平焰燃烧速度场的PIV测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平焰燃烧是近代发展起来的技术,具有加热均匀、覆盖面积广、污染小等特点,在工业加热领域得到了广泛应用,其燃烧火焰结构与流动特性研究对进一步优化燃烧器结构有着重要的意义。早期火焰流动研究一般建立在冷态实验的基础上,随着对燃烧流场研究的不断深入,利用冷态实验来模拟燃烧状况已不能满足研究的要求,需要对燃烧流场直接进行测量。燃烧火焰可视化技术成为解决这一问题的一个重要途径,PIV(粒子成像测速技术)的应用是较为成熟的主要研究方法之一,克服了以往单点测速技术的局限性,实现了对流场的瞬态、全场的定量测量。
     本文采用PIV方法进行了平焰燃烧流场的研究。首先,设计并建立了扩散火焰实验台,初步实现了火焰内部的流动可视化。并自行设计了供粉均匀、速率可控的粒子供粉器,探索并掌握了燃烧流场PIV测试方法与参数,并对扩散火焰反应流场和无反应流场进行了比较,研究了不同形状稳焰器对燃烧火焰的影响。其次,针对平焰燃烧试验炉燃烧火焰,进行了火焰流场的PIV测试,并分析了平焰燃烧火焰结构特征,相对于无反应流,平焰有反应流的附壁射流区厚度薄,中心回流区半径大。
     对于扩散型火焰,反应流和无反应流径向速度的曲线相近,类似于抛物线形,对于轴向的速度,无反应流的轴向速度衰减快,而反应流的轴向速度基本没有明显的衰减;加60mm的圆盘和60mm的V型稳焰器火焰的稳定效果要优于不加圆盘、或加20mm和40mm的圆盘和V型稳焰器;对于平焰来说,在实际的燃烧过程中附壁射流区的厚度变薄,半径方向和中心回流区逐渐增加;预混的流场比非预混的流场在支持平展流上效果要好;空气过剩系数1.23和1.37的流场效果要优于1.06的流场。
     本研究对火焰结构与流场认识,燃烧器优化与工业炉窑优化设计等有着重要的指导意义。
Flat flame has been used to heat evenly、cover broad、reduce pollutant emission in the field of industrial heating has been widely applied, the flame structure and flow characteristics of the burner further optimize the structure is of important significance . Before, the investigation of combustion can not be directly linked to the corresponding flames, and non-reacting experiment can not satisfy for the needs of research. As an available method for complex phenomena and data field, the technique of visualization has become a hot spot in combustion. Particle Image Velocimetry (PIV), as a newly developed technique in the latest decade, is a non-intrusive measurement means for acquiring velocities and related properties in fluids through analyzing the correlation of flow field images, avoiding the drawback of the intrusive single-point measurement apparatus.
     In this paper, experimental study on velocity flow fields of flat flame by PIV. Firstly, designed and established the diffusion flame test-bed、designed a seeder particles power device for uniform for the powder controllable rate for the powder particles, to explore and master the methods and parameters of combustion flow PIV testing, and compared with differences between reacting and non-reacting flow fields. It studied the effect of different velocity stream distributions for two varying stability of the flame devices outer flow of the burner. Secondly, testing and analysis flat flame flow field by PIV testing of the flat flame characteristics, the heat release from combustion enhanced the inner recirculation zone by increasing its width and length. Combustion enhanced significant increase in velocity magnitudes than that for the no combustion.
     According to experimental results from two kinds of flame types with or without reacting by PIV, the major findings are as follows: for diffusion flame, 60 mm disk and V-steady flame equipment are better than other flame equipments. For flat flame, in the actual combustion process, the thickness of wall-attached jet is thinner, and both the radius and the circumfluence velocity of central circumfluence zone are increased compared with test results of non-reacting flow;Premixed flow is much greater than non-premixed flow in support of flat effect;Excess air ratio of 1.23 and 1.37 are effective to flow field than the one of 1.06.
     Thus this reach provides insightful information on the flame flow field dynamics in complex swirl flow fields in addition to combustion optimization and optimal design guiding significance.
引文
[1]汪亮.燃烧实验诊断学[M].北京:国防工业出版社,2005:1-5.
    [2]岑可法.高等燃烧学[M].浙江大学出版社,2002:89-145.
