IP网络QoS技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网能迅速发展到现在的规模,很大程度上要归功于其TCP/IP协议簇“尽力而为”(Best-Effort)的设计思想,大大降低了网络核心的复杂度和负担,使其能够迅速扩展,同时这一做法也使得网络缺乏对服务质量(QoS)的保证。随着网络规模的不断增大,各种各样的网络服务争相涌现,互联网已逐步向传输数据、语音、图像等多媒体信息的综合传输网演化,与此同时,传统电信业务的承载平台也正在向基于IP技术的分组交换系统转化,IP网络缺乏QoS保证的缺点正日益突出。在这种背景下,IP QoS已经成为未来IP网络发展的关键技术。
     本文回顾了TCP/IP网络的原理,给出了IP网络QoS的定义以及实现思路和手段,在相关研究工作和进展的基础上,做出了如下创新工作:
     1、针对下一代互联网研究计划Internet2提出的Scavenger Service(SS)的特点,提出了一种实现SS的对数自适应队列调度算法LAWRRQ。该算法用滑动时间窗口算法统计活跃流数量,并据此以对数的规律自适应地调整带宽在SS流和Best-Effort(BE)流之间的分配。算法利用对数函数的特性,在流数量统计精度和开销之间找到了平衡;利用流数量和总轮转片数对照表的方式克服了计算复杂性;针对SS数据包在缓冲区中堆积的现象加入了对BE队列的保护算法。实验结果表明,该算法在很好地保护BE流的同时,为SS流提供了更可靠的最小带宽保证,同Internet2推荐的现有队列调度算法相比,具有更好的调度性能和鲁棒性。
     2、通过对SS聚合流内部公平性的研究,指出了SS不适用于非适应流的问题。随后研究了用于平衡带宽的FRED队列管理算法在SS下的性能,发现了对适应流存在较多误判的问题,并对其做出了改进,提出了MFRED算法,在算法中增加了一种误判纠正机制。实验结果表明,MFRED能有效平衡带宽在SS流之间的分配,明显减少了对适应流的误判,使得SS的适用范围从TCP等适应流扩展到UDP等非适应流。通过对MFRED中nactive参数值和实际SS流数量的关系的研究,提出了一种用nactive值近似估计活跃SS流数量并据此调节最低带宽保证的方法,并在实验中得到验证。
     3、提出了一种确保服务中实现聚合流带宽按协议承诺信息速率比例公平分配的IEAM标记算法,将TCP中的AIMD控制思想引入到聚合流标记速率的调整上面。在该算法中,核心路由器通过检测IN包平均队列长度,标记反方向转发的数据包,进行直接拥塞信息反馈;边界入口路由器根据拥塞反馈信息采用一种AIMD的方式进行标记速率的调整。该算法和已有方案相比,具有简捷、自适应性和可扩展的特点。模拟实验表明,IEAM标记算法在不同网络条件下,
The reason why Internet can expand to such an enormous scale today mostly contributes to the Best-Effort design principle in TCP/IP protocol stack. This principle greatly brings down the complexity and the burden of the network core and makes it able to scale up quickly. As the fast expanding of network scale, various new network services emerge. Internet is now changing into an integrated network that transmits both data and multimedia flows. Also, the carrying foundation of traditional telecom applications is shifting into packet switching network based on IP technology. The shortcoming that original IP network lacks QoS (Quality of Service) warranty becomes increasingly critical. How to achieve QoS in IP network has become a key issue in next generation network development.This dissertation first reviews the elements of TCP/IP network and gives the definition of IP QoS together with the way to its realization. Then, on the basis of relative research works and progresses, the dissertation presents following innovative works:1. To deal with the particularity of Scavenger Service (SS) from Internet2 project, a logarithmically adaptive queue-scheduling algorithm named LAWRRQ is presented. In the algorithm, the number of active Scavenger Service flows is calculated by a time sliding window algorithm, and the bandwidth allocated for Best-Effort (BE) flows and SS flows is accordingly tuned in a logarithmical way. The tradeoff between flow number counting accuracy and cost is made by the characteristic of the logarithmic function. A looking-up table composed of flow number and total round robbing slice number resolves the computing complexity. A protection for BE queue in buffer management is also introduced. Simulation results show that compared with current algorithms recommended by Internet2, the algorithm provides more reliable bottom bandwidth guarantee for Scavenger Service flows when protecting BE flows well, and has better performance and robustness.2. The fairness between Scavenger Service micro-flows is studied. The problem that Scavenger Service is not applicable for non-adaptive flows is pointed out. Then, the study on performance of FRED queue management algorithm dealing with Scavenger Service shows the problem of many misidentifications with adaptive flows. Based on this, A MFRED algorithm is presented, in which a mechanism designed for misidentification correcting is added. Simulation results show that MFRED identifies non-adaptive flows and balances the bandwidth allocation effectively while misidentifications being greatly reduced. By means of study on the
    relationship between parameter nactive and actual active SS flow number in MFRED, a method of estimating SS flow number by nactive to tune the guarantee bottom bandwidth of Scavenger Service is presented and identified.3. An IE AM marking algorithm for proportional bandwidth distribution of Assured Service in DiffServ is presented. In the algorithm, the AIMD control thinking from TCP is introduced into the aggregate flow marking rate tuning. The core routers judge the congestion level according to the average length of IN queue and send out feedback information by marking the packets being forwarded to inverse direction at the moment of congestion. Based on the feedback information, the edge routers adjust their target rates in an AIMD way without communications with other edge routers. The presented algorithm is simple, adaptive and scalable. Simulations shows that the proposed algorithm realizes proportional bandwidth allocation according to committed information rate without communications between different edge routes under different network conditions.4^ Current research works on wireless mobile IP QoS are Summarized and the different schemes are compared with each other. These works are divided into four aspects: management of resource reservation, re-establishment of reservation path, design of mobile agent and integration of RSVP and mobility management. Based on some mechanisms mentioned in summarization, a QoS guarantee scheme in Fast Handovers for Mobile IPv6 architecture is presented. Finally, some basic simulations are made.
