镁基水冲压发动机内部燃烧过程与燃烧组织方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高速鱼雷巡航推进系统的应用需求促进了水冲压发动机技术研究的发展。本文以镁基水冲压发动机为研究对象,采用理论分析、试验研究与数值模拟相结合的方法,对水蒸气中镁颗粒着火与燃烧机理、发动机内部燃烧过程以及燃烧组织方法等问题开展了系统深入的研究。
     采用高速摄影仪、红外测温仪等光学观测手段,研究了水蒸气中镁颗粒的着火与燃烧特性,获得了其着火与燃烧机理。研究发现:镁颗粒在水蒸气中的着火燃烧过程经历了从表面氧化反应到蒸气相燃烧的过渡;颗粒燃烧表现出与其在空气中燃烧不一样的现象,即燃烧过程中火焰上方出现白色絮状物,燃烧后的氧化镁也呈白色絮状结构;镁颗粒着火前反应由化学反应动力学控制,着火后燃烧由扩散过程控制;测量得到的镁颗粒着火温度处于1150~1200K之间。
     采用高速摄影仪,观测了水蒸气中镁颗粒燃烧寿命随粒径的变化规律。试验发现:镁颗粒燃烧寿命随着粒径的增大而延长,且粒径越小,其燃烧寿命的变化规律越接近D~2定律。根据观测到的现象,在液滴燃烧模型的基础上,考虑镁燃烧过程中表面氧化镁覆盖物对颗粒燃烧速率的影响,获得了修正的D~2定律,通过试验确定了该定律中的覆盖系数。
     根据获得的水蒸气中镁颗粒着火与燃烧机理,建立了水冲压发动机中的镁滴着火与燃烧模型,以描述发动机中镁颗粒的物理化学变化过程。在镁滴着火与燃烧模型中,根据镁滴着火温度,将水冲压发动机中镁滴的着火与燃烧过程分为着火前的氧化阶段、着火及着火后的燃烧阶段;采用镁在水蒸气中高温氧化动力学方程描述镁滴氧化阶段表面氧化膜厚度变化,采用修正的D~2定律描述镁滴燃烧阶段液滴直径变化。
     建立了水冲压发动机直连试验方法。对试验系统进水方式进行了改进,试验发现,采用垂直进水的方式能够有效减小进水冲量对发动机轴向测量推力的影响;对不同数据处理方法进行对比分析,确定了采用基于稳定工作段时间的数据处理方法。应用镁滴着火与燃烧模型,建立了水冲压发动机数值模拟方法,并通过发动机直连试验,对该数值模拟方法进行了验证。
     通过直连试验,研究了点火能量、点火时序、水燃比、进水喷注压降和推进剂金属含量对发动机点火过程的影响规律,确定了高金属含量水冲压发动机点火过程的变化规律及控制机理。试验发现,发动机正常点火时其点火过程分四个阶段:推进剂点燃延迟段、自持燃烧段、一次水反应预燃段和二次水反应预燃段;根据试验结果分析,点火过程的自持燃烧段由固相点火理论控制,而一次水反应预燃段和二次水反应预燃段由气相点火理论控制。
     综合采用理论分析、直连试验和数值模拟的方法,分析了镁基水冲压发动机内部燃烧过程的特性和规律,建立了发动机分区燃烧模型,以描述发动机内部燃烧过程;系统考察了进水距离、进水角度、水燃比及其分配、以及进水雾化特性对发动机内部燃烧过程的影响规律,提出了燃烧室长度、进水距离和水燃比设计方法,建立了发动机内部燃烧组织方法。在采用73型高金属含量镁基固体推进剂的发动机直连试验中,通过实行有效的燃烧组织,发动机燃烧效率提高到91.02%。
Investigations on water ramjets are being extensively conducted for their application inthe cruise propulsion system of high-speed torpedoes currently. Based on amagnesium-based water ramjet engine, this research focuses on combustion mechanismof a magnesium particle in steam, internal combustion processes and combustionoptimizationoftheengine.Approachesoftheoreticalanalysis,numericalsimulationandexperimentalstudywereappliedfortheresearch.