    [3]钱壬章,邹怀宇,张孝春,等.钝体冷态流场的PIV实验研究[J].华中科技大学学报(自然科学版),2005,33(11):49-50.
    [4]龚志军,徐学慧,武文斐,等.平展流冷态湍流场的PIV测量[J].冶金能源,2006,25(4):53-56.
    [5]杨光.浸没燃烧的冷态模拟实验[J].煤气与热力,2003,32(14):56-59.
    [6]黄来,陆继东,王世杰,等.四通道燃烧器冷态流场优化的PIV测量[J].华中科技大学学报(自然科学版),2006-09,34(9):70-71.
    [7]葛冰,臧述升,周见广,等.回流燃烧湍流流场激光可视化实验[J].航空动力学报,2004,19(6):849-854.
    [8]周见广,臧述升,翁史烈,等.扩散燃烧流场测量的PIV应用研究[J].燃烧科学与技术,2005,11(1):92-94.
    [9]文光华,迟景灏,黄云飞.连铸机二冷喷嘴冷态和热态特性的实验研究[J].钢铁研究,1997,9:3-6.
    [10]蒋利桥,陈恩鉴,林伯川,等.新型煤粉燃烧器冷态流场特性和热态实验[J].燃烧科学与技术,2002,8(4):293-296.
    [11]牛海瑛,徐行,杨茂林.模型燃烧室冷热态两相流场的计算研究[J].工程热物理学报,2002,23:189-192.
    [12] Syred cholas. A review of oscillation mechanisms and the role of the processing vortex core (PVC) in swirl combustion systems [J]. Progress in Energy and Combustion Science. 2006, 32(2): 93–161.
    [13] Lakshminarasimhan, M.D.Ryan, N.T.Clemens. Mixing characteristics in strongly forced non-premixed methane jet flames [J]. Proceedings of the Combustion Institute. 2007, 31(1):1617–1624.
    [14] P. Gopalakrishnan, M.K.Bobba, J.M. Seitzman. Controlling mechanisms for low NOx emissions in a non-premixed stagnation point recirculation combustor [J]. Proceedings of the Combustion Institute. 2007, 31(2): 3401–3408.
    [15] Yuji Yahagi, M.Sekiguti, Kenjiro Suzuki. Flow structure and flame stability in a micro can combustor with a baffle plate [J]. Applied Thermal Engineering, 2007, 27(4): 188-794.
    [16] N. A. Chigier, J.M. Beér, D. Grecov, K. Bassindale. Jet flames in rotating flow fields [J]. Combustion Flame, 1970, 14(2): 171-179.
    [17] Andrea Olivani, Giulio Solero, Fabio Cozzi, et al. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames [J]. Experimental Thermal and Fluid Science, 2006, 31(6): 669-677.
    [18] Syred Nicholas. A review of oscillation mechanisms and the role of the processing vortex core (PVC) in swirl combustion systems [J]. Progress in Energy and Combustion Science, 2006, 32(2): 93–161.
    [19] K. Lakshminarasimhan, M.D.Ryan, N.T.Clemens, et al. Mixing characteristics in strongly forced non-premixed methane jet flames [J]. Proceedings of the Combustion Institute, 2007, 31(1): 1617–1624.
    [20] P. Gopalakrishnan, M.K.Bobba, J.M. Seitzman. Controlling mechanisms for low NOx emissions in a non-premixed stagnation point recirculation combustor [J]. Proceedings of the Combustion Institute. 2007, 31(2): 3401–3408.
    [21]傅维镳,龚景松.改变进气流量实现可调回流区位置的研究[J].热能动力工程,2004,19(5):465-467.
    [22]张红梅,李德玉,过增元.突扩燃烧室内回流区长度研究[J].燃烧科学与技术,1999,5(2):199-204.
    [23]王璋保,张建国,章金法.天然气平焰烧嘴的研究[J].工业加热,2000,1:22-25.
    [24] Ji-hyun kwark. Effect of swirl intensity on the flow and combustion of a turbulent non-premixed flat flame [J]. Flow, Turbulence and Combustion 2004, 3(7): 231-257.
    [25] F杜斯特,A梅林,JH怀特洛,激光多普勒测速技术的原理和实践[M].北京科技大学技术出版社,1992.