引文
[1] 林闯,单志广,任丰原.计算机网络的服务质量(QoS).北京:清华大学出版社,2004.
    [2] Vint Cerf and Robert Kahn. A Protocol for Packet Network Intercommunication. IEEE Transactions on Communications, May 1974, (5): 647-648.
    [3] David D. Clark. The Design Philosophy of the DARPA Internet Protocols. Proceedings of ACM SIGCOMM '88, August, 1988.
    [4] B. Leiner, R. Cole, J. Postel, D. Mills. The DARPA Internet Protocol Suite. Proceedings INFOCOM '85.
    [5] 刘韵洁,张云勇,张智江.下一代网络服务质量技术.北京:电子工业出版社,2005.
    [6] 孙利民,阚志刚,郑健平等.移动IP技术.北京:电子工业出版社,2003.8.
    [7] 谢希仁.计算机网络(第三版).大连:大连理工大学出版社,2002.12.
    [8] Internet2-Home. http://www.internet2.edu/
    [9] QBone Scavenger Service (QBSS). http://QBone.internet2.edu/qbss/
    [10] Clark D. and Fang W. Explicit allocation of best effort packet delivery service. ACM Transactions on Networking. 1998, 6(4): 362-373.
    [11] The Network Simulator-ns-2. http://www.isi.edu/nsnam/ns/index.html
    [12] J.Walrand,P varaiya著,张艳,孙瑞志等译.高性能通信网络.北京:机械工业出版社,2002.2.
    [13] M. Schwartz. Broadband Integrated Networks. New York: Prentice Hall, 1996.
    [14] McCreary, S. claffy, k. Trends in wide area IP traffic patterns o A view from Ames Internet Exchange, ITC Specialist Seminar, 2000.
    [15] Thomas Karagiannis, Mart Molle, Michalis Faloutsos. A Nonstationary Poisson View of Internet Traffic, proc. INFOCOM 2004.
    [16] W. Leland, M. Taqqu and W. Willinger, et al. On the self-similar nature of Ethernet traffic. ACM SIGCOMM Computer Communication Review, 1993, 23(4): 183-193.
    [17] W.Leland, et al., On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, Vol.2(1), 1994: 1-15.
    [18] Kihong Park and Walter Willinger. Self-Similar Network Traffic and Performance Evaluation. New York: Wiley-Interscience, 2000.
    [19] M. S. Taqqu, V. Teverovsky and W.Willinger. Estimators for long-range dependence: an empirical study. Fractals, 1995, 3(4): 785-798.
    [20] W. Willinger and V. Paxson. Discussion of Heavy tail modeling and teletraffic data' by S. I. Resnick. The Annals of Statistics, 1998, 25: 1856-1866.
    [21] R. Addie, M. Zuckerman and T. Neame. Fractal traffic: measurements, modeling and performance evaluation, in: Proceedings of INFOCOM'95, Boston: IEEE, 1995. 977-984.
    [22] A. Erramilli, P. Pruthi and W. Willinger. Recent developments in fractal traffic modeling. in: ITC'95. Seminar, St. Petersburg. Russua: ITC, 1995.240-251.
    [23] William Stallings著,齐望东,薛卫娟等译.高性能网络与互联网——性能与服务质量(第二版).北京:电子工业出版社,2003.1
    [24] R. Jain and K.K. Ramakrishnan. Congestion Avoidance in Computer Networks with a Connectionless Network Layer, Goals and Methodology. Proceeds of Computer Network Symposium, Washington, DC, 1988, 134-143.
