基于气体润滑静压工作台的若干关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密微位移工作台系统在现代尖端工业生产和科学研究领域内占有极为重要的地位。高精度和高分辨率的精密微位移工作台系统的各项技术指标是各国高技术发展水平的重要标志。本实验室已经针对工作台在先进结构材料、多孔质气体润滑技术以及直接驱动技术等关键技术方面进行了较为深入的研究,为研制出性能均衡,适合工业环境应用的大行程超精密工作台打下坚实的基础。本次课题的研究目的是实现空气静压工作台关键技术的实用化。通过对工作台结构设计方面的调研和论证,对气体静压支承的数值计算分析、对导轨的精度设计进行的讨论,旨在为掌握空气静压工作台的关键技术,具备研制工作台的能力做些前期的准备工作。
     本文的研究重点放在空气静压工作台的实用化设计方面,并为掌握其加工生产的关键技术做了许多认证,为今后早日实现工作台批量生产做了大量实质性的工作。本文结合实验室前面的工作及课题的实际情况,主要进行空气静压工作台结构设计方面的调研和论证,空气静压气浮支承的理论计算,以及导轨精度分析。
     文中初步完成了工作台整体结构布局方面的设计:工作台整体采用二维形式,水平布置;工作台上层采用一个直线电机驱动,下层采用两侧双直线电机驱动;工作台静导轨采用花岗岩大理石材料,动导轨采用铝合金材料;工作台的气体支撑技术采用真空负压吸附式设计,可以获得高刚度。另外还针对工作台的实用化总结了若干需要注意的问题。
     文中采用有限差分法编制了基于气体润滑的气浮支承技术数值计算程序;在气体润滑形式的基础上选用了环面节流器;根据数值程序计算出承载能力、刚度及流量;分析了基于环面节流器气体润滑支承的性能,并根据计算结果分析了影响其性能的各种因素。
     文中还针对空气静压导轨精度方面做了一些分析,在简化模型基础上,定性分析了影响空气静压导轨精度方面的因素,并分析了其传递规律,为今后在设计更高精度的空气静压工作台奠定了坚实的基础。
Ultra-precision micro-displacement stage system plays an important role in modern industry and scientific research field. The high precision and high resolution are the important symbols of the development of high-tech level in each country. The further research in key technology of advanced structural materials, porous gas lubrication and direct-drive has been made by the previous research team, which has laid a solid foundation for developing a ultra-precision stage with such features, as large travel, balanced performance and suitable for industrial application. The goal of the research is realizing the practical application of the key technology of the aerostatic stage. By carrying out summarizing the structure of the aerostatic stage, the numerical analysis on the air lubrication, the precision design on the guide-way, the research aim at mastering the key technology of the aerostatic stage research and the manufacturing capacity.
     The paper has done a lot of certification. And this is essential for the practical application of the aerostatic stage and mastering the key technology of the production. In this paper, it focus on the research and demonstration of the structure design for the stage by comparing with pre-work of the lab, the numerical analysis of the air lubrication, the precision analysis of the aerostatic guide-way.
     In this paper, the initial global structure design for the aerostatic stage has been finished. The two dimensional form and horizontal layout is adopted. The top guide-way is arranged one linear motor and the lower is arranged dual ones on the right and left sides. The material of the static guide-way is granite marble and the moving guide-way is aluminum alloy. The air lubrication technology is adopting vacuum adsorption for obtaining high stiffness. Otherwise, the paper refers to some problems of the practical application for the stage.
     The program of the air bearing adopts finite difference method. The torus restrictor is selected. And the performance of air lubricated bearing torus-based Restrictor is analyzed in accordance with the results of the numerical analysis, such as carrying capacity, stiffness and flow. And also according to the result, the proposal of the structure optimization has been made.
     In this paper, the precision of the aerostatic guide-way is analyzed. Based on the simplified modal, the factors of leading to the error of the movement precision are analyzed by qualitative analysis. Also the rule of the error transmission is analyzed. This precision analysis is very essential for improving the movement precision of the aerostatic stage.