    [26]金大祥,邹介棠,现代激光测试技术在燃气轮机燃烧室测试中的应用[M].船舶工程,1999.
    [27] I.Grant, H Smith. Modern development in particle image velocimetry [J]. Optics and lasers in Engineering, 1998, 9: 245-264.
    [28]赵宇.PIV测试中示踪粒子性能的研究[D].大连:大连理工大学,2004.
    [29]雷雨冰,赵坚行.燃烧室流场的LDV测量及其数值计算[J].南京理工大学学报,2003,27(6):674-677.
    [30]王波,张捷宇,赵顺利,等. LDV用于搅拌槽流场测量的实验研究[J].包头钢铁学院学报,2004,23(3):213-214.
    [31] S.I. Shtork, N.F. Vieira, E.C. Fernandes. On the identification of helical instabilities in areacting swirling flow [J]. Fuel, 2008, 87(10, 11): 2314-2321.
    [32]段俐,申功炘.PIV技术的粒子图像处理方法[J].北京航空航天大学学报,2000, 26(1):65-72.
    [33]段俐,康琦.PIV技术的粒子图像处理方法[J].北京航空航天大学学报,2000,26:79-82.
    [34] R.J.Adrain. Bibiography of particle velocimetry using imaging methods [J]. TAM Report. 1996, 5(8): 1917-1995.
    [35] F Yamamoto, Iguchi M.Ohta, J.Szajner. A fundamentals and applications of particle imaging velocimetry proceeding of international conference on fluid engineering [M].1994:63-69.
    [36] S.W.Sloan. A fast algorithm for constructing Delaunay Triangulation in the plane [J]. Adv.Eng.Software.1987, 9: 34-37.
    [37] Nishino, N.Kasagi, N.Hirata. Three-dimentional particle tracking velocimetry based on automated digital image [J]. Processing Journal of fluid Science.1991, 4: 601-612.
    [38] Hartman, J.Kohler, J.Stolz, et al. Evaluation of in stationary flow fields using cross-correlation in image sequences [J]. Exp.in fluids, 1977, 20: 210-217.
    [39] F Yamamoto, a Wada, Iguchi M. Ishikawa. Discussion of the cross-correlation methods for PIV [J]. Flow Visualization and Image Processing, 1996, 3: 65-78.
    [40] Doh, D.H.Kobayashi, T.Saga T, et al. Experimental study on vertical buoyant jet using 3D particle imaging thermometry and velocimetry[C]. ASME FEDh1, 1995: 63-70.
    [41]魏庆鼎,颜斌,陈军.关于粒子图像测速仪精度的数值测试[J],流体力学实验与测量,2001,15(12):26-32.
    [42]禹明忠,王兴奎,王殿常. PIV流场量测中图像变形的修正[J].泥沙研究,2001,5(2):101-106.
    [43]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2006:45-67.
    [44]普勇,张健,周力行.旋流燃烧室内湍流燃烧速度场的实验研究[J],力学学报,2003,16(7):45-52
    [45]朱铠强,芮新红.循环流化床锅炉设备及系统[M].北京:中国电力出版社,2004,4:70-71.
    [46] Papadopoulos George, a Bryant Rodney, M Pitts Willian. Particle image velocimetry in flickering methane/air diffusion flames. In: 2nd Joint Meeting of the United States Sections of the Combustion Institute[C], 2000.
    [47] L.David, R.Fraticelli, D.Calluaud. Cross Flow Investigation by Stereoscopic PIVmeasurements, National Aerospace Laboratory of Japan Rept.1999.
    [48]葛冰,臧述升,周见广.回流燃烧湍流流场激光可视化实验[J].航空动力学报,2004,19(6):849-854.
    [49]葛冰,臧述升,顾欣.加湿回流湍流扩散燃烧流场的实验研究[J],2005,27:343-346.
    [50]周见广,臧述升,翁史烈.扩散燃烧流场测量的PIV应用研究[J],燃烧科学与技术,2005,11(1):92-94.
    [51]施振球.动力管道手册[M].北京:机械工业出版社,2003:1994-10,165-210.
    [52]姜正侯.燃气燃烧理论与实践[M].北京:中国建筑工业出版社,1985:52-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700