    [25] V. Jacobson, Congestion Avoidance and Control, ACM Computer Communication Review, 1988, 18(4): 314~329.
    [26] S.H. Low. TCP congestion controls: algorithms and models. Tutorial Slides, 2000. http://netlab.caltech.edu
    [27] 章淼,吴建平,林闯.互联网端到端拥塞控制研究综述.软件学报,2002,13(3):354-363.
    [28] S. Floyd, K. Fall, Promoting the Use of End-to-End Congestion Control in the Internet, IEEE/ACM Transactions on Networking, 1999, 7(4): 458-472.
    [29] Internet Congestion Control Research Group. http://www.irtf.org/charter?gtype=rg&group=iccrg
    [30] Internet Engineering Task Force. http://www.ietf.org
    [31] W.Richard Stevens著,范建华等译.TCP/IP详解卷1:协议.北京:机械工业出版社,2000.4
    [32] M. Allman, V. Paxson, W. Stevens.TCP Congestion Control. IETFRFC2581. http://www.ietf.org/rfc/rfc2581.txt, April 1999.
    [33] K. Fall. S. Floyd. Simulation-based Comparisons of Tahoe, Reno and SACK TCP. Computer Communication Review, 26(3): 5~21, 1996.
    [34] S. Floyd, T. Henderson. The NewReno Modification to TCP's Fast Recovery Algorithm. IETF RFC2582, http://www.ietf.org/rfc/rfc2582.txt, April 1999.
    [35] D. Rawlins, et al. Framework Policy Information Base for Usage Feedback. IETF RFC3571, http://www.ietf.org/rfc/rfe3571.txt, August 2003.
    [36] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE Journal on Selected Areas in Communication, October 1995, 13 (8): 1465-1480.
    [37] Steven H. Low, Lachlan LH Andrew, Bartek P. Wydrowski. Understanding XCP: Equilibrium and Fairness. Proceedings of INFOCOM 2005.
    [38] D. Katabi, M. Handley, C. Rohrs. Congestion control for high bandwidth-delay product networks. Computer Communications Review, 2002, 32(4): 89-102.
    [39] S. Floyd. HighSpeed TCP for Large Congestion Windows. IETF RFC3649, http://www.ietf.org/rfc/rfc3649.txt, December 2003.
    [40] K.Brown and S.Singh. M-TCP: TCP for mobile cellular networks. IEEE/ACM CCR 1997, 27(5).
    [41] K. Ratnam and I.Matta. WTCP: An efficient mechanism for improving TCP performance over wireless links. Proe. of 3th ISCC, 1998.
    [42] 曹蓟光.IP QOS概念的演进.2004全球NGN高峰论坛,北京,2004.4.
    [43] J. Wroclawski. Specification of the Controlled-Load Network Element Service. IETF RFC2211, http://www.ietf.org/rfc/rfc2211.txt, September 1997.
    [44] S. Shenker, C. Partridge, R. Guerin. Specification of Guaranteed Quality of Service. IETF RFC2212, http://www.ietf.org/rfc/rfc2212.txt, September 1997.
    [45] S. Shenker, J. Wroclawski. Network Element Service Specification Template. IETF RFC2216, http://www.ietf.org/rfc/rfc2216.txt, September 1997.
    [46] E. Crawley, R. Nair, B. Rajagopalan, H. Sandick. A Framework for QoS-based Routing in the Internet. IETF RFC2386, http://www.ietf.org/rfc/rfc2386.txt, August 1998.
    [47] H.J.Chao,郭晓雷.高速网络中的QoS控制(影印版).北京:清华大学出版社,2004.
    [48] R.Braden, D. Clark, S. Shenker. Integrated Services in the Internet Architecture: an Overview. IETF RFC 1633, http://www.ietf.org/rfc/rfc 1633.txt, June 1994.
    [49] K. Nichols, S. Blake, F. Baker, D. Black. Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. IETF RFC2474, http://www.ietf.org/rfc/rfc2474.txt, December 1998.
    [50] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. An Architecture for Differentiated Service. IETF RFC2475, December 1998.
    [51] F. Le Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R Krishnan, P. Cheval, J. Heinanen. Multi-Protocol Label Switching (MPLS) Support of Differentiated Services.IETF RFC3270, http://www.ietf.org/rfc/rfc3270.txt, May 2002.
    [52] R. Yavatkar, D.Hoffman, Y. Bernet, F. Baker, M. Speer. SBM (Subnet Bandwidth Manager): A Protocol for RSVP-based Admission Control over IEEE 802-style networks. IETF RFC2814May 2000.
    [53] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, RSVP: A New Resource ReSerVation Protocol. IEEE Network, September 1993.
    [54] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin. Resource ReSerVation Protocol (RSVP)--Version 1 Functional Specification. IETF RFC2205, http://www.ietf.org/rfc/rfc2205.txt, September 1997.