     A high speed camera and an infrared thermometer were employed to observe thecharacteristics of ignition and combustion of a magnesium particle in steam.Mechanisms of ignition and combustion were determined in the experimental study.The results show that, a transition from surface oxidation to gas-phase combustion tookplace; a different phenomenon from combustion in air occurred, with white flocculesformedabovethe flame, andtheproduct ofmagnesium oxidealso inthe shapeof whitefloccules; the interaction was controlled bychemical kinetics prior to the ignition point,and then by diffusion process afterwards; ignition temperatures were measured withvaluesbetween1150~1200K.
     A high speed camera was also used to observe the variation of combustion life withdifferent diameters of magnesium particles in steam. Prolonged combustion life wasrecorded with an increasing particle diameter, and the variation rule got closer to theD~2law while the diameter was decreasing. Based on the droplet combustion model, amodified D~2law was established, taking into account the oxide cap covering theparticlesurface.Fromtheexperimentaldata,the coveringcoefficientwas determinedofthemodified D~2law.
     The magnesium-droplet ignition and combustion model was developed, in order todescribe the transformation of magnesium particles inside water ramjet engines. Inthismodel, the whole procedure is divided into three phases: oxidation phase, ignition andcombustion phase. An oxidation kinetics model is adopted to calculate the thickness ofthe oxide layer in oxidation phase; while in combustion phase, the particle diameter isgovernedbythemodified D~2law.
     Adirect-connecttestingmethodforwaterramjetengineswasdeveloped.Withwater-jetentering the chamber vertically, the influence of its impulse to axial thrust waseliminated. With a comparison of different data processing ways, a processing methodin terms ofthe stable operation period was confirmed to be more eligible. In addition,the numerical method was improved by employing the magnesium-droplet ignition andcombustionmodel,andthemethodwasverifiedbyasimulationofonetest.
     Influences of ignition energy, starting sequence, water/fuel ratio, water injection pressure and metal content on the ignition process were studied experimentally, fromwhich the characteristics and mechanism of ignition process were determined. Thewhole ignition process was found to follow four phases: ignition time lag,self-surporting combustion interval, primary precombustion interval and secondaryprecombustion interval. Within the self-surporting combustion interval, the ignition iscontrolled bysolid-phase ignition theory, while forprimaryprecombustion interval andsecondaryprecombustioninterval,thegas-phaseignitiontheorydominatestheignition.Characteristics of combustion processes inside the water ramjet engines were analyzedwith different approaches. A multi-zone combustion model was developed to describethe internal processes.Influences of water injection distance, injection angle, water/fuelration and its partition, and atomization characteristics were estimated on thecombustion processes, from which combustion optimization methods were concluded.A magnesium-based water ramjet engine was designed using the optimization methods,and a testof it was conducted with a Type 73 solid propellant, which has a high metalcontent. The results show that the combustion efficiencyof the engine was enhanced to91.02%aftercombustionoptimization.
引文
[1]《中国海洋21世纪议程》编写组.中国海洋21世纪议程[R].
    [2]卢兵彦.从大陆到海洋——中国地缘政治的战略取向[J].太平洋学报, 9,2009.
    [3]尹韶平,杨芸.鱼雷总体技术的发展与展望[J].鱼雷技术,2005,13(3).
    [4]甘工昌,高国栋,王进兴.低噪声鱼雷热动力装置设计技术研究[J].鱼雷技术,2005,13(1).
    [5]姜忆初.电动鱼雷用动力电源及其发展方向[J].船电技术,2005.
    [6]蔡年生.国外鱼雷动力电池的发展及应用[J].鱼雷技术,2003,11(1).
    [7]崔绪生.国外鱼雷技术进展综述[J].鱼雷技术,2003,11(1).
    [8]刘伟.外军的鱼雷及鱼雷防御技术2005.
    [9]查志武.鱼雷动力技术发展展望[J].鱼雷技术,2005,13(1).
    [10]陈兢.新概念武器超空泡水下高速武器[J].飞航导弹,2004,10:34~37.
    [11]缪万波.水反应冲压发动机内部工作过程理论与试验研究[D].长沙:国防科学技术大学博士学位论文,2007.
    [12] RandR.Impact Dynamics ofaSupercavitatingUnderwaterProjectile[C].ASMEDesignEngineeringTechnicalConferences.1997.
    [13] Hargrove J. Supercavitation and Aerospace Technology in the Development ofHigh-SpeedUnderwaterVehicles[C].AIAA2004-0130.2004.
    [14]王鹏,王树宗.应用在鱼雷上的超空泡技术分析[J].2005.
