变轨动力系统动态特性仿真与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以空间变轨动力系统为研究对象,采用理论分析与数值模拟相结合的方法,对变轨动力系统动态特性以及影响系统性能的因素进行了详细的研究分析。
     基于对变轨动力系统基本组件的模块化建模,研究了挤压式变轨动力系统的动态特性。研究发现挤压式系统启动和关机过程迅速,仿真结果验证了挤压式系统工况稳定可靠,所建立的组件模块合理,通用性强。
     论文对差动式变轨动力系统动态特性进行了仿真研究分析。研究发现差动式系统启动过程缓慢,系统工作具有典型的自生管路频率特性。
     考察了差动泵结构参数、燃气发生器喉部直径、电磁阀开启时间及液体减压器结构参数等对差动式系统发动机推力、燃气发生器室压以及系统频率变化的影响。研究发现:液体减压器弹簧预紧力大小是影响发动机推力大小的关键参数;同时差动泵活塞行程是影响系统频率的关键参数。对于一定推力量级的差动式系统,合适的活塞行程大小能够使发动机工作推力更加平稳。
The orbit maneuvers propulsion system was primarily investigated by both theoretic analysis and numerical methods to study its dynamic characteristics and how much the performance of system was impacted by different system configurable parameters.
     Modules of basal subassembly were established to research the dynamic characteristics of pressure-fed propulsion system, and the conclusions of emulator sustained that the startup and closedown courses of the pressure-fed propulsion system were fast, and the fact that the system was jarless and credible, and, the moduls were all-purpose and logical, were also validared.
     The dynamic characteristics of differential pressurization system were investigated also, which sustained that the startup courses of the differential pressurization system was slow. Moreover, the differential pressurization system had a typical characteristic in frequency.
     Then, the changes in thrust, pressure of firebox and characteristics in frequency of the differential pressurization system which were begot by system parameters (such as the laryngeal diameter of firebox, parameters of difference pump, parameters of redactor and the unlock time of electromagnetic valve) were attentioned, hereby, the spring force of liquid redactor was deemed to be pivotal parameter to the thrust and the journey of piston in the difference pump was deemed to be pivotal parameter to the characteristics in frequency of differential pressurization system, and, an appropriate journey of piston in the difference pump could level off the run course of an engine with rated thrust.
引文
[1]廖少英编著.液体火箭推进增压输送系统[M].北京:国防工业出版社,2007
    [2] Van Dresar N T. Pressuriation of cryogens:a review of current technology and its applicability to low-gravity conditions[R].AIAA92-3061,1992
    [3] Van Dresar N T.Predication of pressurant mass requirements for axisymmetric liquid hydrogen tanks [R].AIAA95-2964,1995
    [4] Zilliac G,Karabeyoglu M A.Modeling of propellant tank pressurization [R].AIAA2005-3549,2005
    [5]张超,鲁雪生,田丽亭.火箭低温液体推进剂增压系统数学模型[J].低温与超导,2005,33(2):35~38
    [6] Majumdar A,Steadman T.Numerical modeling of pressurization of a propellant tank[R].AIAA99~0879,1999
    [7] Tarafder A,Sarangi S.CRESP~LP:a dynamic simulator for liquid~propellant rocket engines [R].AIAA2000~3768,2000
    [8] Peukert M,Simon R.AATVSim the ATV propulsion system simulation software[R].AIAA2001~3828,2001