    [55] K. Ramakrishnan, S. Floyd, D. Black. The Addition of Explicit Congestion Notification (ECN) to IP. IETF RFC3168, http://www.ietf.org/rfc/rfc3168.txt, September 2001.
    [56] B. Davie, A. Charny, J.C.R. Bennet, et al. An Expedited Forwarding PHB (Per-Hop Behavior). IETF RFC3246, http://www.ietf.org/rfc/rfc3246.txt, March 2002.
    [57] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski. Assured Forwarding PHB Group. IETF
    ??RFC2597, http://www.ietf.org/rfc/rfc2597.txt, June 1999.
    [58] K. Nichols, B. Carpenter. Definition of Differentiated Services Per Domain Behaviors and Rules for their Specification. IETF RFC3086, http://www.ietf.org/rfc/rfc3086.txt, April 2001.
    [59] BLESS R, NICHOLS K,WEHRLE K. A lower effort Per-Domain behavior (PDB) for differentiated services. IETF RFC3662, http://www.ietf.org/rfc/rfc3662.txt, December 2003.
    [60] K. Nichols, V. Jacobson and L. Zhang, A Two—Bit Differentiated Services Architecture for the Internet. IETF RFC2638, http://www.ietf.org/rfc/rfc2638.txt, July 1999.
    [61] C. Dovrolis, D. Stiliadis and P. Ramanathan, Proportional Differentiated Services: Delay Differentiation and packet Scheduling, IEEE/ACM Transactions in Networking, 2002.
    [62] C. Dovrolis, P. Ramanathan. A Case for Relative Differentiated Services and the Proportional Differentiation Model, IEEE Network, vol. 13, no. 5, September/October, 1999.
    [63] E. Rosen, A. Viswanathan, R. Callon. Multiprotocol Label Switching Architecture. IETF RFC3031, http://www.ietf.org/rfc/rfc3O31.txt, http://www.ietf.org/rfc/rfc3031.txt, January 2001.
    [64] William Stallings. MPLS. Internet Protocol Journal (IPJ), Volume 4, No. 3, September, 2001.
    [65] D. Awduche, J. Malcolm, J. Agogbua, et al. Requirements for Traffic Engineering Over MPLS. IETF RFC2702, http://www.ietf.org/rfc/rfc2702.txt, September 1999.
    [66] F. Le Faucheur, W. Lai. Requirements for Support of Differentiated Services-aware MPLS Traffic Engineering. IETF RFC3564, http://www.ietf.org/rfc/rfc3564.txt, July 2003.
    [67] F. Le Faucheur, Ed.. Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering. IETF RFC4124, http://www.ietf.org/rfc/rfc4124.txt, June 2005.
    [68] F. Le Faucheur, W. Lai. Maximum Allocation Bandwidth Constraints Model for Dif fserv-aware MPLS Traffic Engineering. IETF RFC4125, http://www.ietf.org/rfc/rfc41 25.txt, June 2005.
    [69] J. Ash. Max Allocation with Reservation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering & Performance Comparisons. IETF RFC4126, http://www.ietf.org/rfc/rfc4126.txt, June 2005.
    [70] F. Le Faucheur, Ed.. Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering. IETF RFC4127, http://www.ietf.org/rfc/rfc4127.txt, June 2005.
    [71] W. Lai. Bandwidth Constraints Models for Differentiated Services(Diffserv)-aware MPLS Traffic Engineering: Performance Evaluation. IETF RFC4128, http://www.ietf. org/rfc/rfc4128.txt, June 2005.
    [72] Bless R, Wehrle K. A lower than Best-Effort per-hop behavior, http://quimby.gnus.o rg/internet-drafts/draft-bless-diffserv-lbe-phb-00.txt. Work in Progress, 1999-12.
    [73] Carepenter B, Neichols K. A Bulk Handling Per-Domain Behavior for Differentiated Services. http://www.ietf.org/proceedings/01aug/I-D/draft-ietf-diffserv-pdb-bh-02.txt. Work in Progres, 2001-01.
    [74] Stanislav S. Configuring QBSS on a juniper, http://archives.internet2.edu/guest/archi ves/i2ss-dt/log200105/msg00024.htmI
    [75] SLAC QBSS Testbed. http://www-iepm.slac.stanford.edu/monitoring/qbss/qbss.html
    [76] Juniper QBSS experiment, http://www.transpac.org/qbss-html/, September 2003.
    [77] Shalunov S. Testing QBSS config at advanced.org:Good. http://archives.internet2.edu /guest/archi ves/i2ss-dt/log200105/msg00000.html
    [78] Kert Mezger, David W. Petr, Timothy G. Kelley. Weighted Fair Queuing vs Weighted Round Robin: A Comparative Analysis. IEEE Wichita Conference on Communications, Networks and Signal Processing 1994.