    [15]傅金祝.超空泡水中兵器[J].水雷战与舰船防护,1998,(2).
    [16]周杰,王树宗.超空泡鱼雷推进系统相关问题设计初探[J].鱼雷技术, 2006,14(5).
    [17]缪万波.水冲压发动机内部工作过程理论与试验研究[D].长沙:国防科技大学
    [18] Kiely D H. Review of Underwater Thermal Propulsion [C]. AIAA 94-2837.1994.
    [19] AnAssessmentofUnderseaWeaponsScienceandTechnology[R].2003.
    [20] Foote J P, Lineberry J T, Thompson B R. Investigation of Aluminum ParticleCombustionforUnderwaterPropulsionApplications[C].AIAA96-3086.1996.
    [21] Foote J P. Combustion of Aluminum with Steam for Underwater Propulsion2002.
    [22] Tahsini A M, Ebrahimi M. Increasing Isp by Injecting Water into CombustionChamberofanUnderwaterSrm[C].AIAA2006-4959.2006.
    [23]胡凡,张为华,夏智勋等.水反应金属燃料发动机初步试验[J].推进技术,2008,29(3).
    [24] Kullkarni S S. Studies on the Dynamics of a Supercavitating Projectile [J].AppliedMathematicalModeling,2000,24.
    [25] Castano J M, Kuklinski R. High-Speed Super Cavitating Underwater Vehicle2004.
    [26] Hargrove J. Supercavitation and Aerospace Technology in the Development ofHigh-SpeedUnderwaterVehicles[C].AIAA2004-0130.2004.
    [27] Owis F M, Nayfeh A H. A Compressible Multi-Phase Flow Solver for theComputation of the Supercavitation over High-Speed Torpedo [C]. AIAA2002-0875.2002.
    [28] [苏]阿列玛索夫.火箭发动机原理[M].张中钦,庄逢辰译.北京:宇航出版社,1993.
    [29] Hu J X, Xia Z X, Wang Z J, Guo J, Zhang W. Experimental Investigation andNumerical Simulation of Secondary Chamber Flow in SDR. AIAA 2004-3306.2004.
    [30] DesJardin P E, Felske J D, Carrara M D. Mechanistic Model for AluminumParticle Ignition and Combustion in Air [J]. Journal of Propulsion and Power,2005,21(3).
    [31] Rosenband V. Thermo-Mechanical Aspects of the Heterogeneous Ignition ofMetals[J].CombustionandFlame,2004,137.
    [32] Brzustowski T A, Glassman I. Vapor-Phase Diffusion Flames in the CombustionofMagnesiumandAluminum:I.AnalyticalDevelpments[M].1964.
    [33] Bartlett R W, Ong J N. Estimating Aluminum Particle Combustion Kinetics [J].combustionandFlame,1963,7(3).
    [34] Law C K. A Simplified Theoretical Model for the Vapor-Phase Combustion ofMetalParticles[J].CombustionSecienceandTechnology,1973,7.
    [35] Law C K. Models for Metal Particles Combustion with Extended Flame Zones[J].CST,1976.
    [36]姚娜.整体式固体火箭冲压发动机热力计算研究[D].西安:西北工业大学硕士论文,2001.
    [37] Abbud-Madrid A,Stroud C, Omaly P, et al. Combustion of Bulk Magnesium inCarbon DioxideunderReduced-GravityConditions[C].AIAA99-0695.1999
    [38]李明权.超空泡技术出世[N]解放军报200108.
    [39] Kiely D H. Review of Underwater Thermal Propulsion [C]. AIAA 94-2837.1994.
    [40] AnAssessmentofUnderseaWeaponsScienceandTechnology[R].2003.
    [41] Tahsini A M, Ebrahimi M. Increasing Isp by Injecting Water into CombustionChamberofanUnderwaterSrm[C].AIAA2006-4959.2006.
    [42]李智欣,汤龙生,凌文辉.水冲压发动机系统几种工况下的能量计算[C].2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [43]蒋雪辉,李亿民,宋晓伟.水冲压发动机性能计算方法[C]. 2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [44]何洪庆,潘洪亮,姚娜.海水固冲发动机性能初估[C]. 2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [45]罗凯,党建军,王育才.金属/水反应水冲压发动机系统性能估[J].推进技术,2004,25(6).
    [46]王建儒,任全彬,陆贺建.水冲压发动机原理性研究[C].中国宇航学会固体火箭推进第22届年会.2005.
