminum targets with ogival-nose rods, Int. J. of Solid and Structures, 1992, 29, 1729-1736
    [73] M. J. Forrestal, D. B. Longcope, L. M. Lee, Analytical and Experimental Studies on Penetration into Geological Targets, AD-POO J 710/3
    [74] M. J. Forrestal, J.D.Cargil and Robert D.Y.Tzou, Penetration of Concrete Target, SAND-92-2513C
    [75] M. J. Forrestal, Long-rod penetration into simulated geological targets at an impact velocity of 3. 0km/s,SAND-88-2420C, 1988
    [76] M. J. Forrestal, S. J. Hanchak, E. R. Young and J. W. Ehrgott, Perforations of Concrete Slabs With 48MPa and 140MPa Unconfmed Compressive Strength, Int. J. Impact Engineering, 1992, 12, 1-7
    [77] M.J.Forrestal, B.S.Altman, J.D.Cargile and S.J.Hanchak, An Empirical Equation for 1994Penetration Depth of Ogive-Nose Projectiles, into Concrete Targets Int. J. Impact Engineering, 1994, 15(4) , 3955-405
    [78] M.J.Forrestal, Penetrors into Dry Porous Rock, International Journal of Solids and Structures, 1986,22, 1485-1500
    [79] P. Chadwick, The quasi-static expansion of a spherical cavity in metals and ideal soil, Quarterly Journal of the Mechanics and Applied Mathematics, 1959, 57, 147-159
    [80] R. Hill, Cavitation and the influence of head-shape in attack of thick targets by non-deformation projectiles, Journal of the Mechanics and Physics of Solids, 28, 249-263
    [81] R. K. Byers, A. J. Chaibai, and R. T. Walsh, Predictions of projectile penetration phenomena and comparison with experiments in a soil medium, SAND-75-OI74, 1975
    [82] R. K. Byers, P. Yarrington and A. J. Chabai, Dynamic penetration of soil media by slender projectiles, Int. J. Engng. Sci. , 1978, 16, 835-844
    [83] R. N. Yong, and C. K. Chen, Cone penetration of granular and cohesive soil, Journal of the Engineering Mechanics Division,
    [84] R. S. Bernard, Deep penetration theory for homogeneous and layered targets, 5-75-9, 1975
    
    
    [85]R. S. Bernard, Depth and motion prediction for earth penetrators, S-78-4, 1978
    [86]S. C. Hunter, Similarity solution for the rapid uniform expansion of a spherical cavity in a compressible elastic-plastic solid, Quarterly Journal of the Mechanics and Applied Mathematics, 1968, 21(4), 467~486
    [87]S. C. Wright, Y. Huang and N. A. Fleck, Ballistic impact of Polycarbonate—an experimental investigation, Int. J. Impact Engineering, 1996, 13, 1~20
    [88]S. Satapathy and S. Bless, Cavity expansion analysis of brittle material, In Proceeding of the 1995 International Conference on Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier Science Ltd, Oxford, 1995, 187~194
    [89]Schulz, J. C.; Heimdahl, O. E. R.; Finnegan, S., Small Steel Projectile Firings against Simulated Reinforced Concrete Slabs at Normal Incidence and Obliquity, AD-A138 279/5
    [90]Szczepanski, Richard D., Collins, John A., Concrete Penetration and Ricochet Testing of Two Projectile Types, AD-P001 753/3
    [91]V. Hohler, and A. J. Stilp, Hypervelocity impact of rod projectiles with L/D from 1 to 32, Int. J. Impact Engng. 1987, 5,323~331
    [92]V. M. Gold, Analysis of the penetration resistance of concrete, AD-E402821, 1997
    [93]V. M. Gold, G. C. Vradis, and J. C. Pearson, A study of constitutive models for concrete penetration analysis, ASCE J. Eng. Mech, 1996, 122(3),230~238
    [94]V. M. Gold, G. C. Vradis, and J. C. Pearson, Penetration of concrete by eroding projectiles: experiments and analysis, ASCE J. Eng. Mech, 1996, 122(2), 145~152
    [95]Wright, Thomas W., Survey of Penetration Mechanics for Long Rods, AD-A131 152/1
    [96]Z. Rosenberg and M. J. Forrestal, Perforation of aluminum plates with conical-nosed rods--additional data and discusiion, Journal of Applied Mechanics, 1988, 55,236~241
    [97]陈孟英,在成层土体中射弹侵彻深度的简化计算,防护工程,1999,1,13~18
    [98]邓宏见,毛勇建,弹体侵彻中厚混凝土靶的数值分析,第一界全国计算爆炸力学会议论文集,2000,81~87
    [99]郝保田,钻地武器钻地深度的模拟和近似计算,私人通信,1999
    [100]贾浩,于海武,冯晓晖,美国钻地武器的研究与发展,国外科技资料,1993,1
    [101]解放军总参谋部、总后勤部发布,防护工程建筑设计规范,GJB_z20419.1-98
    [102]倪玉山,张琦,混凝土断裂尺寸效应的研究进展,力学进展,1997,27(1),97~104
    [103]诺曼·琼斯,结构冲击(蒋平译),四川教育出版社,1994,211~239
    
    
    [104]宋守志,固体介质中的应力波,煤炭工业出版社,1989
    [105]王礼立,应力波基础,国防工业出版社,1985
    [106]王瑞臣,崔秉贵等,弹丸斜侵彻坚实介质效应分析,爆炸与冲击(1997年增刊),156~162
    [107]王瑞臣,崔秉贵等,斜侵彻弹丸阻力分析,爆炸与冲击(1997年增刊),148~151
    [108]徐建波,周刚,林俊德等,射弹侵彻实验结果和相似性的一点分析,第一届全国爆炸力学实验技术交流会论文集,2000,250~254
    [109]尹放林,钱七虎等,抗常规武器侵彻试验研究,防护工程,1998,2,1~5
    [110]余寿文,损伤力学,清华大学出版社,1997
    [111]张瑞萍,弹箭侵彻器对土壤和岩石的侵彻机理研究及弹道计算,兵工学报,1997,18,212~216
    [112]张若棋,赵国民,汤文辉,新概念钻地弹技术,私人通信,2000
    [113]张守中,爆炸与冲击动力学,兵器工业出版社,1993
    [114]赵亚溥,断裂力学中的相似方法,力学进展,1998,28(3),323~338
    [115]赵亚溥,断裂力学中的相似方法及尺度率,力学与实践,1995,17(5),11~16
    [116]周丰峻,武器钻地耦合爆炸与空中多弹爆炸防护技术,第三届全国工程结构安全防护学术会议论文集,1999,86~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700