    [79] A. Millet and Z. Mammeri, WFQ-based CBQ Discipline : an Approach to Provide QoS Guarantees in Networks, in SCI'03, Orlando, Florida, July 2003.
    [80] Vegesna S. IP Quality of Service (Cisco Networking Fundamentals). San Jose, California: Cisco Press, January 2001.
    [81] Floyd, S., Jacobson V. Random Early Detection for Congestion Avoidance. IEEE/ACM Transactions on Networking. August 1993.
    [82] D. Lin and R. Morris, Dynamics of random early detection. ACM SIGCOMM, Cannes, France, Oct. 1997, 127-137.
    [83] G Hasegawa and M. Murata. Survey on fairness issues in TCP congestion control mechanisms. IEICE Transactions on Communications, June 2001, E84-B(6):1461-1472.
    [84] E. Hashem. Analysis of random drop for gateway congestion control. Report LCS TR-465, Laboratory for Computer Science, MIT, Cambridge, MA, 1989, p. 103.
    [85] S. Floyd. Connections with Multiple Congested Gateways in Packet-Switched Networks Part 1: One-way Traffic. Computer Communications Review, October 1991, 21(5):30-47.
    [86] FP Kelly, A. Maulloo and D. Tan. Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 1998, 49:237-- 252.
    [87] D. Bertsekas and R. Gallager. Data Networks. Englewood Cliffs, NJ: Prentice Hall, 1987.
    [88] J. Jaffe, A Decentralized. 'Optimal', Multiple User, Flow Control Algorithm. Proceedings of the Fifth International Conference on Computer Communications, October 1980, p.839-844.
    [89] J. Jaffe. Bottleneck Flow Control. IEEE Transactions on Communications, July 1981, 29(7): 954-962.
    [90] F. Kelly. Charging and rate control for elastic traffic. Eur. Trans. Telecommun., 1997, 8: 33-37.
    [91] R. Mazumdar, et al. Fairness in Network Optimal Flow Control: Optimality of Product Form. IEEE Transactions on Communication, 39: 775-782, 1991.
    [92] L. Massoulie, J. Roberts. Bandwidth sharing: Objectives and algorithms. IEEE/ACM Transactions on Networking (TON) archive, June 2002, 10(3): 320-328.
    [93] R. Jain, D.-M. Chiu, and W. Hawe. A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared computer system. Technical Report 301, Digital Equipment Corporation, Sept. 1984.
    [94] D. Clark, J. Crowcroft, B. Davie, et al. Recommendations on Queue Management and Congestion Avoidance in the Internet. IETF RFC2309, http://www.ietf.org/rfc/rfc2309.txt, April 1998.
    [95] S. Floyd. Congestion Control Principles. IETF RFC1914, http://www.ietf.org/rfc/rfcl914.txt, September 2000.
    [96] Seddigh N, Nandy B, Pieda P. Bandwidth assurance issues for TCP flows in a differentiated services network. Proceedings of Globecom'99, Rio De Janeiro: IEEE, 1999. pp: 1792-1798 vol.3.
    [97] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocation in High Speed Networks. ACM SigComm 98, August 1998, Canada.
    [98] W. Feng, D. Kandlur, et al. Stochastic Fair Blue: A Queue Management Algorithm for Enforcing Fairness. Proc of INFOCOM2001, April 2001.
    [99] 任丰原,林闯,王福豹.RED算法的稳定性:基于线性控制理论的分析.计算机学报,2002,25(12):1302-1307.
    [100] Floyd, S., and Fall, K., Promoting the Use of End-to-End Congestion Control in the Internet, IEEE/ACM Transactions on Networking, August 1999.
    [101] M. May, T. Bonald, and J. Boiot, Analytic Evaluation of RED Performance. INFOCOM 2000, August 2000.
    [102] Bonald T., May M. Drop behavior of RED for bursty and smooth traffic. Proc. IEEE/IFIP IWQoS'99, 1999.
    [103] Ion Stoica. ns-2 Software and Simulation Results. http://www-2.cs.cmu.edu/~istoica/csfq/software.html
    [104] Y. Bernet, S. Blake, D. Grossman, A. Smith. An Informal Management Model for Diffserv Routers, IETF RFC 3290, http://www.ietf.org/rfc/rfc3290.txt, May 2002.
    [105] S. Sahu, P. Nain, D. Towsley and V. Firoiu. On achievable service differentiation with token bucket marking for TCP. ACM SIGMETRICS2000.
    [106] Heinanen J, Guerin R. A single rate three color marker. IETF RFC2697 http://www.ietf.org/rfc/rfc2697.txt, September 1999.
    [107]Seddigh N, Nandy B. A time sliding window three colour marker. IETF RFC2859, http://www.ietf.org/rfc/rfc2859.txt, June 2000.
    [108]Clark D. and Fang W. Explicit allocation of best effort packet delivery service. ACM Transactions on Networking. 1998, 6(4):362-373.