    [47]缪万波,夏智勋,郭健.金属/水反应冲压发动机理论性能计算与分析[J].推进技术,2005,26(6).
    [48]缪万波,夏智勋.金属/水反应冲压发动机概念研究[C].二〇〇五年冲压发动机技术交流会论文集(下册),二〇〇五年冲压发动机技术交流会.吉林省吉林市,2005.
    [49]赵卫兵,史小峰,伊寅.水反应金属燃料在超高速鱼雷推进系统中的应用[J].火炸药学报,2006,29(5).
    [50]郑邯勇.铝水推进系统的现状与发展前景[J].舰船科学与技术,2003,25(5).
    [51]郑邯勇,王永昌.铝水反应机理的试验研究与分析[J].舰船科学与技术,2005,27(3).
    [52]李芳,张为华,张炜.铝基水反应金属燃料性能初步研究[J].国防科技大学学报,2005,27(4).
    [53]李是良,张炜,朱慧.水冲压发动机用金属燃料的研究进展[J].火炸药学报,2006,29(6).
    [54]张运刚,庞爱民,张文刚.金属基燃料与水反应研究现状与应用前景[J].固体火箭技术,2006,29(1).
    [55]张文刚,刘建红,肖金武.水冲压发动机用金属基燃料技术研究进展[C].2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [56]孙展鹏,乐发仁.铝/水反应机理初探[J].化学推进剂与高分子材料, 2006, 4(2).
    [57]申慧君,粉末燃料冲压发动机关键技术的探索与研究[D].长沙:国防科技大学博士论文,2008.
    [58] Modak, Dreyer C B, Abbud-Madrid A, Branch M C, Daily J W. NumericalSimulationoftheStructureofMetal/Carbon-DioxideFlames inMicrogravity[C],AIAA-2000-0845.
    [59] DreizinE L,Hoffmann VK.ExperimentsonMagnesium AerosolCombustioninMicrogavity[C].ElsevierScience.2000.
    [60] Dreyer C, Daily J, Abbud-Madrid A. PLIF Mesurements of Magnesium OxideDuringCombustionofMagnesium[C].AIAA2001-0788.2001.
    [61] Legrand B, Shafirovich E,Marion M,et al. Studies on the Burning of LevitatedMagnesiumParticlesinCo2[C].AIAA-98-1026.1998
    [62] Abbud-madrid A, Branch M C, Daily J W. On the Burning Behavior ofRadiatively Ignited Bulk Titanium and Magnesium in Low Gravith [C]. AIAA96-0262.1996.
    [63]余勇.超燃冲压发动机燃烧室工作过程理论与试验研究[D].长沙:国防科技大学,2004
    [64]张文刚,刘建红,肖金武.水冲压发动机用金属基燃料技术研究进展[C].2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [65] Epstein L F. Correlation and Prediction of Explosive Metal-Water RectionTemperature[J].NuclearScienceandengineering,1961,10.
    [66] DreizinEL,HoffmannVK.ConstantPressureCombustionofAerosolofCoarseMagnesiumParticlesinMicrogavity[C].ElsevierScience.1999.
    [67] Legrand B, Shafirovich E, Marion M, et al. Studies on the Burning of LevitatedMagnesiumParticlesinCo2[C].AIAA-98-1026.1998.
    [68] Linnell J A, Miller T F. A Preliminary Design of a Magnesium Fueled MartianRamjetEngine[C].AIAA2002-3788.2002.
    [69] Miller T F, Garza A B. Finite Rate Calculation of Magnesium Combustion inVitiatedOxygenandSteamAtmospheres[C].AIAA2006-4066.2006.
    [70] Chozev Y, Fuhs A E, Kol J. Experimentall Investigation of MagnesiumCombustioninSteam[C].AIAA-86-1497.1986.
    [71] Rosenband V, Gany A, Timnant Y N. Magnesium and Boron Particles BurninginHotSteamAtomosphere[J].DefenseScienceJournal,1998,48(3).
    [72] Prachukho V P, Ozerov E S, Yurinov A A. Burning of Magnesium Particles inWaterVapor[J].FizikaGoreniaiVzryva,1970,7(2).
    [73] Lee WM.AluminumPowder/WaterReactionIgnitedbyElectricalPulsedPower[R].AD-A269223.1993.