    [9] Cullimore B A,Beer C N,Jhonson D A.Propulsion system simiulation software[R].AIAA2000~3723,2000
    [10] B.Ф.格列克曼.液体火箭发动机自动调节[M].北京:宇航出版社,1995
    [11]曹泰岳.火箭发动机动力学[M].长沙:国防科学技术大学出版社.2004
    [12]张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005
    [13] S. Rubin.Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO) [J].Journal of Spacecraft and Rockets,1966,Vol.3(8):1188~1195
    [14] S. Rubin.Prevention of Coupled Structure~Propulsion Instability (POGO) on the Space Shuttle [R].Space Transportation System Technology Symposium,NASA TM X~52876,1970,Vol. II:249~262
    [15]杨本廉,刘达广,邹向曙.液体管路系统网络分析及频率响应计算[J].宇航学报,1985(1):99~109
    [16] W. A. Woods.Method of Calculating Liquid Flow Fluctuations in Rochek Motor Supply Pipes [J].American Rocket Society Journal,1961,Vol.31 (11):1560~1567
    [17] W. Zielke.Frequency~Dependent Friction in Transient Pipe Flow[J].Transctionof the ASME,Series.D.1968,Vol.90:109~115
    [18] K. Trikha.An Efficient Method for Simulating Frequency~Dependent Friction in Transient Liquid Flow[J].Trans. ASME,Series.I.1975,Vol.97(1):97~105
    [19]香川利治等.特性曲线法におけゐ非定常层流压力损失の高速精度计算法[J].日本机械学会论文集(B编),昭和58,第49卷,第447号:2638~2644
    [20] J.C.Eschweiler ,H.W.Wallace.Liquid Rocket Engine Feed System Dynamics by Method of Characteristics [J].Transactions of the ASME Series B,1968,Vol.90(4)
    [21] P. F.Thompson,T. J.Walsh.Characterization of Attitude Control Propulsion Systems[R].NASA~CR~115183,1971
    [22] J. J. Markowsky.An analytical model for predicting the pressure and flow transients in a gaseous H2~O2 100 LBF thrust reaction control system rocket engine[R].N73~16767,1971
    [23] E. K. Ruth,H. Ahn,R. L. Baker,M. A. Brosmer.Advanced Liquid Rocket Engine Transient Model[R].AIAA 90~2299
    [24]倪兆铭.压力阀的动态特性分析及其噪声、振动防止措施.机床与液压,1979(4)
    [25]贾铭新.双级减压阀静态、动态特性的理论分析与试验研究.哈尔滨船舶工程学院学术交流会论文(GF3687),1981
    [26]李国忱等.气动减压阀动态特性分析与试验研究.学会学术交流论文,1989
    [27] [苏]A~L1~塔纳塔尔著.张守田译.自动装置元件及其动态特性.国防工业出版社,1982.2
    [28]沈涌滨.火箭减压器及其动态特性仿真研究[D].国防科技大学研究生院,2003
    [29]武俊峰主编.现代控制理论基础.哈尔滨工程大学出版社,1998
    [30] [美]Katsuhiko Ogata著.卢伯英于海勋等译.现代控制工程(第四版).北京:电子工业出版社,2003
    [31]陈阳.液体火箭发动机试验台气路系统通用模块化建模与仿真研究[D].北京航空航天大学,2006
    [32]蔡亦刚.流体传输管道动力学[M].杭州:浙江大学出版社,1990
    [33]张育林,刘昆,称谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005
    [34]曹泰岳.火箭发动机动力学[M].长沙:国防科技大学出版社,2004
    [35]沈赤兵.液体火箭发动机静特性与响应特性仿真研究[D].长沙:国防科技大学研究生院,1997
    [36] [美]EB怀利,VL斯特里特著.清华大学流体传动与控制教研组译.瞬变流[M].北京:水利电力出版社,1983
    [37]称谋森,刘昆,张育林.液氢液氧火箭发动机预冷与启动过程数值模拟综述[J].推进技术,2002,23(3):177~181
    [38] Badmus OO , Eveker K M,Nett C N . Control~Oriented High Frequency Turbomachinery Modeling,Part 1:Theoretical Foundations[R].AIAA92~3314
    [39]刘昆.分级燃烧循环液氧液氢发动机分布参数模型与通用仿真研究[D].长沙:国防科技大学研究生院,1999
    [40] Mason J R,Southwick R D.Large Liquid Rocket Engine Transient Performance Simulation System (Final Report)[R]. NASA CR~184099,1990