    [109]Distributed weighted random early detection. Technical Specification from Cisco, http://www.cisco.com/univercd/cc/td/doc/product/software/iosl 11/cc111/wred.pdf
    [110]Su H, Atiquzzaman M. Performance modeling of differentiated service network with a token bucket marker. Communications. 2003,150(5):347-53.
    [111]Makkar R, et al. Empirical study of buffer management schemes for DiffServ assured forwarding PHB. International Conference on Computer Communications and Networks (ICCCN 2000), October 2000. pp:632-637.
    [112]Eun-Chan Park, Chong-Ho. Proportional bandwidth allocation in DiffServ networks. IEEE INFOCOM 2004, March 2004.
    [113]Seddigh N, Nandy B, Pieda P. Study of TCP and UDP interaction for the AF PHB . http://www.watersprings.org/pub/id/draft-nsbnpp-diffserv-udptcpaf-00.txt, August 1999.
    [114]Yeom I, et al. Impact of marking strategy on aggregated flows in a differentiated-services network. International Workshop on QOS. Landon:IEEE, 1999. pp: 156-158.
    [115]Feroz A, Rao A, Kalyanaraman S. A TCP-friendly traffic marker for IP differentiated services. Proc. of IWQoS'OO. Pittsburgh, PA USA:IEEE 2000.pp: 138-147.
    [116]Su Hongjun, Atiquzzaman M. ItswTCM: A new aggregate marker to improve fairness in DiffServ. IEEE GLOBECOM 2001. San Antonio, TX USA, November,2001. pp: 25-29.
    [117]Feng W, et al. Adaptive packet marking or maintaining end-to-end throughput in a differentiated services Internet. IEEE/ACM Transactions on Networking. Oct 1999, 7(5): 685-697.
    [118]Nandy B, Seddigh N, Pieda P, et al. Intelligent traffic conditioners for assured forwarding based differentiated services networks. IFIP High Performance Networking (HPN 2000), Paris, France: ACM, June 2000. pp: 540 - 554.
    [119]El-Gendy M. A, Shin K. Equation-based packet marking for assured forwarding services. Proceedings of IEEE INFOCOM 2002. pp: 845 - 854 voi.2.
    [120]Chow H, Leon-Garcia A. A feedback control extension to differentiated services. http://ftp.ist.utI.pt/pub/drafts/draft-chow-diffserv-fbctrl-00.txt. March, 1999.
    [121]Wu H, Long K, et al. A direct congestion control scheme for non-responsive flow control in DiffServ IP networks, http://www.netzmafia.de/rfc/internet-drafts/draft-wu ht-diffserv-dccs-00.txt. Aug, 2000.
    [122]Kumar K, et al. Using edge-to-edge feedback control to make assured service more assured in DiffServ networks. Proceedings of the 26th Annual IEEE Conference on Local
     Computer Networks (LCN 2001), Tampa, Florida: IEEE, Nov 2001. pp: 160-167.
    [123] 姜明,吴春明,朱淼良.区分服务中一种拥塞感知的单速三色标记算法.电子学报.Jan,2004,32(1):69-74.
    [124] 刘正蓝,朱淼良.基于边界到边界带宽估计的数据包标记器.通信学报.Aug,2003,24(8):12-21.
    [125] Nandy B, Seddigh N, Pieda P. Diffserv's assured forwarding PHB: what assurance does the customer have?. Network and Operating Systems Support for Digital Audio and Video (NOSSDAV' 99 ). http://www.nossdav.org/1999/papers/82-1232701015.pdf
    [126] Seddigh N, Nandy B, Pieda P. Bandwidth assurance issues for TCP flows in a differentiated services network. GLOBECOM, 1999.
    [127] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: A Transport Protocol for Real-Time Applications. Audio-Video Transport Working Group, IETF RFC1889, http://www.ietf.org/rfe/rfc1889.txt, January 1996.
    [128] 张慧媛,杨放春等.媒体网关控制标准Megaco/H.248协议的分析与研究,北京邮电大学学报,2002,25(3):73-77.
    [129] K. K. Ramakrishnan, R.Jain, A Binary Feedback Scheme for Congestion Avoidance in Computer Networks, ACM Transactions on Computer Systems, 1990, 8(2): 158~181.
    [130] Postel, J. Internet Control Message Protocol. IETF RFC792, http://www.ietf.org/rfc/rfc792.txt, September 1981.
    [131] Chiu D, Jain R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Journal of Computer Networks and 1SDN. 1989, 17(1): 1-14.
    [132] C. Perkins (Ed). IP Mobility Support for IPv4. IETF RFC3344, http://www.ietf.org/rfc/rfc3344.txt, August, 2002.
    [133] D. Johnson, C. Perkins, J. Arkko. Mobility Support in IPv6. IETF RFC3775, http://www.ietf.org/rfc/rfc3775.txt, June, 2004.