    [74] Lee W M, Ford R D. Effect of Mechanical Agitation on Fuse Opening SwitchEfficiency[J].TheReviewofScientificInstruments,1988,59(5).
    [75] Lee W M, Ford R D. Pressure Measurements Correlated with ElectricalExplosionofMetalsinWater[J].JournalofAppliedPhysics,1988,64(8).
    [76] Lee WM,FordRD.EffectiveCouplingofPulsedPowertoChemicallyReactiveSystems[C].7thIEEEPulsedPowerConference.1989.
    [77] Lee W M. Effect of Current Pulse Shape on Driving Metal/Water ChemicalReaction[C].
    [78] Foote J P, Lineberry J T, Thompson B R. Investigation of Aluminum ParticleCombustionforUnderwaterPropulsionApplications[C].AIAA96-3086.1996.
    [79] Foote J P. Combustion of Aluminum with Steam for Underwater Propulsion2002.
    [80] Miller T F, Walter J L, Kiely D H. A Next-Generation Auv Energy SystemBasedonAluminum-SeawaterCombustion[J].IEEE0-7803-7572-6/02,2002.
    [81] Miller T F, Walter J L, Kiely D H. A Next-Generation Auv Energy SystemBasedonAluminum-SeawaterCombustion[J].IEEE0-7803-7572-6/02,2002.
    [82] Risha G A, Huang Y, Yetter R A, Yang V. Combustion of aluminum particleswithsteamandliquidwater[R].AIAA-2006-1154,2006.
    [83] Miller T F, Walter J L, KielyD H. A next-generation AUV energysystem basedon aluminum-seawater combustion[C]. Proceedings of the Symposium onAutonomousUnderwaterVehicleTechnology,ISSN1522-3167,2002:111-119.
    [84]蒋雪辉,李亿民,宋晓伟.水冲压发动机性能计算方法[C]. 2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [85]何洪庆,潘洪亮,姚娜.海水固冲发动机性能初估[C]. 2005年冲压发动机技术交流会.吉林省吉林市,2005.
    [86]王建儒,任全彬,陆贺建.水冲压发动机原理性研究[C].中国宇航学会固体火箭推进第22届年会.2005.
    [87]郑邯勇.铝水推进系统的现状与发展前景[J].舰船科学与技术,2003,25(5).
    [88]李芳,张为华,张炜.铝基水反应金属燃料性能初步研究[J].国防科技大学学报,2005,27(4).
    [89]李芳,张为华,张炜,夏智勋.水反应金属燃料能量特性分析[J].固体火箭技术,2005,28(4):256-259.
    [90]缪万波,夏智勋,郭健.金属/水反应冲压发动机理论性能计算与分析[J].推进技术,2005,26(6).
    [91]缪万波,夏智勋.金属/水反应冲压发动机概念研究[C].二〇〇五年冲压发动机技术交流会论文集(下册),二〇〇五年冲压发动机技术交流会.吉林省吉林市,2005.
    [92]缪万波.水反应冲压发动机内部工作过程理论与试验研究[D].长沙:国防科学技术大学博士学位论文,2007
    [93]胡凡,张卫华,夏智勋.金属燃料/水冲压发动机一次进水试验[J].航空动力学报,2008,23(10).
    [94]胡凡.镁基燃料水冲压发动机理论分析与试验研究[D].长沙:国防科技大学博士学位论文,2008.
    [95]李是良,张炜,朱慧.水冲压发动机用金属燃料的研究进展[J].火炸药学报,2006,29(6).
    [96]李是良,张炜,张为华.镁基水反应金属燃料及水冲压发动机初步试验[J].国防科技大学学报,2007,29(1).
    [97] Liang P Y, UNGEWITTER R J. Multi-Phase Simulations of Coaxial InjectorCombustion[C].AIAA92-0345.1992.
    [98] Liang P Y, Jensen R J, Chang Y M. Numerical Analysis of Ssme PreburnerInjectorAtomizationandCombustionProcess[J].AIAAJ.Propulsion,1987,(6).
    [99] Tang Y L, Schuman M D. Numerical Modeling of Liquid-Liquid Bi-PropellantDroplet/GasReactingFlows[C].AIAA92-0232.1992.
    [100] Lankford D W, Simmons M A, Heikkinen B D. A Detailed NumericalSimulation of a Liquid-Propellant Rocket Engin Groud Test Experiment [C].AIAA92-3604.1992.