引文
[1]谢卫东,精密微位移工作台系统综述,自动化与仪器仪表,1991(1):8~9
    [2]文秀兰,超精密加工技术与设备,北京:化学工业出版社,2006.234~257
    [3]王先逵主编,精密加工技术实用手册,北京:机械工业出版社,2001.592~593
    [4]Mekid, Samir, High precision linear slide. Part I: Design and construction, International Journal of Machine Tools and Manufacture, 2000, 40(7):1039~1050
    [5]Chao, C.L. (Tam-Kang Univ); Neou, J. Model reference adaptive control of air-lubricated capstan drive for precision positioning, Precision Engineering, 2000,24(4):285~290
    [6]罗兵,李艾利,超精密扭轮摩擦传动动力学研究,国防科技大学学报,1998, 20(3):99~102
    [7]Shinno, Hidenori; Hashizume, Nanometer positioning of a linear motor-driven ultraprecision aerostatic table system with electrorheological fluid dampers, CIRP Annals - Manufacturing Technology, 1999, 48(1):289~292
    [8]Tomita, Yoshiyuki (Sumitomo Heavy Industries Ltd); Makino, Kenichi, High-response X-Y stage system driven by in-parallel linear motors, CIRP Annals - Manufacturing Technology, 1996, 45(1):359~362
    [9]Tomita, Yoshiyuki (Sumitomo Heavy Industries, Ltd); Surface motor-driven precise positioning system, Precision Engineering, 1994, 16(3):184~191
    [10]H.Shinno, H.Hashizume, H.Yoshioka, X-Y-? Nano-Positioning Table System for a Mother Machine, CIRP Annals - Manufacturing Technology, 2004, 53(1): 337~340
    [11]H.Shinno, H.Yoshioka, K.Taniguchi, A Newly Developed Linear Motor-Driven Aerostatic X-Y Planar Motion Table System for Nano-Machining, CIRP Annals– Manufacturing Technology, 2007, 56(1):369~372
    [12]P.Sriyotha, K.Nakamaoto, M.Sugai, Development of 5-Axis Linear Motor Driven Super-Precision Machine, CIRP Annals - Manufacturing Technology, 2006, 55(1):381~384
    [13]H.Shinno, H.Hashizume, High Speed Nanometer Positioning Using a Hybrid Linear Motor, CIRP Annals - Manufacturing Technology, 2001,50(1):243~246
    [14]王立松,苏宝库,董申等,大行程高精度两级定位工作台的控制方法研究,机械设计与制造,2001(4):71~72
    [15]朱煜,尹文生等,光刻机超精密工件台研究,电子工业专用设备,2004,33(2): 25~27,44
    [16]陈学东,何学明等,超精密气浮定位工作台技术-气浮系统动力学与控制,武汉:华中科技大学出版社,2007. 9~15,8
    [17]机械工程手册电机工程手册编辑委员会编,机械工程手册:机械零部件设计卷,北京:机械工业出版社,1996.9-57
    [18]张建生,张钢,吴国庆,磁悬浮导轨的开发与研究,电气技术与自动化,2004, 33(6):127~129,130
    [19]黄德中,磁悬浮数控机床导轨的设计,组合机床与自动化加工技术,2004(1):77~78,80
    [20]王延风,磁悬浮精密定位工作台机电一体化CAD/CAE集成研究:[博士学位论文],长春:中国科学院长春光学精密机械与物理研究所,2004
    [21]盖玉先董申,超精密加工机床的关键部件技术,机械设计与制造,1999(5):63~64
    [22]党根茂主编,气体润滑技术,南京:东南大学出版社,1990.4~5,35,102~103,41~44
    [23]荣烈润,超精密加工用的空气静压导轨,上海机床,1995(4):24~25
    [24]庄夔,薛洪俊,柴青,空气静压导轨的应用研究,光学精密工程,1995,3(3):73~76
    [25]王贵林,李圣怡,粟时平,基于超精密应用的高刚度高阻尼空气静压导轨研究,航空精密制造技术,2001,37(6):1~5
    [26]机械设计手册编委会,机械设计手册:机械零部件设计卷,北京:机械工业出版社,2000.28~112
    [27]机械设计手册编委会,机械设计手册:第3卷机械零部件设计,北京:机械工业出版社,2000.28~111
    [28]张星祥,任建岳,负压吸附式环形气垫导轨的计算方法,光学精密工程,2003,11(5):481~482
    [29]刘燕霞,朱宇姝等,气膜润滑及其应用,江西科学,2002,20(3):174~178
    [30]十合晋一著,韩焕臣译,气体轴承设计、制作与应用,北京:宇航出版社,1988.20~22
    [31]王云飞,气体润滑理论与气体轴承设计,北京:机械工业出版社出版,1999.149
    [32]张晓峰,大行程超精密工作台关键技术研究:[硕士学位论文],天津:天津大学,2005
    [33]熊洪允,曾绍标,毛云英,应用数学基础(下册),天津:天津大学出版社,1994.236~239
    [34]蒋庄德主编,机械精度设计,西安:西安交通大学出版社,2000.49~51
    [35]毛英泰主编,误差理论与精度分析,北京:国防工业出版社,1982.98~100,322~324
    [36]王尔祺,宋德慧,光学仪器精度分析,北京:测绘出版社出版,1988.178~185
    [37]庄夔,柴青,空气静压导轨的精度研究,光学机械,1989,106(1):1~7
    [38]史习敏,黎永明,精密机械设计,上海:上海科学技术出版社,1981.21~22
    [39]庄夔,空气静压导轨的设计及精度分析:[硕士学位论文],上海:上海科技大学,1987
    [40]庞振基,黄其圣,精密机械设计,北京:机械工业出版社,2000.17
    [41]刘涛,杨凤鹏著,精通ANSYS,北京:清华大学出版社,2002.345~365
    [42]林彬,张晓峰,石英陶瓷在精密平台中应用,光学精密工程,2005,13(1):73~80
    [43]刘燕霞,朱宇姝等,气膜润滑及其应用,江西科学,2002,20(3):174~178
    [44]刘暾,刘育华,陈世杰,静压气体润滑,哈尔滨:哈尔滨工业大学出版社,1990.42~50
    [45]张静文,气体润滑轴承的数值分析及应用研究:[硕士学位论文],西安;西安工业学院,2002
    [46]梁瑞峰,气体润滑轴承的数值分析及实验技术研究:[硕士学位论文],西安;西安工业学院,2004
    [47]张朝晖主编,ANSYS8.0结构分析及实例解析,北京:机械工业出版社,2006.147~160
    [48]刘国庆,杨庆东,ANSYS工程应用教程机械篇,北京:中国铁道出版社,2003.185~211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700