    [134] I. Mahadevan, K. M. Sivalingam. Architecture and Experimental Framework for Supporting QoS in Wireless Networks Using Differentiated Services. Mobile Networks and Applications, 2001, 6(4): 385-395.
    [135] G. Heijenk et al., DiffServ Resource Management in IP-based Radio Access Networks. WPMC '01, Aalborg, Denmark, 2001, pp. 1469-74.
    [136] L. Westberg, et al. Resource Management in Diffserv (RMD) Framework. Internet Draft, http://parker.vslib.cz/MIRRORS/ftp.ripe.net/internet-drafts/draft-westberg-rmd-framework-01.txt, Feb. 2002.
    [137] L. Westberg, et al. Resource Management in Diffserv On DemAnd (RODA) PHR. Internet Draft, http://parker.vslib.cz/MIRRORS/ftp.ripe.net/internet-drafts/draft-westberg-rmd-od-phr-01.txt, Feb. 2002.
    [138] J.-C. Chen, et al. QoS Architecture Based on Differentiated Services for Next Gen eration Wireless IP Networks. Internet Draft, http://www.armandocaro.net/publication s/2000.draft-itsumo-wireless-diffserv-00.txt, July 2000.
    [139]G L. Grand, J. B. Othman, and E. Horlait, Providing Quality of Service in Mobile Environments with MIR. ICON 2000, Singapore, Sept. 2000.
    [140]E. Perkins. Mobile IPv4 Regional Registration. Internet Draft: http://bgp.potaroo.net/ ietf/all-ids/draft-ietf-mobileip-reg-tunnel-09.txt, 2004.
    [141]S. J. Leu, R. S. Chang. Integrated service mobile internet: RSVP over mobile IPv4&6. Mobile Networks and Applications, 2003, 8(6): 635-642.
    [142]A. K. Talukdar, B. R. Badrinath, A. Acharya. MRSVP: A resource reservation protocol for an integrated services network with mobile hosts. Wireless Networks, 2001, 7(1): 5-19.
    [143]S. K. Das, R. Jayaram, N. K. Kakani, S. K. Sen. A resource reservation mechanism for mobile nodes in the Internet. Proceedings of IEEE Vehicular Technology Conference (VTC'99), pp. 1940-1944, May. 1999.
    [144JC.-C. Tseng, G.-C. Lee, R.-S. Liu, HMRSVP: A hierarchical mobile RSVP protocol. IEEE INFOCOM'01, pp. 467-472, Apr. 2001.
    [145JW.-T. Chen, L.-C. Huang. RSVP mobility support: A signaling protocol for integrated services Internet with mobile hosts. IEEE INFOCOM'00, pp. 1283-1292, Mar. 2000.
    [146]N.-F. Huang, W.-E. Chen. RSVP Extensions for Real-Time Services in Hierarchical Mobile IPv6. Mobile Networks and Applications, 2003, 8(6): 625-634.
    [147]A. Mohmoodian, G. Haring. Mobile RSVP with dynamic resource sharing. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC'OO), pp. 896 -901, Sep. 2000.
    [148]Q. Gao, A. Acampora. Connection tree based micro-mobility management for IP-centric mobile networks. Proceedings of IEEE International Conference on Communications (ICC'02), pp. 3307-3312, Apr. 2002.
    [149]M. Mirhakkak, N. Schult, D. Thomson. Dynamic bandwidth management and adaptive applications for a variable bandwidth wireless environment. IEEE Journal on Selected Areas in Communications, 2001, 19(10): 1984-1997.
    [150]G-S. Kuo, P.-C. Ko. Dynamic RSVP Protocol. IEEE Communications Magazine, 2003, 41(5): 130-135.
    [151]B. Moon A. H. Aghvami. Quality of Service Mechanisms in All-IP Wireless Access Networks. IEEE Journal on Selected Areas in Communications, 2004, 22(5): 873 -888.
    [152]Q. Shen, W. Seah, A. Lo, H. Zheng, M. Greis. An interoperation framework for using RSVP in mobile IPv6 networks. Internet Draft, http://ftp.nluug.nl/networking/IP v6/Standards/IETF/draft-shen-rsvp-mobileipv6-interop-00.txt, 2001.
    [153]S.-C. Lo, G.-L. Lee, W.-T. Chen, J.-C. Liu, Architecture for Mobility and QoS Support in All-IP Wireless Networks. IEEE Journal on Selected Areas in Communications, 2004,
     22(4): 691-705.
    [154] I. Mahadevan. K. M. Sivalingam. An Architecture and Experimental Results for Quality of Service in Mobile Networks Using RSVP and CBQ. Wireless Network, 2000, 6(3): 221-234.