    [101] DANG A L, NAVAZ H K. Numerical Analysis of Bipropellant Combustion inLiquid Thrust Chambers by an Eulerian-Eulerian Approach [C]. AIAA 92-3735.1992.
    [102]费继友,俞炳丰,夏学礼.二维火箭发动机燃烧室化学反应粘性流场的数值模拟[J].贵州工业大学学报自然科学版,2001,30(3).
    [103]费继友,俞炳丰,夏学礼.二维火箭发动机化学反应粘性流场的数值模拟与实验验证[J].火炸药学报,2002,(4).
    [104]费继友,俞炳丰,张杰.液体火箭发动机推力室粘性流场数值模拟和实验验证[J].推进技术,2003,24(4).
    [105]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(I)计算模型和方法[J].推进技术,2002,23(2).
    [106]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(Ii)数值模拟结果及分析[J].推进技术,2002,23(3).
    [107]林志勇,周进.三组元发动机氢的质量分数对燃烧流场影响的数值研究[J].热科学与技术,2004,3(1).
    [108]林志勇,罗世彬,田章福.双工况氢氧发动机燃烧与传热数值分析[J].推进技术,2003,24(3).
    [109] Vittal B V R, Tabakoff W. Effect of Solid Particles in Two Phase Flow around aTwoDimensionalCylinder[C].AIAA86-0349.1986.
    [110] Golafshani M, Loh H-T. Computional of Two-Phase Viscous Flow in SolidRocket Motors Using a Flux-Split Eulerian-Lagrangian Technique [C]. AIAA89-2785.1989.
    [111] Ciucci A, Iaccarino G. Numerical Analysis of the Turbulent Flow and AluminaParticleTrajectoriesinSolidRocketMotors[C].AIAA97-2860.1997.
    [112] Ciucci A, Iaccarino G, Amato M. Numerical Investigation of 3d Two-PhaseTurbulentFlowsinSolidRocketMotors[C].AIAA98-3966.1998.
    [113] Cesco N, Lavergne G, estivalezes J L. Simulation of Two Phase Flow in SolidRocketMotors[C].AIAA96-2640,1996.
    [114] Natan B, Gany A. Ignition and Combustion Characteristics of Individual BornParticlesintheFlowFieldofaSolidFuelRamjet[C].AIAA87-2034.1987.
    [115] Natan B, Gany A. Ignition and Combustion Boron Particles in the Flow Field ofaSolidFuelRamjet[J].JournalofPropulsionandPower,1991,7(1).
    [116]胡建新,夏智勋.非壅塞固体火箭冲压发动机补燃室内流场数值模拟研究[J].固体火箭技术,2002,25(3).
    [117]胡建新,夏智勋.非壅塞火箭冲压发动机补燃室两相流数值模拟研究[J].推进技术,2004,25(3).
    [118]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].湖南长沙:国防科技大学航天与材料工程学院,2006.
    [119] Knuth W J, Chiaverini M J, Gramer D J. Solid-Fuel Regression Rate andCombustion Behavior of Vortex Hybrid Rocket Engines [C]. AIAA 99-2318.1999.
    [120] Sauer J A, Knuth W J, Malecki M J. Develpment of a Lox/Rp-1 VortexCombustionCold-WallThrustChamberAssembly[C].AIAA2002-4144.2002.
    [121] Chiaverini M J, Malecki M J, Sauer J A. Vortex Combustion ChamberDevelopment for Future Liquid Rocket Engine Applications [C]. AIAA2002-4149.2002.
    [122] Fang D, Majdalani J. Hot Flow Model of the Vortex Cold Wall Liquid Rocket[C].AIAA2004-3676.2004.
    [123] Majdalani J, Fang D. On the Bidirectional Vortex and Other SimilaritySolutionsinSphericalGeometry[C].AIAA2004-3675.2004.
    [124] Majdalani J, Vyas A B. Rotational Axisymmetric Mean Flow for the VortexInjectionHybridRocketEngine[C].AIAA2004-3745.2004.
    [125]缪万波,夏智勋,郭健.金属/水反应冲压发动机理论性能计算与分析[J].推进技术,2005,26(6).
    [126] Cho D H. Combined Vapor and Chemical Explosions of Metals and Water [C].Proceeding of the International Seminar on the Physics of Vapor Explosions.1993.