    [41] J. E. Bradford,A. Charania,B. St. Germain,REDTOP~2:Rocket engine design tool featuring engine performance,weight,cost,and reliability[R].AIAA 2004~3514
    [42] Hagen~D.Sa?nick,Gerd Krülle.Numerical Simulation of Transients in Feed Systems for Cryogenic Rocket Engines[R].AIAA 95~2967
    [43] Yamanishi N,Kimura T,Takahashi M,et al.Transient Analysis of the LE~7ARocket Engine Using the Rocket Engine Dynamic Simulator (REDS)(R).AIAA2004~3850
    [44]杨锡武,何保成,任凤升等.某型弹用冲压发动机巡航段供油振荡的数值仿真[J].推进技术,2006,27(2):158~161
    [45] A Tarafder , Sunil Sarangi . CRESP~LP : A dynamic simulator for liquid~propellant rocket engines[R].AIAA 2000~3768
    [46]陈杰.航天运载器液体推进剂火箭发动机构型研究[D].长沙:国防科技大学研究生院,1991
    [47]许坤,张宝炯.液体火箭发动机运动循环参数通用计算方法的研究[J].宇航学报,1996,17(4):26~33
    [48]刘昆,张育林,程谋森.液体火箭发动机系统瞬变过程模块化建模与仿真[J].推进技术,2003.24(5):401~405
    [49]黄敏超,胡小平,吴建军,等.空间科学与工程引论[M].长沙:国防科技大学出版社,2006
    [50]黄敏超,王新建,王楠.补燃循环液体火箭发动机启动过程的模块化仿真[J].推进技术,2001,22(2)
    [51]黄敏超.火箭发动机动态过程.国防科学技术大学航天与材料工程学院,2001
    [52]刘红军.YF~20发动机起动过渡特性研究[D].航天工业总公司第十一研究所,1991
    [53]魏鹏飞,吴建军,刘洪刚,等.液体火箭发动机一种通用模块化仿真方法[J].推进技术,2005,26(2)
    [54] Span R,Lemmon E W,Jacobsen R T,et al.A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000K and Pressure to 2200MPa[J].J.Phys.Chem.Ref.Data,2000,29(6): 1361~1433
    [55] McBride B J,Gordon S.NASA-GLENN Chemical Equilibrium Program CEA2[CP].2004
    [56] Stewart R B,Jacobsen R T,Wagner W.Thermodynamic Properties of Oxygen from the Triple Point to 300K with Pressures to 80MPa[J].J.Phys.Chem.Ref.Data, 2000,29(3):331~385
    [57] Lemmon E W,Jacobsen R T,Penoncello S G,et al.Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000K at Pressures to 2000MPa[J].J.Phys.Chem.Ref.Data,2000,29(3):331~385
    [58]童景山,李敬.流体热物性质的计算[M].北京:清华大学出版社,1982:186~287
    [59]陈国邦,包锐,黄永华编著.低温工程技术数据卷[M].北京:化学工业出版社,2005
    [60] [日]田沼静一主编,叶士禄,焦正宽,张学栋译.低温[M].北京:低温工程编辑部,1980
    [61]郭霄峰主编.液体火箭发动机试验[M].北京:宇航出版社,1990
    [62]钱滨江,伍贻文,常家芳等.简明传热手册[M].北京:高等教育出版社,1983
    [63]刘国球主编.液体火箭发动机原理[M].北京:宇航出版社,1993
    [64]达道安主编.空间低温技术[M].北京:宇航出版社,1991
    [65]李华聪,李吉.机械/液压系统建模仿真软件AMESim[J].计算机仿真,2006,23(12):294~297
    [66]白晓瑞.液体火箭推进系统动态特性仿真研究[D].国防科技大学研究生院,2008
    [67]付永领,祁晓野.AMESim系统建模和仿真:从入门到精通[M].北京:航空航天大学出版社,2006
    [68] Hydraulic library.AMESim4.2User Manual[M].IMAGINE S.A.,2004
    [69]王克昌.液体火箭发动机瞬变过程的计算机模拟[J].宇航学报,1981,2(1):31~41
    [70]王珏.YF-73氢氧发动机启动过程分析[D].航天工业总公司第十一研究所,1990
    [71]邹宇,李平.自增压系统在轨姿控动力系统中的应用.西安航天动力研究所,2010
    [72]马莹雪.小型挤压式液体火箭发动机系统仿真.西北工业大学研究生院,2007
    [73]樊忠泽等.空间推进系统工作过程的模块化建模[D].国防科技大学学报,2007
    [74]李晓瑾,常小庆.姿控发动机减压阀出口压力偏差计算方法研究[J].火箭推进,2008,34(6):19~22
    [75]段毅等.高室压脉冲液体火箭发动机特性试验[J].火箭推进,2009,35(2):12~17
    [76]梁树强等.高室压脉冲推力器设计与实验研究[J].火箭推进,2009,35(4):8~13
    [77]梁国柱等.近地点发动机高空喷管性能预示研究[J].推进技术,2002,23(5):415~419
    [78]李自然等.轨道转移推进系统及其发展趋势[J].火箭推进,2005,31(5):25~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700