    [155] G. C. Lee, T. P. Wang, C. C. Tseng. Resource reservation with pointer forwarding schemes for the mobile RSVE IEEE Communications Letters, 2001, 5(7): 298-300.
    [156] J. McNair, I. F. Akyildiz, M. D. Bender. Handoffs for real-time traffic in Mobile IP version 6 networks. IEEE GLOBECOM'01, pp. 3463-3467, Nov. 2001.
    [157] S. Yasukawa, J. Nishikido, K. Hisashi. Scalable mobility and QoS support mechanism for IPv6-based read-time wireless internet traffic. IEEE GLOBECOM'01, pp. 3459-3462, Nov. 2001.
    [158] H. Soliman, C. Castelluccia, K. El Malki, L. Bellier. Hierarchical Mobile IPv6 Mobility Management (HMIPv6). IETF RFC4140, http://www.ietf.org/rfc/rfc4140.txt, 2005.
    [159] S. Paskalis, A. Kaloxylos, E. Zervas. An efficient QoS Scheme for Mobile Hosts. Proceedings of lEEE International Conference on Local Computer Network (LCN'01), pp. 630-637, Nov. 2001.
    [160] S. Paskalis, A. Kaloxyios, E. Zervas, L. Merakos. Evaluating the RSVP Mobility Proxy Concept. Proceedings of IEEE International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC'03), pp.270-274, Sep. 2002.
    [161] 孙伟峰,杨寿保,杨琛,陈阳.非集中层次化移动IPv6管理QOS架构.中国科学技术大学学报,2005,35(3):376-384.
    [162] H. Chaskar, R. Koodli. QoS support in Mobile IP version 6. IEEE Broadband Wireless Summit (Networld+Interop), May 2001.
    [163] Chaskar, R.Koodli. A Framework for QoS Support in Mobile IPv6, Internet Draft, http://ftp.nluug.nl/networking/IPv6/Standards/general-comms/internet-drafts/draft-chaska r-mobileip-qos-00.txt, 2000.
    [164] X. Fu, H. Karl, A. Festag, et al. QoS-Conditionalized Binding Update in Mobile I Pv6. Internet Draft, http://ftp.nluug.nl/networking/IPv6/Standards/general-comms/internet-drafls/draft-tkn-nsis-qosbinding-mipv6-00.txt, 2002.
    [165] S. Sroka, H. Karl. Performance evaluation of a QoS-aware handover Mechanism. Proceedings of IEEE International Symposium on Computers and Communication (ISCC'03), pp. 117-124, Jun. 2003.
    [166] A. Neumann, X. Fu, H. Karl. Prototype Implementation and Performance Evaluation of a QoS-Conditionalized Handoff Scheme for Mobile IPv6 Networks. Proceedings of IEEE Annual Workshop on Computer Communications (CCW'03), pp.24-29, Oct. 2003.
    [167] R. Koodli (Ed.). Fast Handovers for Mobile IPv6. IETF RFC4068, http://www.ietf.org/rfc/rfc4068.txt, 2004.
    [168] C. E. Perkins, E R. Calhoun. AAA Registration Keys for Mobile IPv4. IETF Inter net Draft, http://ftp.nluug.nl/networking/IPv6/Standards/general-comms/internet-drafts/draft-ietf-mip4-aaa-key-06.txt, June 2004.
    [169] J. Arkko, V. Devarapalli, F. Dupont. Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents. IETF RFC3776, http://www.ietf.org/rfc/rfc3776.txt, June, 2004.
    [170] A. Patel, K. Leung, M. Khalil, H. Akhtar, K. Chowdhury. Authentication Protocol for Mobile IPv6. IETF RFC 4285, http://www.ietf.org/rfc/rfc4285.txt, Jul. 2004.
    [171] Lai J, Liao W. Mobile multicast with routing optimization for recipient mobility. IEEE Transactions on Consumer Electronics, 2001, 47(1): 199-206.
    [172] Harrison T, Williamson C, Mackrell W, et al. Mobile multicast (MoM) protocol: Multicast support for mobile hosts. Proceedings of ACM International Conference on Mobile Computing and Networking. Budapest: IEEE, 1997: 151-160.
    [173] Cheng LT, Pink S. MobiCast: A multicast scheme for wireless networks. Mobile Networks and Applications, ACM/Baltzer Mobile Networks and Applications, 2000, 5(4): 259-271.
    [174] 刘述,伊佳.CN2采用的关键技术盘点.中国网通集团公司新闻中心,http://www.chinanetcom.com.cn/mj/dxsc.asp?Unid=2208, 2004-10-22.
    [175] C. R. Dow, P. J. Lin, et al. A Study of Recent Research Trends and Experimental Guidelines in Mobile Ad-hoc Networks. Proc. AINA'05.
    [176] 李方敏,李仁发,叶澄清.网络仿真软件ns的结果输出和分析.计算机工程.26(9):14-16,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700