    [127] Sabnis J S, Jong F J d. Calculation of the Two-Phase Flow in an EvaporatingSprayUsinganEulerian-LagrangianAnalysis[C].AIAA-90-0447,1990.
    [128] Modak A. Detailed Numerical Simulation of an Isolated Droplet/ParticleCombustionwithApplicationtoCombustionofMetals[D].2003.
    [129]胡凡,张为华,夏智勋等.金属燃料/水冲压发动机一次进水试验[J].航空动力学报,2008,23(10):1949-1952.
    [130]胡凡,张为华,夏智勋,等.水反应金属燃料发动机的性能调节[J].固体火箭技术,2007,30(5):381-403.
    [131]田维平,蔡体敏,陆贺建,高波.水冲压发动机热力计算[J].固体火箭技术,2006,29(2):95-98.
    [132]韩超,夏智勋,胡建新等.水燃比对水冲压发动机性能影响数值模拟与实验研究[J].国防科技大学学报,2009,31(4):117-121.
    [133]李是良.水冲压发动机用镁基水反应金属燃料一次燃烧性能研究[D].长沙:国防科技大学,2002.
    [134]李是良,张炜,张为华,等.镁基水反应金属燃料及水冲压发动机初步试验[J].国防科技大学学报,2007,29(1):35-38.
    [135]曹泰岳,常显奇,蹇泽群,刘霓生.固体火箭发动机燃烧过程理论基础[M].长沙:国防科技大学出版社,1992.
    [136]姚强,李清水,王宇.燃烧学导论:概念与应用(第2版)[M],北京:清华大学出版社,2009.
    [137]杨涛,方丁酉,唐乾刚.火箭发动机燃烧原理[M].长沙:国防科技大学出版社,2008.
    [138] DesJardin P E, Felske J D, Carrara M D. Mechanistic model for aluminumparticleignitionandcombustioninair [J].JournalofPropulsionandPower,2005,21(3):478-485.
    [139] Abbud-Madrid A, Fiechtner G J, Branch M C, Daily J W. Ignition andCombustion Characteristics of Pure Bulk Metals: Normal-Gravity TestResults[C].AIAA94-0574,1994.
    [140] MillerT F,Herr J D.Green rocket propulsionbyreactionof Al andMgpowdersandwater[R].AIAA-2004-4037,2004.
    [141]于守志,刘兴洲,强十思,朱青等.飞航导弹动力装置试验技术[M].北京:宇航出版社,1990.
    [142]狄连顺等.液体火箭发动机原理[M].长沙:国防科技大学出版社,1987.
    [143] Steinetz B M, and Hendricks R C, Engine Seals, Tribology of AerospaceApplications, Zaretsky E V, et al., Society of Tribologist and LubricationEngineers,ParkRidge,IL,1997,pp.595-682.
    [144] Proctor M P, and Delgado I R. Leakage and Power Loss Test Results forCompetingTurbineEngineSeals[R],NASA/TM-2004-213049,2004.
    [145]李宜敏,张中钦,赵元修.固体火箭发动机原理[M].北京:国防工业出版社,1985.
    [146]张为华.火箭推进技术基础[M].长沙:国防科技大学出版社,1998.
    [147]黄利亚,夏智勋,胡建新.水冲压发动机地面直连试验技术研究[J].推进技术,2009,30(6):722-726.
    [148]胡建新,夏智勋,刘君.颗粒轨道模型中颗粒跟踪与定位算法研究综述[J].弹道学报,2005,17(1):82-87.
    [149]刘君.超音速完全气体和h2/O2燃烧非平衡气体的复杂喷流流场数值模拟[D].绵阳:中国空气动力研究与发展中心,1993.
    [150]余勇.超燃冲压发动机燃烧室工作过程理论与试验研究[D].长沙:国防科技大学,2004.
    [151]田德余,刘剑洪.化学推进剂计算能量学[M].郑州:河南科学出版社,1999.
    [152]是勋纲.湍流[M].天津:天津大学出版社,1991.
    [153]张兆顺.湍流[M].北京:国防工业出版社,2002.
    [154]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社,1993.
    [155]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992.
    [156]马智博.固体火箭冲压发动机补燃室流场数值计算方法研究[D].北京:北京航空航天大学,1998.
    [157]杨涛,方丁酉,唐乾刚等.火箭发动机燃烧原理[M].长沙:国防科技大学,2008.
    [158]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [159]徐春光.复杂喷流流场数值模拟及应用研究[D].长沙:国防科技大学,2002.
    [160] CraftTJ,GerassimovAV, etal..ProgressintheGeneralization ofWallFunctionTreatments[J].InternationJournalofheatandFluidFlow,23(2002)148-160.
    [161] Craft T J, Gant S E, Gerasimov A V. Development and application ofwall-function treatments for turbulent forced and mixed convection flows [J].FluidDynamicsResearch38(2006)127-144.
    [162]金文.湍流结构及大涡模湍流结构及大涡模拟研究[J].能源与环境,2005,4:11-14.
    [163] Taylor G I.Diffusion by continuous movement.Proc.Royal Society London [J],1921(2):196.
    [164] Kolmogorov A N. The local structure of turbulence in incompressible viscousfluid for very large Reynolds number [J]. Dokl.Akad.Nauk SSSR, 1941( 30): 9-13.
    [165] ChouPYandChouRL.Fiftyyearsturbulenceresearchin China.AnnualReviewofFluidMechanics[J],1995(27).
    [166]张兆顺.湍流[M].北京:国防工业出版社,2002.
    [167] GuzmanM M, Fletcher C A J,BehniaM. Gas particleflows about a cobraprobewithpurging.Computers&Fluids,1995,24:121-134.
    [168] Oliveira P J, Gosman A D, and Issa RI. A method for particle location and fieldinterpolation on complex, three-dimensional computational meshes. Advances inEngineeringSoftware,1997,28:607-614.
    [169] Frank T, Schulze I. Numerical simulation of gas-droplet flow around a nozzle ina cylindrical chamber using a Lagrangian model based on a multigridNavier-Stokes solver. Numerical Methods for Multiphase Flows, 1994, 185:93-107.
    [170] Valentine J R and Decker R A. A Lagrangian-Eulerian scheme for flow aroundanairfoilinrain.InternationalJournalofMultiphaseflows,1995,21:639-648.
    [171] Chen X Q. An efficient particle-tracking algorithm for two-phase flows ingeometries using curvilinear coordinates. Numerical Heat Transfer, 1997, 31:387-405.
    [172] Chen X Q and Pereira J C F. A new particle-locating method accounting forsource distribution and particle-field interpolation for hybrid modeling ofstrongly coupled two-phase flows in arbitrary coordinates. Numerical HeatTransfer,1999,35:41-63.
    [173] Zhou Q and Leschziner M A. An improved particle-locating algorithm forEulerian- Lagrangian computations of two-phase flows in general coordinates.InternationalJournalofMultiphaseflows,1999,25:813-825.
    [174] Chorda R, Blsco J A, Fueyo N. An efficient particle-locating algorithm forapplication in arbitrary 2D and 3D grids. International Journal of Multiphaseflows,2002,28:1565~1580.
    [175] .沈维道,郑佩芝,蒋淡安.工程热力学[M].北京:高等教育出版社,1983.
    [176]周继珠,刘伟强,王中伟.工程热力学[M].长沙:国防科技大学出版社,1999.
    [177]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982.
    [178] Gosteev YA,FedorovA V.Discrete-ContinualModelofFlamePropagationinaGasSuspensionofMetalParticles[J].Combustion,Explosion,andShockWaves,2005,41(2).
    [179]杨成虎.镁在水蒸气中着火和燃烧的特性和机理研究[D].杭州:浙江大学,2008.
    [180]周奎.旋流式喷嘴横向流动中雾化场实验及数值分析[D].上海:上海交通大学,2009.
    [181] Kuehl, D. K., Ignition and Combustion of Aluminum and Beryllium, AIAAJournal,Vol.3,No.12,1965,pp.2239-2247.
    [182]李宜敏,张中钦,赵元修.固体火箭发动机原理[M].北京:国防工业出版社,1985.
    [183]休泽尔,朱宁昌.液体火箭发动机现代工程设计[M].北京:中国宇航出版社,2004.
    [184]刘兴洲.飞航导弹动力装置[M].北京:宇航出版社,1992.
    [185]缪万波,夏智勋,郭健,等.金属/水反应冲压发动机理论性能计算与分析[J].推进技术,2005,26(6):563-566.
    [186] LefebvreAH,AtomizationandSprays[M].USA:TaylorandFrancis,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700